

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC

2021-2022

MUST KNOW CONCEPTS

BME & MDE

	Subject	191	BME08 & 19MDE07- MEDICAL OPTICS				
	UNIT-1 OPTICAL PROPERTIES OF THE TISSUES						
S.No	S.No Term Notation Concept/Definition/Meaning/Ur tion/Expression			Units			
1	Optics		Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it.				
2	Optical properties		- Absorbance, Luminosity, Scattering, Transmittance, Diffraction, Refractive index, photosensitivity, interference				
3	Specular reflection		Specular reflection is a type of surface reflectance often described as a mirror-like reflection of light from the surface.	-			
4	Diffuse reflection	DESIGN	It is a reflection from rough surface.	-			
5	Snell's law	Est	Snell's law, in optics, a relationship between the path taken by a ray of light in crossing the boundary or surface of separation between two contacting substances and the refractive index of each. $n1/n2 = \sin \alpha 2/\sin \alpha 1$	-			
6	Index of refraction	-	The index of refraction, n, is the ratio of the speed of light in a vacuum, c, to the speed of light in a medium, v n=C/V	-			
7	Huygens principle	-	The Huygens–Fresnel principle is a method of analysis applied to problems of wave propagation both in the far-field limit and in near-field diffraction and also reflection	-			
8	Total internal reflection	-	Total Internal Reflection (TIR) is a phenomenon in optics, by which light experiences complete reflection at an	-			

1

			interface between two media.	
9	Fiber optic	_	Fiber optics is the technology used to transmit information as pulses of light through strands of fiber made of glass or plastic over long distances	_
10	Tissue properties	-	Refractive index, absorption, Scattering	-
11	Population inversion	-	Generally electron tends to (ground state) what would happen if a substantial percentage of atoms could somehow be excited into an upper state having the lower state all empty. This is known as population inversion.	-
12	Pumping source	-	Optical pumping, Element pumping, chemical reaction.	-
13	Types of laser	\sim	Solid, liquid, gas lasers	-
14	Uses of laser technology	-	Science, Machining, communication, security, medicine.	-
15	Photocoagulati on can be done		1.xenon lamp 2. Laser	-
16	Benefit of laser dentistry		Faster healing, Reduced risk of infection, less bleeding, less port.	-
17	Measurements scheme		CW (continuous wave) measurements Time resolved measurements Specifically-resolved measurements	-
18	Laser -tissue interaction		Photo chemical, photo thermal, photo mechanical	-
19	Photo chemical interactions	DESIGN	Photo dynamic therapy, hyperthemia, Photocoagulation	-
20	Photo thermal interactions	- Est	Desiccation, Thermal injury	-
21	Photo mechanical interactions	-	Transient stress waves, Quasi-state stress	-
22	Speckles	-	The term speckle refers to a random granular pattern which can be observed.	-
23	Types of speckle	-	1.Subjective speckle 2.Objective speckle	-
24	Fiber	-	A fibre is a thin thread of a natural or artificial substance, especially one that is used to make cloth or rope.	-
25	Types of fiber	-	1.Mode of propagation 2.Refer -index	-
	UN	IT -2 INSTRU	JMENTATION IN PHOTONICS	

26	Instrumentation	-	The use of tools, appliances, or apparatus in the treatment of a patient	-
			Photonics is the physical science of light waves. It deals with the science behind the	
27	Photonics	-	generation, detection and manipulation of light.	-
			Instrumentation used to carry out atomic absorption spectrophotometry requires a	
28	Instrumentation for absorption	-	source of light that matches the narrow bands of light that a particular atom absorbs	-
	Scattering		By measuring the intensity of the scattered light as a function of the scattering angle θ	
29	measurements	-	$(= 0^{\circ} \text{ for unscattered light and } = 180^{\circ} \text{ for light scattered directly back into the laser)}$	-
			Emissions measurement is the process of	
	Emission		measuring the amount of pollutants, in a	
30	measurements		gaseous or particulate form, being emitted	-
			to the air from a specific source, such as an industrial process.	
			High pressure arc lamp,	
31	Excitation light		LED,	-
	source		Laser.	
32	High pressure arc lamp		A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light	-
			Made popular by their efficiency, range of	
22			color, and long lifespan, LED lights are	
33	LED		ideal for numerous applications including night lighting, art lighting, and outdoor	-
			lighting.	
			A laser is a device that emits light through	
34	Laser	DECLOS	a process of optical amplification based on	
54	Laser	DESIGN	the stimulated emission of electromagnetic	-
		Fe	radiation.	
35	Optical filters	LS	Prism ZOOO Monochromators	_
55	Optical litters		Polarizer's	
			A polyhedron with two polygonal faces	
36	Prism	-	lying in parallel planes and with the other	-
			faces parallelograms	
27	Manashnamatan		A monochromator produces a beam of light	
37	Monochromators	-	with an extremely narrow bandwidth, or light of a single color	-
			Polariser is an optical filter that lets light	
20	Polorizor's		waves of a specific polarization pass	
38	Polarizer's	-	through while blocking light waves of	-
			other polarizations.	
			1	
39	Optical detectors		An optical detector is a device that converts light signals into electrical signals,	

