

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

BME & MDE

2021-22

Course Code & Course Name :

16BME06 - BODY AREA NETWORKS

Year/Sem

III&IV/V&VII

:

S.No.	Term	Notation	Concept/Definition/Meaning/	Units
		(Symbol)	Units / Equation / Expression	
		Unit-1	: Introduction	
			Body Area Network (BAN) technology	
			is the use of small, low power wireless	
1.	Body area		devices which can be carried or	_
1.	network		embedded inside or on the body.	
			Applications include: health and	
			wellness monitoring.	
			A body area networks (BAN) can	
			provide a wide range of applications	
	Ban and health		in primary for medical healthcare such	
2.	care		as telemetering vital sign,	-
			telecontrolling medical equipment,	
	DES	CALINIC	and in addition for non-medical	
	L D L S	DIVINIO	service such as entertainment.	
		Estd.	A body area sensor network and its	
		-stu.	environment. A BASN can interact	
	Technical		with existing systems, such as	
3.	challenges	-	networks in hospitals and retirement	-
			communities. Body sensors in BASN	
			nodes provide data to the body	
			aggregator, which is central to	
			managing body events. A sensor is a device that detects the	
			change in the environment and	
4.	Sensor	-	0	-
	Jensor		responds to some output on the other	
			system The basic function of an electronic	
			sensor is to measure some feature of	
5.	Sensor design	-	the world, such as light, sound, or	-
	Jenson design		pressure and convert that	
		1		

<u>г</u>				
			measurement into an electrical signal,	
			usually a voltage or current. The	
			electrical output of a given sensor can	
			easily be converted into other electrical	
			representations.	
			Biocompatibility is the most	
			commonly used term to describe	
	Biocompatibility		appropriate biological requirements of	
			a biomaterial or biomaterials used in a	
6.		-	medical device. Biocompatibility has	-
			also been described as the ability of a	
			material to perform with an	
			appropriate host response in a specific	
			application.	
			Energy supply is the delivery of fuels	
			or transformed fuels to point of	
	Biocompatibility		consumption. It potentially	
7.	energy supply	-	encompasses the extraction,	-
			transmission, generation, distribution	
			and storage of fuels. It is also	
			sometimes called energy flow.	
			The beneficial tissue response and the	
			clinically relevant performance of a	
	Components of		biomaterial, cytotoxicity, genotoxicity,	
8.	biocompatibility		mutagenicity, carcinogenicity and	-
			immunogenicity are considered to be	
			the components which constitute	
			"biocompatibility	
			Titanium	
9.			Most biocompatible material is	
9.	Biocompatibility	-	Titanium as it possess very good	-
	material DES	GNING	strength and low density value.	
		Estd.	The result shows that through optimal	
		cstu.	— node placement approach, energy	
10	Optimal node		consumed in the network can be	
10.	placement	-	minimized if nodes are selectively	-
	_		placed using the minimum	
			transmission cost.	
			The number of nodes is always one	
			less than the principal quantum	
11.	Number of nodes	_	number: Nodes = $n - 1$. In the first	_
11.		-	electron shell, n = 1. The 1s orbital has	-
			no nodes. In the second electron shell,	
			n = 2.	
			Security and reliability are terms used	
10			to discuss the strength and stability of	
12.	System security	-	the electricity grid, also known as an	-
	and reliability		electric power 'system'. The security of	
	J			

