

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

MKC

2021-2022

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

BME & MDE

	Subject		9BMC04 – SIGNALS AND SYSTEMS & 9MDC03 – BIOSIGNALS AND SYSTEMS	
		UNIT-1 S	SIGNALS AND SYSTEMS	
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equa tion/Expression	Units
1	Continuous time signal		Continuous time signal is an infinite and uncontrollable sequence of numbers, as are the possible values each number can have.	-
2	Discrete time signal		A discrete-time signal is a finite sequence of numbers, with finite possible values for each number.	-
3	Deterministic signal		A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time.	-
4	Random signal	-	A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time.	-
5	Even signal	E DESIGN	A signal is referred to as an even if it is identical to its time-reversed counterparts; $x(t) = x(-t)$.	-
6	Odd signal	-	A signal is odd if $x(t) = -x(-t)$. An odd signal must be 0 at t=0, in other words, odd signal the origin	-
7	Energy signal	-	A signal x(t) is said to be energy signal if and only if the total normalized energy is finite and non-zero. Ie. 0 <e< 4<="" td=""><td>-</td></e<>	-
8	Power signal	-	The signal $x(t)$ is said to be power signal, if and only if the normalized average power p is finite and non-zero. Ie. 0	_
9	Classification of signals	-	Continuous Time and Discrete Time Signals	-

			• Deterministic and random signal	
			• Deterministic and random signar	
			• Even and Odd Signals	
			Periodic and Aperiodic Signals	
			• Energy and Power Signals	
			An impulse signal has zero value except at	
			t = 0. It has infinitely high value $t = 0$.	
			Continuous-Time Signal	
10	Unit impulse	-	$\delta t = 1 \ t = 0$	-
	signal		$0 t \neq 0$	
			Discrete-Time Signal	
			$\delta n = 1 \ n = 0$	
			$0 n \neq 0$	
			A unit step signal has unity value for $t \ge 0$	
			else zero value.	
			Continuous-Time Signal	
11	Unit step signal	-	$ut = 1 \ t \ge 0$ 0 t<0	-
			Discrete-Time Signal	
			$u(n) = 1 \ n \ge 0$	
			0 n < 0	
			A ramp step signal has unity slop value for	
			$t \ge 0$, otherwise it has zero value	
			.Continuous-Time Signal	
12	Unit ramp		$r(t) = t$, $t \ge 0$	
12	signal		0, $t < 0$	-
			Discrete-Time Signal	
			$r(n)=n, n\geq 0$	
			0, n < 0	
		DESIGN	 linear and Non-linear Systems 	
		LUCSION	Time Variant and Time Invariant	
		Fet	Systems	
		LS	Iinear Time variant and linear Time	
13	Classification	-	invariant systems	-
	of systems		Static and Dynamic Systems	
			• Causal and Non-causal Systems	
			• Stable and Unstable Systems	
<u> </u>			A system is said to be linear when it	
			satisfies superposition and homogenate	
14	Linear and non	-	principles. Consider two systems with	-
	linear systems		inputs as $x_1(t)$, $x_2(t)$, and outputs as $y_1(t)$,	
			$y_2(t)$ respectively.	
			A quotom is said to be time	
15	Time Variant	-	A system is said to be time variant if its input and output characteristics vary with	-
	and Time		time. Otherwise, the system is considered	
	Invariant		time. Otherwise, the system is considered	

	Systems		as time invariant.	
16	Causal and Non-Causal Systems	_	A system is said to be causal if its output depends upon present and past inputs, and does not depend upon future input. For non causal system, the output depends upon future inputs also.	-
17	Stable systems	-	The system is said to be stable only when the output is bounded for bounded input.	-
18	Unstable systems	-	For a bounded input, if the output is unbounded in the system then it is said to be unstable.	_
19	Static systems		A static system is a system in which output at any instant of time depends on the input sample at the same time.	-
20	Dynamics systems		A dynamic system is a system in which output at any instant of time depends on the input sample at the same time as well as at other times	-
21	Basic Operations on signals		Addition, subtraction, multiplication, differentiation, and integration fall under the category of basic signal operations acting on the dependent variables.	-
22	Amplitude scaling		Amplitude scaling is a very basic operation performed on signals to vary its strength.	-
23	Addition	. /	This particular operation involves the addition of amplitude of two or more	-
24	Multiplication	DESIGN	multiplication of amplitude of two of more signals at each instance of time or any other independent variables is done which are common between the signals	-
25	Pulse signal	Es	A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value	-
	UNIT -	2 ANALYSIS	OF CONTINUOUS TIME SIGNALS	
26	Fourier series	-	any periodic function or periodic signal into the sum of a set of simple oscillating functions, namely sines and cosines	-
27	Fourier transform	-	The Fourier transform is commonly used to convert a signal in thetimespectrum to a frequencyspectrum.	-
28	Dirichlet condition for Fourier transform	-	 the function X(t) should be signal values in any finite time To. The function X(t) should have a finite number of discontinuities in the interval To. 	-