			Single Channel and Multichannel	
40	Optical detectors		Single Channel and Multichannel	
40	types	-	detectors, Time resolved and phase	-
			resolved detection methods,	
41	Single channel		Single-channel detectors have one active	
41	detectors	-	sensing element that acts as single transducer.	-
			Multichannel Analyzers (MCAs) are workhorse instruments in many scientific	
			measurements. An MCA analyzes a stream	
42	Multichannel		of voltage pulses and sorts them into a	
42	detectors	-	histogram, or "spectrum" of number of	-
			events, versus pulse-height, which may	
			often relate to energy or time of arrival.	
			Phase-resolved OCT systems measure both	
	Phase resolved		the amplitude and phase of the light	
43	detection	-	reflected from the sample as a function of	-
	uelection		depth.	
			-Total internal reflection	
44	Optical fibers		Optical fibers are about the diameter of a	
44	Optical fibers		strand of human hair	-
			They are absolutely necessary for various	
			scientific implementations like fiber optic	
45	Uses of optical		communication systems, process control,	_
тЈ	detectors		environmental sensing, safety and security,	_
			and also in defense-related applications.	
	Application of		Medical. Used as light guides, imaging	
46	optical fibers		tools and also as lasers for surgeries	-
	Uses of single		The benefits of simultaneous multichannel	
	channel		detection over single-channel scanning	
47	&Multichannel		detection are well established in analytical	-
	detectors		chemistry.	
			The applications of light scattering are	
48	Application of		discussed, including critical phenomena,	-
	scattering	DESIGN	molecular weight determination air Measurements of emissions can be used to	
	Importance of			
49	emissions	- Fei	understand the relative importance of a	-
	measurements	LO	given source compared to other sources	
50		_		_
	UNIT -3 SU	RGICAL THE	RAPEUTIC APPLICATIONS OF LASERS	
			Lasers are commonly employed in many	
51	Medical		medical disciplines; dermatology,	
51	applications of	-	dentistry, cardiology, neurosurgery and eye	-
	lasers		surgery	
			Ophthalmology is a branch of medicine	
50	Ontholmology		dealing with the diagnosis, treatment and	
52	Opthalmology	-	prevention of diseases of the eye and visual	-
			system.	
	T		There are numerous other LASERS in use	
53	Lasers in	-	in ophthalmology. They include	-
	Opthalmology		1. The excimer LASER used in corneal	
			1. The exciner LASEK used in corneal	