Г			on algorithm and in its to the local	
			an electricity grid is its technical	
			resilience (or strength), namely its	
			ability to quickly respond and remain	
			stable when unexpected events occur.	
			Wireless Body Sensor Networks	
	D 1'' ((WBSNs) are a subsetof wireless	
13.	Bsn architecture	-	sensor networks, which can offer this	-
			paradigm shift and can be used for	
			early detection of the different	
			diseases.	
			Intra-WBSN: In Intra-WBSN, the on-	
14.	T ' 1	-	body and/or implanted bio-medical	-
	Tier 1		sensor nodes send the sensed data to	
			the coordinator or base station	
		_	Inter-WBSNs: In Inter-WBSN,	
4 -			coordinators or base stations send the	
15.	Tier2	-	received data to the sink(s) after	-
			required data processing and data	
			aggregation	
			Extra-WBSN: In this tier the sink(s)	
			send the collected data to the remote	
16.	Tier3	1	medical center and/or any other	-
			destination via regular infrastructure	
			such as internet	
			With the proposed BSN architecture, a	
			number of	
17.	Protocol		wireless biosensors including 3-lead	-
			ECG, 2-lead ECG	
		\sim	strip, and SpO2 sensors have been	
			developed	
	DES	GNING	In this paper, a new energy-efficient	
			routing protocol (EERP) has been	
10	Energy efficient	Estd.	proposed for WSNs using A-star	
18.	routing protocols	LOCU.	algorithm. The proposed routing	-
	for wbasn		scheme improves the network lifetime	
			by forwarding data packets via the	
			optimal shortest path.	
			UDP is unreliable without any ACK,	
			whereas TCP is reliable with ACK for	
19.	Most efficient	-	each packet. UDP throughput will be	-
	protocol		higher than TCP. But UDP does not	
			ensure the delivery of the packet.	
			Same is true with power efficiency.	
			A Wireless Body Area Network	
	T 4 71		(WBAN) connects independent nodes	
20.	Wbasns	-	(e.g. sensors and actuators) that are	-
			situated in the clothes, on the body or	
			under the skin of a person. The	

			network typically expands over the whole human body and the nodes are connected through a wireless communication channel.	
21.	Power consumption	-	Battery replacement in WBAN can be done easily. So there is no worry of power consumption.	-
22.	Requirements of wban	-	Reliability Latency Security Power Consumption	-
23.	Reliability	-	High reliability is required when data concerning health is sent by the WBAN sensors.	-
24.	Latency	•	The response time to emergency situations should not be long. Real- time transmission is required in this case.	-
25.	Security		Personal and critical data should be handled with care to ensure the privacy and security of data.	-
		Unit-II : I	Hardware for BAN	
26.		GNING Std.	A processor (CPU) is the logic circuitry that responds to and processes the basic instructions that drive a computer. The CPU is seen as the main and most crucial integrated circuitry (IC) chip in a computer, as it is responsible for interpreting most of computers commands.	-
27.	MCU MCU Full Form	-	It's controlling the hardware that implements the device's operation. The MCU receives inputs from buttons, switches, sensors, and similar components; and controls the peripheral circuitry – such as motors and displays – in accordance with a preset program that tells it what to do and how to respond. Microcontroller unit	-
28.	Low power	-	The C8051F98x is the industry's lowest	-
29.	MCUs	-	power microcontroller (MCU), consuming as little as $150 \mu\text{A}/\text{MHz}$ in	-

			active mode and 10 nA in sleep mode with full memory retention.	
30.	Mobile Computing	_	Mobile computing is human– computer interaction in which a computer is expected to be transported during normal usage, which allows for the transmission of data, voice, and video. Mobile computing involves mobile communication, mobile hardware, and mobile software.	_
31.	Integrated Processor		The baseband processor (BBP) allows user data to be processed in the digital domain between an end application and the transceiver device The baseband processor design is also easily designed using system modeling tools such as Simulink.	_
32.	Radio transceiver		In radio communication, a transceiver is an electronic device which is a combination of a radio transmitter and a receiver, hence the name. It can both transmit and receive radio waves using an antenna, for communication purposes.	-
33.	Memory	\mathbf{X}	Memory refers to the processes that are used to acquire, store, retain, and later retrieve information. There are three major processes involved in memory: encoding, storage, and retrieval.	-
34.		GNING	 Encoding is the process of putting a sequence of characters (letters, numbers, punctuation, and certain symbols) into a specialized format for efficient transmission or storage. 	-
35.	Storage	-	Storage is a process through which digital data is saved within a data storage device by means of computing technology. Storage is a mechanism that enables a computer to retain data, either temporarily or permanently	-
36.	Retrieval	-	Information retrieval is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing.	-