29	Bilateral Laplace Transform	-	The bilateral Laplace transform can represent both causal and non-causal time functions.	-
30	Unilateral Laplace Transform	-	The unilateral Laplace transform is restricted to causal time functions	-
31	Region convergence	-	The Region of Convergence is the area in the pole/zero plot of the transfer function in which the function exists	-
32	Properties of ROC	-	 ROC does not contain any poles The system is stable if is ROC 	-
33	Types of Fourier series	-	 Trigonometric Fourier Series Exponential Fourier Series Cosine Fourier Series 	-
34	Fourier Series Analysis		If f(t) is a periodic function of period T, then under certain conditions, its Fourier Series.	-
35	Laplace Transform		Laplace transform is the integral transform of the given derivative function with real variable t to convert into complex function with variables.	-
36	Inverse Laplace Transform		In the inverse Laplace transform, we are provided with the transform $F(s)$ and asked to find what function we have initially. The inverse transform of the function $F(s)$ is given by:	-
37	Time-CT Signal	DESIGN	$f(t) = L^{-1}{F(s)}$ A continuous time signal is a function that is continuous, meaning there are no breaks in the signal.	
38	Initial Value Theorem	<u>- CS</u>	The initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.	_
39	Final Value Theorem	_	The final value theorem is used to determine the final value in time domain by applying just the zero frequency component to the frequency domain representation of a system	-
40	Fourier Cosine Transform	-	If (t) is even function ie. $f(-t) = f(t)$ Then Fourier cosine transform is given by FC $(\omega) = \sqrt{2\pi} \int f(t) \cos \omega t dt \infty 0$ And inverse Fourier cosine transform is given by $f(t) = \sqrt{2\pi} \int FC(\omega) \cos \omega t d\omega$	-

	1			[]
41	Fourier Sine Transform	-	If (t) is odd function ie. $f(-t) = -f(t)$ Then Fourier sine transform is given by FS (ω) = $\sqrt{2\pi} \int \Box(\Box) \sin \Box \Box \Box \Box \infty 0$ And inverse Fourier sine transform is given by $\Box(\Box) = \sqrt{2} \Box \int \Box(\Box) \sin \Box \Box \Box$	-
42	Application of Laplace Transform	-	Analysis of electrical and electronic circuits. Breaking down complex differential equations into simpler polynomial forms. Laplace transform gives information about steady as well as transient states.	-
43	Time Scalling		In continuous time we can scale by an arbitrary real number. Indiscrete-time we scale only by integers. For an integer k, define xk [n] = x[n/k] if n is a multiple of k, 0 if n is not a multiple of k. $xk [n] \Leftrightarrow X(kf)$.	_
44	Properties of Time Scalling		Time scaling of signals of signals involves the modification of a periodicity of the signal, keeping its amplitude constant. Y (t) = $\beta X(t)$	-
45	Properties of Fourier Series		Understanding properties of Fourier series makes the work simple in calculating the Fourier series coefficients in the case when signals modified by some basic operations. Graphical representation of a periodic signal in frequency domain represents Complex Fourier Spectrum	-
46	Synthetic Equation	DESIGN	A synthesis Equation occurs when two or more reactants combine to form a single product. OUR FUTURE	_
47	Compressing in Time	Fet	Compressing in time requires decimation.	-
48	Periodic Signal	-	A periodic continuous-time signal can be represented in frequency domain using Fourier series	-
49	Discrete time signal	-	The Fourier transform is used to analyze problems involving continuous-time signals or mixtures of continuous- and discrete-time signals	-
50	Arbitrary Signals	-	All Fourier methods use sinusoids of different frequencies as building blocks to represent arbitrary signals.	-
	UN	NIT -3 LINEAR	R TIMEINVARIANT SYSTEMS	
51	The impulse response properties	-	Dynamicity condition h(t)=(t) Causality Stability Step response	-