			refractive surgeries such as LASIK, PRK	
			and variants of this technology.	
			2. The femtosecond LASER used	
			sometimes in corneal and cataract surgery.	
			The cyclodiode LASER for advanced	
			glaucoma.	
			Dermatology is the branch of medicine	
			dealing with the skin. It is a speciality with	
			both medical and surgical aspects. A	
54	Dermatology	-	dermatologist is a specialist medical doctor	-
			who manages diseases related to skin, hair,	
			nails, and some cosmetic problems.	
			In dermatology, LLLT has beneficial	
	Laser therapy		effects on wrinkles, acne scars,	
55	used in	_	hypertrophic scars, and healing of burns.	-
	dermatology		LLLT can reduce UV damage both as a	
	BJ		treatment and as a prophylaxis	
			Lasers use light energy to resurface the	
			skin. This light energy is very precise, and	
			targets damaged skin cells while preserving	
56	Lasers work in	_	healthy skin cells	_
50	dermatology		Along with protecting the healthy skin	
			cells, laser skin procedures also stimulate	
			collagen growth	
			Lasers that have been used to treat these	
			conditions include argon, APTD, KTP,	
			krypton, copper vapour, copper bromide,	
	Lasers used by		pulsed dye lasers and Nd:YAG. Argon	
57	dermatologists		(CW) causes a high degree of non-specific	-
			thermal injury and scarring and is now	
			largely replaced by yellow-light quasi-CW	
			and pulsed laser therapies	
		DESIGN	Dentistry is the diagnosis, treatment, and	
58	Dentistrry	-	prevention of conditions, disorders, and	-
		Est	diseases of the teeth, gums, mouth, and jaw	
			• The lasers that are most commonly	
			used in dentistry are diode lasers,	
			argon lasers, Nd-YAG lasers,	
			carbondioxide lasers, the Erbium lasers	
	Types of lasers		and more.	
59	used in dentistry	-	• The carbon dioxide lasers produce	-
	and an activity		-	
			laser waves that are very well absorbed	
			by water and are mostly used to treat	
			soft tissues.	
	Lasers in		The laser instruments used by dentists	
60	dentistry	-	create a narrow and focused beam of light	-
-			designed to react to specific tissue. Each	

			lagar instrument produces different	
			laser instrument produces different wavelengths in order to target specific	
			tissue.	
	Laser device		Mostly diode lasers are being extensively	
61	used in dentistry	-	used in the field of dentistry.	-
			A faster healing time	
	Benefits of laser		Less post-surgical bleeding	
62	dentistry	-		-
			Less pain	
			Anesthesia may not be necessary	
			Urology, also known as genitourinary	
			surgery, is the branch of medicine that	
63	Urology	-	focuses on surgical and medical diseases of	-
			the male and female urinary-tract system	
			and the male reproductive organs.	
			KTP:YAG (Potassium titanyl phosphate),	
64	Types of lasers		LBO:YAG (lithium borate), diode lasers,	
04	used in urology		Holmium (Ho):YAG and Thulium (Tm):YAG lasers.	-
			(TIII). TAO lasers.	
			With proper use, lasers allow the surgeon	
			to accomplish more complex tasks, reduce	
	т ·		blood loss, decrease postoperative	
65	Laser uses in		discomfort, reduce the chance of wound	-
	surgery		infection, and achieve better wound	
			healing. As with any type of surgery, laser	
			surgery has potential risks.	
			Otolaryngology is a medical specialty	
			which is focused on the ears, nose, and	
66	Otolaryngology		throat.	-
			An otolaryngologist is often called an ear, nose, and throat doctor, or an ENT for	
			short.	
		DESIGN	Pulsed dye lasers are being more broadly	
		L D C D I O I	adopted for treatment of a wide range of	
		Fc	true vocal fold and laryngeal disorders.	
	Lasers in	LJ	Lasers are used to treat ear disease and	
67	otolaryngology	-	cranial base disorders as well	-
	otolaryingology		Lasers are also used to reduce or eradicate	
			ascular lesions and neoplasms in infants,	
			hildren, and adults that obstruct the airway.	
			CO2 laser are mostly used in ENT,	
	Laser in nasal		particularly appreciated for the high degree	
68		-	of precision in cutting combined with an	-
	surgery		excellent coagulation effect.	
	Tique welding			
69	Tissue welding	_	Tissue welding is a relatively new procedure that aims to seal wounds and	-
09		-	openings in a surgery using laser.	-
L	1		openings in a surgery using laser.	

70 Lasers in tissue welding	-	The function of lasers in welding is to bring about efficient delivery of heat to the tissues in the junction. The main molecules that absorb heat are water, hemoglobin, and melanin. Water has strong absorption in the NIR region. This makes the use of solid-state and CO2 lasers ideal for water based heating.	-
71 Benefits of laser tissue welding	-	The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration.	-
72 Limitation of laser tissue welding		The welding plants are expensive, depending upon the equipment, relatively expensive. The disadvantage is counteracted by the low amount used compared to the welding time and also that there are few post welding operations.	-
73 Laser tissue soldering(LTS)		LTS is various substances are applied on the approximated edges of the tissue, before the lasing process. This localizes the heat generated by the laser light to the region of the protein glue, protecting the underlying tissue from excessive heat.	-
Photothermal - effects of laser tissue soldering	DESIGN	 Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. 	_
75 Optical parameters of laser tissue soldering	Es	Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration. To determine the parameters ,an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens.	_
UNIT	-4 NON THERN	MAL DIAGNOSTIC APPLICATIONS	
76 Optical coherence tomography	-	Optical coherance tomography or OCT is a non-contact, non-invasive imaging technique used to obtain high resolution cross sectional images of the retina and anterior segment.	-
77 Principle of OC	Г -	OCT images obtained by measuring,Echo time	-