	Antenna		An antenna or aerial is the interface	
	Amerina			
27			between radio waves propagating	
37.		-	through space and electric currents	-
			moving in metal conductors, used	
	DOD		with a transmitter or receiver.	
	PCB antenna		A PCB Trace antenna is comprised of a	
			trace drawn directly onto a PCB.	
38.		-	Furthermore, depending on the type of	-
			antenna and your space requirements,	
			the type of trace will vary.	
	Wire antenna		A random wire antenna is a radio	
			antenna consisting of a long wire	
			suspended above the ground, whose	
39.		-	length does not bear a relation to the	-
			wavelength of the radio waves used,	
			but is typically chosen more for	
			convenience.	
	Ceramic antenna		A Ceramic Chip antenna is a specific	
			type of antenna vaunted for its small	
			spatial requirements. Furthermore,	
			these particular antennas are usually	
			integrated into PCBs to emit high-	
40.			frequency electromagnetic waves.	-
			However, they are limited in their	
		\sim	range, which makes them ideally	
			suited for small devices, such as WiFi	
			routers and smartphones.	
	External antenna		A connector that allows an external	
	External anterna		antenna to be connected for improved	
			reception while in vehicles and/or	
			homes. The antenna may be located	
41.	DES	G N I N G	outdoors for maximum signal	-
			0	
		Estd.	performance. External antenna jacks	
			were common before smartphones, but are now extremely rare	
├	Directional		but are now extremely rare. A directional antenna or beam antenna	
	Directional			
	antenna		is an antenna which radiates or	
			receives greater power in specific	
42.		-	directions allowing increased	-
			performance and reduced interference	
			from unwanted sources. Satellite	
			television receivers usually use	
-			parabolic antennas.	
	Semi directional		Semi-directional antennas	
	antenna		are designed to direct the RF signal in	
43.		-	a specific direction for point-to-point	-
			communication. Semi-directional	
1			antennas are used for short to medium	

			1a	
			distance communication indoors or outdoors. The main types of semi-	
			directional antennas are Patch/Panel	
			and Yagi.	
	Omni directional		An omnidirectional antenna is a class	
	antenna		of antenna which radiates equal radio	
	unternit		power in all directions perpendicular	
44.		-	to an axis, with power varying with	-
			angle to the axis, declining to zero on	
			the axis.	
	Dipole antenna		A dipole antenna commonly consists	
	Dipole unterna		of two identical conductive elements	
			such as metal wires or rods The	
			dipole is the simplest type of antenna	
45.		_	from a theoretical point of view. Most	-
10.		-	commonly it consists of two	
			conductors of equal length oriented	
			end-to-end with the feedline	
			connected between them.	
	Power sources		A source of electrical energy. Electric	
	rower sources		power system, a network of electrical	
			components used to supply, transmit	
46.		×~ >	and use electric power. Electricity	_
ч0.			generation, the process of generating	
		\sim	electric power from other sources of	
			primary energy.	
	Batteries		a container consisting of one or more	
	Dutteries		cells, in which chemical energy is	
47.			converted into electricity and used as a	-
			source of power.	
	Fuel cells		A cell producing an electric current	
48.	DES	GNHNG	direct from a chemical reaction.	-
	Sensor nodes		A sensor node, also known as a mote,	
		ESTC.	is a node in a sensor network that is	
			capable of performing some	
			processing, gathering sensory	
49.		-	information and communicating with	-
			other connected nodes in the network.	
			A mote is a node but a node is not	
			always a mote	
	Fuel cells for		Pure hydrogen type, there are	
50.	sensor nodes	_	hydrocarbon fuels for fuel cells,	-
			including diesel, methanol	
	Unit-III : Wi	reless Comm	nunication And Network Protocols	
	Wireless		Wireless communication is the transfer	
	communication		of information between two or more	
51.		-	points that do not use an electrical	-
			conductor as a medium by which to	

