

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

III/V

:

:

MKC

2021-2022

MDE

Course Code & Course Name

19MDC05 & Control System for Physiological Systems

Year/Sem

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		UNIT I : CONT	ROL SYSTEM MODELING	
1.	Control system		When the output quantity is controlled by varying the input quantity	-
2.	System	<	When a number of elements are connected in a sequence to perform a specific function,	-
3.	Types of control system	-	open loop control system, closed loop control system	-
4.	Open loop control system	OLS	The output is not feedback to the input for correction.	-
5.	Closed loop control system.	CLS	the output has an effect upon the input quantity	-
6.	Feedback	\sim	Proportional signal is given to input for automatic correction of any changes in desired output	-
7.	Components of feedback control system	\mathbb{N}	Plant, feedback path elements, error detector and controller	-
8.	Transfer function.	TF	Ratio of the Laplace transform of output to input with zero initial conditions.	-
9.	Block Diagram	n rei chui	Pictorial representation of the functions performed by each component of the system and shows the flow of signals	_
10.	Signal flow graph	E a ta	and shows the flow of signals. It represents a set of simultaneous algebraic equations.	
11.	Transmittance	T	It is the gain acquired by the signal when it travels from one node to another node in signal flow graph.	-
12.	Sink	-	It is a output node in the signal flow graph and it has only incoming branches.	_
13.	Source	-	Source is the input node in the signal flow graph and it has only outgoing branches.	-
14.	Dash-pot	В	The friction existing in rotating mechanical system	Ns/m
15.	Non touching loop	-	The loops are said to be non touching if they do not have common nodes.	_
16.	Masons Gain formula	-	states that the overall gain of the system is $T = 1/\Delta \sum_{k=0}^{n} \Delta k P_k$	-
17.	Force balance equation of an	-	$F = M d^2 x / dt^2$	-

	ideal mass			
	element			
18.	Force balance			
	equation of ideal	-	F = B dx / dt	-
	dashpot element.			
19.	Force balance			
19.			F V	
	equation of ideal	-	$\mathbf{F} = \mathbf{K}\mathbf{x}$	-
	spring element.			
20.	Servomechanism		It is a feedback control system in which the	
	Scivonicchanishi	-	output is mechanical position	-
21.	Basic Elements			
	Used For			
	Modeling			
	Mechanical		Mass spring and dashnot	
		-	Mass, spring and dashpot	-
	Translational		-	
	System	_		
22.	Basic elements	<	Moment of inertia,	
	used for		dashpot with rotational frictional coefficient	
	modeling		torsion spring with stiffness	_
	mechanical		torsion spring with striness	
•••	rotational system			
23.	Thermal	- Z -	The ratio of change in heat stored and change	_
	capacitance		in temperature	
24.	Synchros	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Convert an angular motion to an electrical	
	Synchios		signal	-
25.	Matan		convert electrical energy into mechanical	
	Motor		energy	-
		UNIT II : T	IME RESPONSE ANALYSIS	
			convert the mechanical energy to electrical	
26.	Generator		energy	-
	Types		Force voltage and force current analogy	
	of Electrical		Toree voltage and force current analogy	
07				
27.	Analogous For			-
	Mechanical	DESIGNIN	O YOUR FUTURE	
	System			
20	Thermal	17	The ratio of change in temperature and change	
28.	resistance	- FSTO	in heat flow rate	-
• •	Transient		When the system changes from one state to	
29.	response		another.	-
	Steady state	_	Response of the system when it approaches	
30.	•			-
	response		infinity.	
31.	Order of a	-	It is the order of the differential equation	-
	system		governing the system.	
32.	Damping ratio.	ې	Ratio of actual damping to critical damping.	-
<u>,) </u>		ر		
52.		-	i. Delay time ii. Rise time iii. Peak time iv.	_
	Time domain			
33.	Time domain specifications		Peak overshoot	
33.	specifications	t _d	Peak overshoot The time taken for response to reach 50% of	0
		t _d	The time taken for response to reach 50% of	Secs
33.	specifications	t _d		Secs