			• Intensity of rollested light	
			• Intensity of reflected light. Source of light :	
			6	
			• 830 nm diode laser	
			• 1310 nm AS-OCT	
78	Types of OCT	-	• Time domain – OCT	-
	1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		Spectral domain – OCT	
			 Non - invasive 	
			 Non - contact 	
79	Advantages of	-	 Minimal cooperation needed 	-
.,	OCT		 Pick up earliest sign of disease 	
			 Quantitatively monitor disease / 	
			staging	
			 Best for optically transparent 	
	Disadvantages of		tissues	
80	OCT	-	 Diminished penetration through 	-
			Retinal / sub-retinal haemorrhage	
			Requires pupil diameter >4 mm	
			Non-invasive imaging technique used to	
81	Elastography		depict relative tissue stiffness or	_
	8F)		displacement(strain) in response to	
			imparted force	
			• Excitation – transmission of stress	
			in a tissue	
	Aim of elastography		 Acquisition – recording the signal 	
82			induced by the tissue deformation	_
02			due to the stress	
			• Analysis / post treatment – analysis	
			of tissue strain induced by the	
			propagation of the stress	
			Based on type of force applied-	
			Quasi – static elastrography	
			 strain elastography 	
83	Techniques of	DECICA	Dynamic- elastrography	
65	elastography	DESIGN	 Acoustic radiation 	-
	-	Ent	 Forced impulse imaging 	
		ES	• Transient elastography	
			Shearwaveelastography	
			First elastography technique	
			developed; most widely used	
84	Advantages of	-	and validated.	-
	elastrography		• Dosn'trequire a complex	
			software.	
			• Lessuser – dependent	
			 Better resolution than SE 	
85	ARFI	_	 Better transfer of shear 	-
	Advantages		modulus contrast to image	
			contrast	
	Advantages of		 Easy to use Quantification of tissue 	
86	transient	-	 Quantification of tissue elasticity 	-
	elastography		•	
			Rapid, painless	

			Good reproducibility	
87	Advantages of shearwave elastography	_	 Displayed in real time, like a conventional ultrasound image. Good reproducibility. Quantitative value of stiffness Very short acquisition time (~30ms). 	-
88	Clinical application of elastography	-	 Breast imaging Prostate imaging Thyroid imaging Liver imaging Cardiac elastography 	-
89	Laser induced fluorescence	-	Laser induced fluorescence (LIF) is the optical emission from molecules that have been excited to higher energy levels by absorption of electromagnetic radiation.	-
90	Advantages of LIF		 i) To get two and three – dimensional images since fluorescence takes place in all directions. ii) Signal to noise ratio of the fluorescence signal is very high. iii) Good sensitivity. 	-
91	Lasers used in LIF		 Excimer lasers XeF(351 nm), Xecl(308 nm) etc are usually used Spectral width – 0.3 nm Pulse width 10 ns 	-
92	Various techniques in Raman spectroscopy		 Absorption spectroscopy Reflectance spectroscopy Fluorescence spectroscopy Raman spectroscopy 	-
93	Advantages of silicon detectors method	- Est	 Fluorescence emission is reduced Spetra with acceptable SNRS ratios can be achieved with relatively short integration time on th order of a few seconds 	-
94	Clinical application of Raman spectroscopy	-	 Raman spectroscopy has been studied extensively for tissue diagnosis in four main organ sites: Breast(breast cancer) Esophagus Cervix(Cervical intraepithelial neoplasia) Skin (Melanoma & Non- melanoma skin cancers) Brain Eye Biological fluids 	-
95	Other	-	i. Raman spectroscopy has also been	-