			perform the transfer.	
52.	Wireless Communication protocol	-	The wireless communication protocol is the set of rules used to exchange data between electronic devices. Ex: Bluetooth, ZigBee, LoRa, NBIoT, WiFi, and Thread.	_
53.	RF communication	-	Radio frequency communication is used in human body for integrated communications from different in body implants and body sensors will allow hearing for deaf, sight for blind and mobility for disabled.	_
54.	Application of RF communication	-	Cochlear hearing implants Pacemakers on bladder control devices	-
55.	Body effects on RF transmission	-	The various tissues and organs have their own unique conductivity, dielectric constant and characteristic impedance.	_
56.	Signal at the implant		It is the sum of a low transmitted power, antenna gain, Transmission losses and the high body losses.	-
57.	RF Antenna	\gtrsim	RF Antenna input is typically used to connect a television antenna, cable TV wire, or satellite feed to a television, VCR, or other device that can process radio-frequency video signals, including some computers.	-
58.	Antenna Design	\sim	Antenna design is an important factor in using UAVs over extended range and where there are obstructed views.	-
59.	Elements of $D \in S$ antenna	Estd.	 Floating conductive radiator Reference Feedline Impedance matching network 	-
60.	Drawbacks of small antenna	_	Poor efficiency Low radiation resistance Narrow Bandwidth and High Q	-
61.	Patch antenna	-	It is used for pacemaker applications	-
62.	Helix antenna	-	It is required for stent or urinary tract implant	-
63.	Radiation pattern	-	Radiation pattern are made with the body phantom using a self contained transmitter immersed in the liquid. If the Antenna to be attached with a cable then it contribute Radiation pattern.	-

54.	Test procedures	_	Signal reception levels	-
51.	of antennas		Immunity to noise.	
	Propagation		The input power, absorption power in	
65.	characteristics		human body, accepted power, input	
55.		-	efficiency, accepted efficiency, and	-
			total efficiency.	
	Base station		In the area of wireless computer	
			networking, a base station is a radio	
			receiver/transmitter that serves as the	
56.		-	hub of the local wireless network, and	-
			may also be the gateway between a	
			wired network and the wireless	
			network.	
	BAN Topologies		Star topology	
67.	1 0	-	Mesh topology and	-
			Hybrid topology.	
	Stand - Alone		In a standalone application server	
(D	Topologies		instance topology, you install all the	
58.	1 0		MDM Hub components on a	-
			standalone application server instance.	
	Stand alone	\sim	The standalone database requires one	
<i>5</i> 9.	database		server while distributed databases	-
			require multiple servers (at least two).	
	Wireless Personal		A wireless personal area network	
	Area network	>	(WPAN) is a PAN carried over a low-	
70.			powered, short-distance wireless	-
		\rightarrow	network technology such as IrDA,	
			Wireless USB, Bluetooth or ZigBee.	
	ZigBee		Zigbee is a low-cost, low-power,	
	0		wireless mesh network standard	
71.		CHINE	targeted at battery-powered devices in	-
	DES	GNING	wireless control and monitoring	
		Test of	applications.	
	IEEE802.15.1	esta.	It defines physical layer (PHY) and	
			Media Access Control (MAC)	
70			specification for wireless connectivity	
72.		-	with fixed, portable and moving	-
			devices within or entering personal	
			0 1	
	IEEE P802.15.13			
73.		-	1 0 1	_
			WPAN.	
	IEEE P802.15.14			
			1 1 2	
/4.		-		-
			connectivity with fixed, portable, and	
			moving devices	
73.	IEEE P802.15.13 IEEE P802.15.14		This standard specifies the physical layer (PHY) and media access control sublayer (MAC) for impulse radio ultra wideband (UWB) wireless ad hoc	