	Realization		Block diagram representation of the	
52	structure	-	differential equation is called realization	-
	Structure		structure	
	Different types		Direct form I realization	
53	of structure		Direct form II realization	
55		-	Cascade form realization	-
	realization		Parallel form realization	
			System function (or) Transform function	
			H(s) is defined as the ratio of Laplace	
	System function		transform of the output to Laplace	
54	(or) Transform	-	transform of the input Initial conditions are	-
	function		zero	
			H(s)=V(s)/X(s)	
55	Impulse response		Impulse response h(t) is the output y(t)	
55	of any system	-	produced by CT system when unit impulse	-
			is applied at the input	
	Three			
	Elementary		1) Scalar Multiplication	
56	operations of	-	2) Adder	-
	continuous time		3) Integrators	
	system			
	Impulse response		If the system are connected in parallel,	
	of two LTI			
57	Systems		having responses $h1(t)$ and $h2(t)$, then their	-
	connected in		overall response is given as,	
	parallel		h(t) = h1(t) + h2(t)	
			The output y(t) is equal to the convolution	
	Convolution		of input signal $x(t)$ and impulse response	
58	integral		h(t)	-
			y(t) = x(t) * h(t)	
			Continuous signal or a continuous-	
			timesignal is a varying quantity (a signal)	
59	Continuous	_	whose domain, which is often time, is	_
57	Continuous	DECICA	a continuum (e.g., a connected interval of	
		LUCSION	the reals)	
			An equation that shows the relationship	
	Differential	ES	between consecutive values of a sequence	
60	Equations	-		-
			and differences among them.	
61	Equation control		To represent any periodic signal x(t),	
61	Fourier series	-	Fourier developed an expression called	-
			Fourier series.	
	Linear-Time		Lineartime-invariantsystems	
62	Invarient	-	(LTIsystems) are a class of systems used	-
	System(LTI)		in signals and systems that are both linear	
			and time-invariant.	
			A block diagram illustrates the sub-systems	
63	Block Diagram	-	and signal pathswithin a larger system for	-
			processing signals.	
			Thus a time-invariant linear system G	
<i>C</i> A	Time-Invarient		whose input x(t) is a sum of sinusoids will	
64	Linear system	-	yield an output $y(t)$ which is also a sum	-
			ofsinusoids at the same frequencies but	
L	1			

			scaled and phase shifted	
<u> </u>			Continuous time system	
65	Types of system	-	Discrete time system	-
66	Properties of LTI	-	 Commutative property of LTI systems Distributive property of LTI systems Associative property of LTI systems Static and dynamic LTI systems Invertibility of LTI systems Causality of LTI systems Stability of LTI systems Unit-step response of LTI systems 	-
67	Associative property of LTI System	-	According to associative property, both convolution integral for continuous time LTI systems and convolution sum for discrete time LTI systems are associative.	-
68	Causality for LTI System		This property says that the output of a causal system depends only on the present and past values of the input to the system	_
69	Stability for LTI System	-	A stable system is a system which produces bounded output for every bounded input.	-
70	Classification of CT LTI System		 Causal system and non causal system Time invariant and time variant system Stable and unstable system Linear and Non-linear system Static and Dynamic systems Invertible and noninvertible system 	-
71	Properties of convolution integral		 Commutative property Distributive property Associative property 	-
72	Commutative property	DESIGN	The commutative property is a basic property of convolution in both continuous and discrete time.	-
73	Distributive property	Es	The distributive property states that both convolution integral for continuous time LTI system and convolution sum for discrete time LTI system are distributive.	-
74	Impulse Response	_	In signal processing, the impulse response, of a dynamic system is its output when presented with a briefinput signal, called an impulse.	-
75	Conditions required for transfer function	-	 (i) System should be in unloaded condition (initial conditions are zero) (ii) The system should be linear time invariant. 	-
	UNIT	-4 ANALYSI	S OF DISCRETE TIME SIGNALS	
76	DTFT	_	The discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values.	_