	applications of			to determine various analytes such	
	Raman			as those in the blood (eg.	
	spectroscopy			determination of glucose	
	1 15			concentration in diabetes patients)	
			ii.	The transdermal measurement of	
				blood glucose using the tissue	
				modulation for extraction.	
			1.	Ophthalmology	
			2.	Dentistry	
0.6	Holographic		3.	Urology	
96	techniques in	-	4.	Otology	-
	medicine		5.	Pathology	
			6.	Orthopaedics	
			0	Endoscopic holography has	
			Ũ	potential of providing a powerful	
				tool for non-contact high resolution	
				3D imaging and non-destructive	
97	Endoscopic			measurements inside natural	_
	holography			cavities of human body or in any	
				difficult to access environment.	
			0	It combines the features of	
				holography and endoscopy.	
			4	LSCI is a technique based on the	
				dynamic change in this back	
	Laser speckle			scattered light as a result of	
98	contrast imaging			interaction with RBC.	-
	(LSCI)		\succ	It can be used to visualize perfusion	
				in various tissues.	
			1	Rheumatology	
			2.	Burns	
	Clinical			Dermatology	
99	applications of			Ophthalmology	-
	laser speckle			Neurology	
	huser speenie	DECICN	6 .		
		LULSION	TH G	Subito intestinal fact surgery	
		Ect	0	It's a cheap	
	Advantage of	E S	0	Non-contract and	
100	speckle lasers	-	0	Reliable imaging modality	-
	imaging		that ca	in measure blood perfusion at any	
	00			uring a clinical examination.	
	UNIT-5	DIACNOSTIC	•	THERAPEUTIC TECHNIQUES	
	0111-3		1		
				cal imaging" - The process of	
101	Imaging	_		g a visual representation of	_
	8			hing by scanning it with a detector or	
				omagnetic beam.	
4.0-			-	nicroscope technique where the entire	
102	Field imaging	-	-	e is exposed to light is known as	-
				ield' imaging.	
103	Biological	_		rangement or organization of parts to	_
105	structures		form a	n organ, system, or living thing	

10.4	T 7",		When something is performed in vitro, it	
104	Vitro	-	happens outside of a living organism.	-
105			concerned with the diagnosis of illness or	
105	Diagnostic	-	other problems.	-
			The process of identifying a disease,	
			condition, or injury based on the signs and	
	Clinical		symptoms a patient is having and the	
106	Clinical	-	patient's health history and physical exam.	-
	diagnostic		Further testing, such as blood tests,	
			imaging tests, and biopsies, may be done	
			after a clinical diagnosis is made.	
107	Phototherapy		The use of light in the treatment of physical	_
107		_	or mental illness.	_
108	Types of		Single light phototherapy	_
100	Phototherapy	_	Double and triple light phototherapy	_
			No need for eye shielding	
109	Advantages	-	Simple deployment for home phototherapy	-
			Low risk of over heating the infant	
			May include noise from the fan in the light	
			source.	
110	Disadvantages	-	Decrease of delivered energy with aging	-
			and/or breakage of optical fibres.	
			Some new fibrotics units now incorporate	
			photodiodes as a light sorce.	
			Photodynamic therapy (PDT) is a treatment that uses a photosensitizer (PS), or	
			photosensitizing agent, and a light of	
	Photodynamic		appropriate wavelength, which in the	
111	therapy(PDT)		presence of oxygen, will lead to the	-
			generation of cytotoxic species and	
			consequently to cell death and tissue	
			destruction.	
			1) Application of photosensitizer drugs-	
		DESIGN	Light sensitizing liquid, cream, intravenous	
			drug (photosensitizer) is applied or	
		Fet	administered.	
112	Three steps in	LJ	2) Incubation - There is an incubation	
112	PDT	-	period of minutes to days.	-
			3) Light activation-Finally target tissue is	
			then exposed to specific wavelength of	
			light that then activates the	
			photosensitizing medication.	
			Type 1 Reaction	
			• Direct reaction with substrate(cell	
			membrane or molecule)	
113	Mechanism of	-	• Transfer of H atom to form	_
	PDT		radicles.	
			Type II Reaction	
			• Transfer of oxygen to form singlet	
			oxygen.	
114	Assay	-	An assay is an investigative (analytic)	-
-	5		procedure for qualitatively assessing or	