75.	ZigBee device types	-	ZigBee coordinator ZigBee router ZigBee end device	_
	Uni	t-IV : Coexi	stence Issues With BAN	I
76.	Coexistence issues with WBAN	-	Coexistence remains one of the major concerns and challenges of license- exempt bands, as they are used for WBANs. A variety of approaches has been developed, as the avoidance of coexistence impact is subject to a conflict of objectives.	-
77.	Interferences in coexistence issues		When multiple BANS coexist then the performance of an individual BAN is degraded due to interference with neighbouring BANS. Interference causes unsuccessful transmission data, thus lowering the throughout ,and energy of devices is wasted is an important resource for WBAN devices,	_
78.	Classification of interference DES		Intrinsic interference from wireless systems running the same protocol in the same or neighboured frequency band Extrinsic interference from wireless systems running a different protocol in the same or neighboured frequency band Extrinsic interference from (micro) electronic systems with electromagnetic or RF-emission (EMI, RFI)	-
79.	Parameters of frequency behaviour in physical layer	. .	The spectral mask The effective radiated power The peak power density The frequency range(s) The transmitter's and receiver's spurious emissions	
80.	Intrinsic interference behavior	-	All nodes use the same frequency characteristics, i.e., the same bandwidth and the same modulation scheme. All nodes follow the same channel access mechanisms, i.e., LBT or back off strategies. All nodes may come with similar traffic characteristics, with regard to	-

			traffic load & traffic cycles	
81.	Extrinsic interference behavior	_	The nodes are operated within the same frequency band. The frequency characteristics of the interferer might be different from the interfered station. The traffic characteristics might be completely different.	_
82.	Countermeasures- Safety aspects		The system either avoids to be exposed to the event. Exposure is mainly avoided by planning and/or coordination with other systems. • Or the system attempts to be protected against the event. Protection can be achieved by redundancy and/or adaptivity.	-
83.	Countermeasures can be achieved by-		Company policies Regulation bodies Standard bodies Technical innovations	_
84.	Company policies	\bigotimes	This might include prohibition of some wireless products on campus, e.g., Bluetooth or 802.11b. Obviously, applications are moving away from this practice, as they are not suitable for changing topologies.	_
85.	Regulation bodies	\sim	The rules from regulation bodies might include basic coexistence rules, such as LBT or TPC.	-
86.	Standard bodies DES	Estd.	 The most prominent example of a standard-based approach was offered by the legacy IEEE802.2 workgroup with regard to the coexistence between IEEE802.11 (WLAN) and IEEE802.15.1 (Bluetooth) 	-
87.	Technical innovations	-	These look for new solutions with regard to physical and data link layer protocols or with regard to system level (driver) solutions.	-
88.	Countermeasures on physical layer	-	The countermeasures on the physical layer are around the technologies to split up one medium into different channels, e.g., with space, frequency, or code division multiple access (SDMA, FDMA, CDMA).	-
89.	Channel classification	-	Active classification can be done during the course of normal communication, or the devices can	-

90.	Complexity of channel classification	-	 exchange dummy packets with the specific goal of building a classification list. Passive classification is accomplished by listening to channels. Most of today's single-chip transceivers come with two options of passive channel supervision As the wireless signal is spatially distributed, the observation of one station has only local significance. If nodes are extensively using powerdown modes, they might not be informed about a change in frequency 	-
91.	Frequency hopping		 – and thus have to re-register Frequency hopping spread spectrum (FHSS) is the simplest spread spectrum technique, which helps to counteract against frequency specific interference on a statistical basis. FHSS uses M different carrier frequencies that are modulated by the source signal. 	_
92.	Recent developments of Bluetooth D E S		In order to reduce the overall energy consumption due to synchronization times, the Bluetooth low energy technology reduces the number of synchronization channels to four. The adaptivity helps to blacklist a subset of frequencies. The third approach is on the driver- side in order to coordinate the channel access of the different media.	-
93.	Countermeasures on data link layer	std.	The countermeasures on the data link layer are built around the variations of time division multiple access(TDMA), which allows multiple stations use one channel.	-
94.	Disadvantage of centralized approach	_	All slave stations must remain synchronized with the master, which in the general case requires precision timers and regular activity. In case that the synchronization is performed within the communication channel, the topology is limited to star or hierarchical star, i.e., tree topologies.	-