36.	Peak time	t _p	The time taken for the response to reach the peak value for the first time	Secs
37.	Peak overshoot	-	Ratio of maximum peak value measured from the maximum value to final value.	_
38.	Settling time	ts	Time taken by the response to reach and stay within specified error.	Secs
39.	Need for a controller	-	The controller is provided to modify the error signal for better control action	-
40.	Different types of controllers	-	i.Proportional controller ii. PI controller iii. PD controller iv. PID controller	-
41.	Proportional controller (P)	Р	Produces a control signal which is proportional to the input error signal	-
42.	PI controller	PI	Produces a control signal consisting of two terms - one proportional to error signal and the other proportional to the integral of error signal.	-
43.	PD controller	PD	Produces a control signal consisting of two terms - one proportional to error signal and the other proportional to the derivative of error signal.	-
44.	Steady state error		The value of error as time tends to infinity	-
45.	Step signal		Value changes from zero to A at $t= 0$ and remains constant at A for $t>0$.	-
46.	Ramp signal	\sim	Value increases linearly with time from an initial value of zero at t=0	-
47.	Stepper motor		Transforms electrical pulses into equal increments of rotary shaft motion	-
48.	Servomotor		The motors used in automatic control systems or in servomechanism	-
49.	Tachogenerator	\sim	Produces an output voltage proportional to its shaft speed	-
50.	Centroid,	-~<	The meeting point of the asymptotes with real axis	-
		UNIT III : FRE	QUENCY RESPONSE ANALYSIS	
51.	Dominant pole		Pair of complex conjugate pair	-
52.	Dominant zeros	Esto	Located near the imaginary axis	_
53.	Frequency response	-	When the input to the system is a sinusoidal signal.	-
54.	Different frequency domain specifications	-	i. Resonant peak. ii. Resonant frequency, Bandwidth, Cut-off rate, Gain margin, Phase margin	-
55.	Frequency domain plots	-	Polar plot, Bode plot, Nichols plot, M & N circles	-
56.	Resonant Peak	-	The maximum value of the magnitude of closed loop transfer function	-
57.	Resonant frequency	-	The frequency at which resonant peak occurs	-
58.	Bandwidth	-	the range of frequencies for which the system gain is more than 3 dB	-

59.	Cut off rate.	-	The slope of the log-magnitude curve near the cut-off	-
60.	Gain Margin.	-	Amount of gain(in dB) added to the system to make the system unstable.	-
61.	Phase margin	-	Amount of phase lag(in degrees) added to the system to make the system unstable	_
62.	Gain margin formula.	-	Gain margin kg = $1 / \Delta G(j\Delta pc)\Delta$.	_
63.	Bode plot	-	It is the frequency response plot of the transfer function of a system.	_
64.	Magnitude plot	-	Plot between magnitude in db and $\log \omega$ for various values of ω .	-
65.	Phase plot	-	Plot between phase in degrees and $\log \omega$ for various values of ω .	-
66.	Corner frequency	ως	The frequency at which the two asymptotic meet in a magnitude plot	rad/sec
67.	Phase lag	\leq	A negative phase angle	Degree
68.	phase lead		A positive phase angle	Degree
69.	M circles	\cdot	The magnitude of closed loop transfer function with unit feedback can be shown for every value of M.	-
70.	N circles	$\boldsymbol{\Sigma}$	The phase of closed loop transfer function with unity feedback can be shown in the form of circles for every value of N	-
71.	Nichols chart		The chart consisting if M & N loci in the log magnitude versus phase diagram	-
72.	Polar plot		It is a plot of the magnitude of $G(j\omega)$ Vs the phase of $G(j\omega)$ on polar co-ordinates	-
73.	Minimum phase system	$\langle \rangle$	All poles and zeros will lie on the left half of s-plane	-
74.	All pass systems		The magnitude is unity at all frequencies	-
75.	Non-minimum phase transfer function	DESIGNIN	A transfer function, which has one or more zeros in the right half s – plane	-
		UNIT IN	/ : STABILITY ANALYSIS	
76.	Advantages of Nichols chart	-	To find closed loop frequency response from open loop frequency response.	-
77.	Auxiliary polynomial	-	The row of polynomial which is just above the row containing the zeroes	-
78.	Asymptotic stability	-	In the absence of the input, the output tends towards zero irrespective of initial conditions.	-
79.	Compensator	-	A device inserted into the system for the purpose of satisfying the specifications	-
80.	Types of compensators	-	i. Lag compensator ii. Lead compensator iii. Lag-Lead compensator.	-
81.	Phase cross over	-	The frequency at which, the phase of open loop transfer functions	-
1	Impulse		The input is given by inverse laplace	