			quantitatively measuring the presence,	
			amount, or functional activity of a target	
			entity (the analyte).	
			Photosensitizers are molecules that can be	
			activated by light in order to generate ROS	
115	Photosensitizer	-	that can damage cell structures from	-
_			microorganisms or from diseased	
			mammalian cells leading to cell death	
			killing acne-causing bacteria on the	
			skin.	
110	Advantages of		• affecting only targeted cells,	
116	PDT	-	helping to maintain skin integrity.	-
			• reducing the size and activity of	
			sebaceous glands.	
			 helping fade old acne scars. 	
			It can only treat areas where light can	
			reach. That means it can only be used to	
117	Disadvantages of		treat cancer on or just under the skin, or in	
117	PDT		the linings of some organs. Also, it cannot	-
			be used in people with certain blood	
			diseases.	
			Palliative treatment of obstructing	
			esophageal cancer;	
			 palliative treatment of obstructing 	
			endobronchial lesions;	
118	Oncological			
118	application		• treatment of early stage non-small-cell	-
			lung cancer in patients who are ineligible	
			for surgery and radiotherapy;	
			• treatment of high-grade dysplasia in	
			Barrett's esophagus;	
			Non-Oncology Indication means any	
			Indication in humans other than an	
119	Non-Oncological	D D C L C L	Oncology Indication. For clarity, treatment	_
117	application	DESIGN	of separate stages or forms of the same	
		_	Non-oncology Indication would not be	
			separate Non-oncology Indications.	
			Biostimulation refers to the addition of rate	
			limiting nutrients like phosphorus,	
120	Bio stimulation		nitrogen, oxygen, electron donors to	
120	effect	-	severely polluted sites to stimulate the	-
			existing bacteria to degrade the hazardous	
			and toxic contaminants	
			Non-ionizing radiation	
121	LASER	-	monochromatic	-
			Misaligned laser beam	
	Sources of laser		Equipment Malfunction	
122	hazard	-	Use of unfamiliar equipment	-
	nazaru		Accidental eye exposure during alignment	
100	C of other second		Signage, Eyewear, Laser key, Blast shields,	
123	Safety measures	-	Evolve laser Blast shield, Helium laser	-
			Blast shield	

	Urological laser		Bladder Biopsies, Lithotripsy, Fulguration	
124	Procedures	-	of Bladder tumors, Strictures	-
	1100000105		Laser foot Pedal	
125			Laser used correctly	
	Procedural		5	
	Procedural Practices	-	 Laser in "standby" when not in direct use 	-
	11000005			
			Smoke evacuator used whe lasing produces particulates.	
	QUESTION AND ANSWERS			
		I LAUENIEN I		
126	Acronym - MASER	-	Microwave Amplification by Stimulated Emission of Radiation	-
ļ	One way to		A wave packet	
127	describe a		A wave packet	
121	Photon	-		-
	What determines		Wavelength	
128	the color of	_	,, a voiongui	_
120	light?	-		-
	Scientist first		Albert Einstein	
	came up with the			
129	idea of			_
127	stimulated			
	emission			
	Which laser is		Laser bar-code scanners	
130	considered "eye			-
	safe"?			
	In Stimulated			
	Absorption, what		Answer: d - Infinity	
	is the lifetime of		Explanation: At the ground state, the atoms	
	atoms ground		are perfectly stable. They are under no	
131	state?		excessive force that might lead to become	-
	a) 1 second		unstable. All the forces are balanced. Thus,	
	b) 1 minute		as the atom is stable in ground state, its	
	c) 1 hour	DESIGN	lifetime is infinity.	
	d) Infinity	LUCUION		
	Where is ND:	Fet	Answer: a - Cosmetic Surgery	
	YAG most	LO	Explanation: ND: YAG is most commonly	
	commonly used?		used for cosmetic energy because it has the	
120	a) Cosmetic		property of maximum energy absorption by	
132	Surgery	-	the target (hair or lesion) with minimum	-
	b) Weldingc) Photography		absorption by the surrounding skin structures.	
	d) Optical		suuciuico.	
	Communications			
	The information		Answer: b - Bandwidth	
	carrying capacity		Explanation: Laser has a large bandwidth.	
	of laser is		The rate at which the information can be	
133	enormous due its		transmitted is proportional to bandwidth	
	large	-	and the bandwidth is proportional to carrier	-
	a) Coherence		frequency. Because of these properties,	
	b) Bandwidth		Laser is widely used as optical carrier	
	c) Directionality		signal.	
	•			