95. 96. 97.	Security layers of BIS Bacterial attacks Virus infection		 Physical barrier Physiological barrier Innate immune system Adaptive immune system -Humoral immune system -Cellular immune system Jamming, Collision, Exhaustion and Interrogation Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection Time synchronization corruption, 	-
96.	Bacterial attacks Virus infection		Innate immune system Adaptive immune system -Humoral immune system -Cellular immune system Jamming, Collision, Exhaustion and Interrogation Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	-
96.	Virus infection		Adaptive immune system-Humoral immune system-Cellular immune systemJamming, Collision, Exhaustion and InterrogationSelective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarmsCorrupting the routing information, Misdirection	-
96.	Virus infection	-	 -Humoral immune system -Cellular immune system Jamming, Collision, Exhaustion and Interrogation Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection 	-
	Virus infection		-Cellular immune systemJamming, Collision, Exhaustion and InterrogationSelective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacksNetwork scanning, Traffic analysis, False alarmsCorrupting the routing information, Misdirection	_
	Virus infection	-	Jamming, Collision, Exhaustion and Interrogation Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	_
	Virus infection		Interrogation Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	-
			 Selective forwarding, Sinkhole attacks, Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection 	-
			Sybil attacks, Wormholes, Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	-
			Acknowledgement spoofing HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	-
			 HELLO Flood attacks, Buffer overflow attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection 	-
97.			attacks Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	
97.			Network scanning, Traffic analysis, False alarms Corrupting the routing information, Misdirection	
97.		\leq	False alarmsCorrupting the routing information, Misdirection	
97.		\leq	Corrupting the routing information, Misdirection	
97.		\leq	Misdirection	
97.			Misdirection	
97.			Time synchronization corruption,	
97.			<i>J</i> 1 <i>'</i>	
			Worms,	-
			Trojan Horse, Backdoor,	
		<u> </u>	Hoaxes.	
	Secured protocols		There are a number of secured	
98.			protocols design for WSN is the	_
<i>J</i> 0.		\sim	Security Protocols for Sensor	
			Networks(SPINS)	
	Components of		µTESLA (micro version of the timed,	
	SPINS		efficient, streaming, loss-tolerant	
99.			authentication protocol)	-
		\sim	SNEP (Secure Network Encryption	
	D	\sim	Protocol)	
	Protective	GNING	Recognising antigens, Eliminating	
100.	mechanisms of $\begin{bmatrix} c \\ c \end{bmatrix}$	-	antigens	-
	Artificial Immune	-ctd	 Adapting to new antigens 	
	System(AIS)	JUU.	2000	
		STING AN	D THERAPEUTIC EQUIPMENTS	
	Chronic disease		Chronic diseases are defined broadly	-
			as conditions that last 1 year or more	
101.		-	and require ongoing medical attention	
			or limit activities of daily living or	
			both.	
102.	Chronic disease	_	Cancer, heart disease, stroke, diabetes,	-
102.	example	-	and arthritis.	
	Chronic disease		Monitoring is periodic measurement	-
103	monitoring	_	that guides the management of a	
103.		-	chronic or recurrent condition. It can	
			be done by clinicians, patients, or both.	
104.	Wireless device		Ultra low power wearable device able	-
104.	for chronic	-	to acquire patient vital parameters,	
102.	Chronic disease	-	Monitoring is periodic measurement that guides the management of a chronic or recurrent condition. It can	