83.	Lag Compensator	-	Produces a sinusoidal output having the phase lag when a sinusoidal input is applied.	_
84.	Lead Compensator	-	Produces a sinusoidal output having phase lead when a sinusoidal input is applied.	-
85.	Lag-Lead Compensator		Produces phase lag at one frequency region and phase lead at other frequency region.	-
86.	Use of lag compensator	_	Improve the steady state behavior of a system, while nearly preserving its transient response.	-
87.	Advantages of Bode plot	-	A simple method for sketching an approximate log curve is available.	-
88.	Two contours of Nichols chart	-	The M contours are the magnitude of closed loop system in decibels and the N contours are the phase angle locus of closed loop system.	-
89.	Types of compensation	-	i. Cascade or series compensation ii. Feedback compensation or parallel compensation.	-
90.	Nyquist contour		The contour that encloses entire right half of S plane.	-
91.	Relative stability.	•	It is the degree of closeness of the system, it is an indication of degree of stability.	-
92.	Root loci		The path taken by the roots of the open loop transfer function when the loop gain is varied from 0 to 1	-
93.	Stability.	~~	A stable system produces a bounded output for a given bounded input	-
94.	Compensating networks	$\langle \rangle$	Lead network Lag network Lag-Lead network	-
95.	BIBO stability	$\langle \rangle$	A linear relaxed system is said to be BIBO stable, if every bounded input produces a bounded output.	-
96.	Necessary condition for stability	DESIGNIN	All the coefficients of characteristic polynomial be positive	-
97.	Nyquist stability		We can predict the closed loop stability from	
98.	criterion Characteristic equation	Este	open loop data. Denominator Polynomial of the Transfer Function	-
99.	Quadrantal symmetry	_	The roots respect to both real and imaginary axis	-
100.	Magnitude criterion	-	G(s)H(s)=1	-
		VARIABLE ANA	LYSIS AND BIOMEDICAL APPLICATION	NS
101.	State	-	The condition of a system at any time instant.	-
102.	State variable	-	Set of variables which describe the state of the system at any time instant	-
103.	State space	-	The set of all possible values which the state vector	-
104.	Necessities of state space	-	Applicable to MIMO systems.	-

	analysis			
105.	State space representation	_	It consist of two equations state equation and output equation	-
106.	Phase variables	-	The state variables which are obtained from one of the system variables and its derivatives.	-
107.	Controllability	-	A system is said to be completely state controllable	-
108.	Observability	-	A system is said to be completely observable	-
109.	Modal matrix	-	used to diagonalize the system matrix	-
110.	Need for controllability test	-	To find the usefulness of a state variable	-
111.	Need for observability test	-	To find whether the state variables are measurable or not.	-
112.	Quantization	\langle	Converting a discrete-time continuous valued signal into a discrete-time discrete valued signal	-
113.	Sampled data system	-	If the signals in any part of the system is discrete then the entire system is said to be sampled data system.	-
114.	Periodic sampling	• 7	Sampling of a signal at uniform equal intervals is called periodic sampling.	-
115.	Coding		Representation of sampled data by n bit binary number is called coding	-
116.	Hold circuit		Used to convert digital signal into analog signal.	-
117.	Aperture time		It is the duration of sampling of analog signal	sec
118.	Acquisition time		Time taken by an analog to digital converter to sample the signal, to quantize it and to code it.	sec
119.	Discrete signal sequence	~	Function of independent variable	-
120.	Impulse response	n nai ann	The output of a system when we provide it with an impulse signal	-
121.	Weighting sequence	02510 VIN	The impulse response of a linear discrete time system	-
122.	Zero order hold	Esto	The effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval.	-
123.	First order hold	-	The output of the first order hold is constructed from latest two samples	_
124.	Hold mode droop	_	The change in signal magnitude during hold mode of a hold circuit	_
125.	Sampler	_	The device used to perform sampling is called sampler	_
	L	PLA	CEMENT QUESTIONS	
126.	Sampling	-	analog signals are sampled at predetermined intervals to convert into discrete time signals	-
127.	Test for controllability and	_	Gilbert's testKaman's test	-

	observability			
128.	State diagram	-	Pictorial representation of the state model of the system	-
129.	Mass	М	Weight of the mechanical system	kg
130.	Spring	K	Elastic deformation of the body	N/m
131.	Newton's second law of motion	-	The sum of applied force is equal to the sum of opposing forces	-
132.	Velocity	V	Vector measurement of the rate and direction of motion.	m/s
133.	DC supply	-	The electric charge (current) only flows in one direction.	-
134.	AC supply	-	It is an electric current which periodically reverses direction	-
135.	Node		It is a point representing a variable or signal	-
136.	Branch	\leq	It is directed line segment joining two nodes	_
137.	Mixed node		It is a node that has both incoming and outgoing branches	_
138.	Open path		It starts at a node and ends at another node	_
139.	Closed path		It starts and ends at same node	-
140.	Loop gain		It is the product of the branch transmittances of a loop	-
141.	Gas flow resistance		The rate of change in gas pressure difference for a change in gas flow rate	ohm
142.	Pneumatic capacitance		The ratio of change in gas stored for a change in gas pressure	fara
143.	Characteristics of negative feedback	\leq	Accuracy in tracking steady state value	-
144.	Demodulation	-	Reverse process of modulation	-
145.	Dwell time	DESIGNIN	The length of the time the vibration reed rest on the fixed contacts	-
146.	Inverter	Fstr	Converts DC to AC	-
147.	Scalar		Used to multiply a signal by a constant	-
148.	Adder	-	Used to add two or more signals	-
149.	Integrator	-	Used to integrate the signal	_
150.	Observability test	-	Gilbert's test and Kalman's test	-

Name of the Faculty Prepared

Signature

Mr.C.S.Satheesh , AP/EEE