	d) Intensity			
134	Which characteristic of LASER allows it to be used in holography? a) Coherency b) Directionality c) Intensity d)Monochromati city		Answer: a - Coherency Explanation: The production of an image in a hologram takes place via a process called reconstruction. In this process, the image is "reconstructed" in the form of a hologram. This reconstruction if possible, via LASER as they are highly coherent.	
135	type of laser is used in CD and DVD players?		Semiconductor Lasers	_
136	Why lasers are used in "Laser Printers" ?		They can be focused down to very small spot sizes for high resolution	-
137	Which color of light has the shortest wavelength ? a) Yellow b) Blue c) Red d) Green		Answer : Blue	-
138	The Eximer laser produces light with what wavelength? a) Visible b) Ultraviolet c) Infrared		Answer : b) Ultraviolet	-
139	Laser energy is used to break up kidney or gallstones in process called? a) Trbecularplasty b) Lithotripsy c) Viscocanalostom y		ING YOUR FUTURE d. 2000 Answer : b) Lithotripsy	_
140	Chemical lasers use to produce their beams. a) Excessive amounts of electrical power b) Small amounts of electrical power c) No	-	Answer : c) No electrical power	_

	electrical power			
141	What type of laser could cause skin cancer if not used properly? a) Red semiconductor laser b) Blue semiconductor c) Eximer laser d) YAG laser	-	Answer: c) Eximer Laser	-
142	What is the region enclosed by the optical cavity called? a) Optical Region b) Optical System c) Optical box d) Optical Resonator		Answer:d Explanation: The optical cavity resembles an oscillator as it provides feedback of the photons by reflection, at the mirrors. Therefore, the area enclosed inside the optical cavity is called optical resonator.	-
143	As wavelength gets longer, the laser light can be focused to a) Larger spot sizes b) Smaller spot sizes		Answer : b) Smaller spot sizes	-
144	Which of the following is not a characteristic of LASERS? a) Monochromatic b) Coherent c) Divergent d) Intense	DESIGN - ES	Answer:c Explanation: The lasers are highly directional having almost no divergence. The output beam of laser has a well- defined wave front due to which it can be focused on a point. Lasers are highly intense compared to ordinary light. They are monochromatic and coherent.	-
145	Laser is used in LIDAR for what purpose? a) High-Speed Photography b) Range finder c) Optical Carrier signal d) Drilling	-	Answer: b - Range finder Explanation: LIDAR stand for Light Detection and Ranging. Laser is used in LIDAR as range finder. The transit time of transmitted and reflected pulse of laser light is recorded and the distance of the reflecting object is estimated.	-
146	Epilepsy	-	(Neurological) disorder in which brain activity becomes abnormal.	-

147	In the sampler, the range of the sample size is from a) 0.1 to 8.5 ml b) 1 to 8.5 ml c) 0.85 to 0.1 ml d) 8.5 to 10 ml	_	sample size It utilizes cu The sample	: With this sampler, the may range from 0.1 to 8.5 ml. ups of sizes 0.5, 2, 3 and 10 ml. plate is kept covered to prevent , which may sometimes lead to 5%.	_
148	The blood pressure within the glumerular capillaries is of mercury. a) 80 mm b) 70-80 mm c) 90 mm d) 70-90 mm	·	at very high the glomeru pressure wit is 70–90 mr through the the state of	70-90 mm : The renal arteries carry blood pressure from the aorta into lar capillary tuft. The blood hin the glomerular capillaries n of mercury. The blood flow capillary tuft is controlled by contraction of the muscle of the ding to the tuft.	-
149	Optical fiber sensors are immune to electromagnetic disturbances. a) True b) False		sensors are consequentl disturbances are most sui applications	True : It is True. Optical fiber electrically passive and y immune to electromagnetic s. They can be miniaturized and table for telemetry . They are geometrically corrosion resistant.	-
150	Neutrophils are bigger than the red cells. a) True b) False	DESIGN ES	Answer: a - True Explanation: It is True. Neutrophils are nearly twice as big as the red cells.Lymphocytes are of the same size as the red cells but contain a large density staining nucleus and no granules. Neutrophils contain both a nucleus divided into several lobes and granules in their protoplasm.		-
Faculty Prepared Mrs. M.Gayath Assistant Profe Department of		ssor,	Signature		