	disease		causing minimal discomfort and	
	monitoring		allowing high mobility.	
	BAN in Hospital		A BAN in place on a patient can alert	-
105.	patients	-	the hospital, even before they have a	
	1)Heart patients		heart attack, through measuring	
			changes in their vital signs.	
	2)Diabetic		A BAN on a diabetic patient could	-
106.	patients	-	auto inject insulin through a pump, as	
			soon as their insulin level declines.	
107.	Physiological	_	ECG,SpO2,EEG and PDA	-
107.	sensors			
	Elderly patients		Children, the elderly require special	-
108.		_	approaches and an understanding of	
100.			the physiologic, psychosocial, and	
			physiologic impact of aging.	
	Elderly patient		Conventionally, "elderly" has been	-
	definition		defined as a chronological age of 65	
109.			years old or older, while those from 65	
109.			through 74 years old are referred to as	
			"early elderly" and those over 75 years	
			old as "late elderly."	
	Cardiac arrhymia		Improper beating of the heart, whether	
			irregular, too fast or too slow.	
110.			Cardiac arrhythmia occurs when	-
			electrical impulses in the heart don't	
			work properly.	
	Cardiac arrhymia		Cardiac arrhythmia monitoring	
111.	monitoring		devices are used for monitoring the	
111.	devices	\sim	patients at risk or with heart	-
			arrhythmia.	
	Cardiac	CMUMC	Zimetbaum7	
110	arrhythmia	UNING	POOR FOTORE	
112.	monitoring	Estd	2000	-
	devices name	esta.	2000	
	Types of Cardiac		Holter monitor, Event recorder,	
113.	monitoring	-	Mobile cardiac telemetry, Insertable	-
	system		cardiac monitor	
	Arrhythmia		Arrhythmia monitoring refers to tests	
114.	monitoring	-	physicians use to identify the type and	-
			the cause of irregular heart rhythms.	
	Multi patient		An efficient system that can monitor	
	Multi patient monitoring		An efficient system that can monitor multiple patients' health parameters	
115	-		multiple patients' health parameters	
115.	monitoring	_	multiple patients' health parameters simultaneously and can effectively	-
115.	monitoring	-	multiple patients' health parameters simultaneously and can effectively deliver the data to a patient	-
115.	monitoring	_	multiple patients' health parameters simultaneously and can effectively deliver the data to a patient monitoring system where it is stored	-
115.	monitoring	-	multiple patients' health parameters simultaneously and can effectively deliver the data to a patient	-

	monitoring system		body temperature, heart rate, ECG, blood sugar and oxygen level with the help of biosensors using arm microcontroller.	
117.	Neural record	-	Neural recording implants, as a part of BMI, are capable of capturing brain signals, and amplifying, digitizing, and transferring them outside of the body with a transmitter.	-
118.	Multi channel neural record	-	Advances in implantable multi- electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions.	-
119.	Neural signal		Neural signals consist of recordings of potentials that are presumably generated by mixing some underlying components of brain activity.	_
120.	Gait analysis		Gait analysis is the systematic study of animal locomotion, more specifically the study of human motion, using the eye and the brain of observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles.	
121.	Gait analysis uses	GNING Estd.	Gait analysis is a way to assess the dynamic posture and coordination during movement. This analysis is a means to evaluate, record, and make any necessary corrections for a smooth gait.	-
122.	Abnormal gait	-	Abnormal gait or a walking abnormality is when a person is unable to walk in the usual way.	-
123.	Sports medicine	-	Sports medicine is a branch of medicine that deals with physical fitness and the treatment and prevention of injuries related to sports and exercise.	-
124.	Example of sports medicine	-	Physical therapist, Certified athletic trainer, nutritionist	-
125.	Electronic pill	-	A electronic or digital pill is a pharmaceutical dosage form that contains an ingestible sensor inside of a pill.	-

	Placement Questions				
126.	Technical challenges of BAN	-	Sensor design Biocompatibility Energy supply Optimal node placement Number of nodes System security System reliability	-	
127.	Criteria for BAN architectural design	-	Miniaturization Low cost Low power consumption Wireless communication Secured and reliable protocols Intelligent Expandable Flexible Programmable	-	
128.	BSN and healthcare		Ease for sensor integration Monitoring patients with chronic diseases Monitoring Hospital patients Monitoring elderly patients	_	
129.	Physiological parameter (BSN sensor type)		Blood pressure(Implantable/wearable mechanoreceptor) ECG, cardiac output (Implantable/wearable mechanoreceptor and ECG sensor Body temperature(wearable thermistor) Urine output-Renal failure(Implantable bladder pressure /volume sensor)	-	
130.	Biochemical parameter(BSN DES sensor type)	<u>GNING</u>	Adrenocorticosteroids-hypertension (Implantable biosensor) Troponin, creatine kinase-Heart disease(Implantable biosensor) Inflammatory markers, White cell count, pathogen metabolites – Infectious diseases (implantable biosensor) Urea, creatinine, potassium-Renal failure(implantable biosensor)	-	
131.	Processor in BAN (Microcontroller)	-	To optimize the performance and power consumption of the MCU, the MSP430 (Texas instrument) provides different modes of operation and modular disabling/enabling controls.	_	
132.	Radio transceiver	-	To cater for the high bandwidth required for physiological sensors and ease the interface with other wireless sensors, the Chipcon CC2420 is used for the BSN	-	

133.	Flash memory	_	node. As an IEEE 802. 15. 4 compliant chipset, the Chipcon CC2420 allows the BSN node to communicate with other wireless sensor networks. The BSN node is designed with an on – board flash memory for enabling high- speed sampling nd dynamic program updates.	
			For this purpose, a 4-megabit Atmel At45DB041B serial flash memory module is used.	
134.	Board connector	-	The connectors are wired similarly to a bus where signals are designed to pass through from one side of the board to another, in order to provide the stackable functionality.	-
135.	Antenna		Antennas can be considered reciprocal devices that convert currents into field and fields into current .The BSN node is designed with only the mounting holes(Ant and GND) for the user to try different antenna designs.	-
136.	RF communication in body	\otimes	A radio frequency (RF) signal refers to a wireless electromagnetic signal used as a form of communication, if one is discussing wireless electronics.	-
137.	Antenna design	GNING	An in-body antenna needs to tunable with an intelligent transceiver and routine. This will enable the antenna coupling circuit to be optimized and the best signal strength obtained.	-
138.	Antenna testing	Estd.	Before designing a matching network for the antenna/transceiver interface it is necessary to measure the impedance of the antenna within a representative medium.	-
139.	Implementation of Wireless communication	-	IEEE 802.11 is a set of media access control and physical layer specification for implementing wireless networking computer communication. It was founded in 1987 to begin standardization of spread spectrum WLANs for use in the ISM bands.	-
140.	802.11 high rate standard	-	IEEE 802.11b is a high rate standard approved in 1999.It provided new data rate capabilities of 11 Mbps, 5.5 Mbps in addition to the original 2 Mbps and 1	-

			Mbps user rates of IEEE 802.11	
141.	Intrinsic interference	_	All nodes follow the same channel access mechanisms, i.e., LBT or back off strategies. All nodes may come with similar traffic characteristics.	-
142.	Extrinsic interference	-	The traffic characteristics might be completely different. So predictions of the future behavior are not possible. Digital systems tend to be much more event- driven.	-
143.	Star-mesh hybrid network		Network topology connecting a mesh network with one or more star networks or several star networks with each other. A mixed star and mesh network combines the simplicity of the singlehop star topology with the extendibility and flexibility of the multi-hop mesh topology	-
144.	Limit of Detection (LOD)	$\langle \cdot \rangle$	The lowest detectable analyte concentration, commonly defined as the concentration equivalent of three standard deviations of the y-intercept of the calibration working curve.	-
145.	Biosensor	IGNING	The term "biosensor" strictly refers to chemical sensors where a biological sensing element such as an enzyme or antibody is used to couple the analyze concentration in a sample matrix to a transducer	-
146.	Types of topology	Estd.	 Physical Topology Logical topology 	-
147.	Characteristics of network topology	-	 Latency Robustness Capacity and complexity of data routing Data processing 	-
148.	Advantages of Muti- sensor system	-	Improved Signal-to-Noise Ratio (SNR) Enhanced robustness and reliability in the event of sensor failure Extended parameter coverage Integration of independent features and prior knowledge Increased dimensionality of the measurement	-

	Contextual sensing	the ability to detect contextual	
149.		information	_
		and present it to the user to augment the	_
		user's sensory system;	
	The Five W's of	1. Who – the identity of the user or	
	Context	other people in the environment	
		2. What – human activity and	
		interaction in current systems	
150		3. Where – the environment within	
150.		- which the activity is taking place	-
		4. When – timestamp of the capture	
		records	
		5. Why – person's affective states	
		and intension	
		Dr. J. Alphas Jeba Singh Signature	
Facult	y Prepared	Associate Professor,	
		Department of BME.	

HoD