			Periodicity, linearity, stability,		
77	Properties of	_	timeshifting, frequencyshifting, time and	_	
, ,	DTFT		frequency scaling.		
			The discrete-time Fourier transform		
			(DTFT) is a form of Fourier analysis that is		
70	Applications of		· · · · · ·		
78	DTFT	-	applicable to a sequence of values. The	-	
			DTFT is often used to analyze samples of a		
			continuous function.		
70	Discrete time		discrete-time Fourier series representation		
79	Fourier series	-	provides notions of frequency content of	-	
			discrete-time signals.		
			This discrete-time Fourier series		
			representation provides notions of		
			frequency content of discrete-time signals,		
80	Uses of DTFS	-	and it is very convenient for calculations	-	
			involving linear, time-invariant systems		
			because complex exponentials are Eigen		
			functions of LTI systems.		
	Sampling		The sampling theorem essentially says that		
81	Sampling theorem	-	a signal has to be sampled at least with	-	
	theorem		twice the frequency of the original signal.		
			The sampling theorem specifies the		
	Ducution of		minimum-sampling rate at which a		
00	Properties of		continuous-time signal needs to be		
82	sampling		uniformly sampled so that the original	-	
	theorem		signal can be completely recovered or		
			reconstructed by these samples alone.		
			There are three types of sampling		
	G 1'		techniques:		
83	Sampling		Impulse sampling.	-	
	theorem types		Natural sampling.		
			Flat Top sampling.		
			The Region of Convergence has a number		
	The Region of	DESIGN	of properties that are dependent on the		
84	convergence of z	U	e	characteristics of the signal, $x[n]$. The ROC	-
	transform	ransform	cannot contain any poles.		
			To analyze a system, which is already		
			represented in frequency domain, as		
85	The inverse z	_	discrete time signal then we go for Inverse	_	
00	transform		Z-transformation. Mathematically, it can be		
			represented as; $x(n)=Z-1X(Z)$		
			Properties of the Z-Transform		
			Linearity.		
			Symmetry.		
			Time Scaling.		
86	Properties of z		Time Scaling.		
00	transform	-	Convolution.	-	
			Time Differentiation.		
			Parse Val's Relation.		
			Modulation		
87	The unilateral z	-	The Unilateral z-transform is also called as	-	
	transform		one-sided z- transform. It is defined for. i.e.		

			Causal sequences.	
88	Uses of unilateral z transform	_	The unilateral z- transform is used to solve	_
	1		difference equations with initial conditions The z-transform is an important signal-	
89	Uses of z	-	processing tool for analyzing the	-
07	transform		interaction between signals and systems.	
			A function derived from a given function	
90	Fourier	-	and representing it by a series of sinusoidal	_
70	transform		functions.	
			The Fourier Transform is an important	
	Fourier		image processing tool which is used to	
91	transform	-	decompose an image into its sine and	-
	application		cosine components.	
	Relationship		Restrict the z-transform to the unit circle in	
	between z		the complex plane, the Fourier transform	
92	transform and	-	(DTFT, So the z-transform is like a DTFT	-
	DTFT		after multiplying the signal by the signal	
			The Fourier transform can be used to	
	Uses of Fourier		interpolate functions and to smooth signals.	
93	transform	-	For example, in the processing of pixelated	-
			images.	
			The z-transform is a powerful tool in	
			solving problems where sequences of	
	Applications of z		impulsive actions are involved, and has	
94	transform		been extensively used in the analysis and	-
	(full)form		synthesis of discrete- time feedback control	
			systems	
			The basic idea now known as the Z-	
			transform was known to Laplace, others as	
	use Z transform		a way to treat sampled-data control systems	
95	in control system		used with radar. It gives a tractable way to	-
			solve linear, constant-coefficient difference	
		DESIGN	equations. UP FUTURE	
			Z transform is used for the digital signal.	
	Advantages of z	Ect	Both Discrete-time signals and linear time-	
96	transform	<u> </u>	invariant (LTI) systems can be completely	-
			characterized using Z transform.	
			Linearity Property.	
			Time Shifting Property.	
~-	Properties of		Frequency Shifting Property.	
97	Fourier	-	Time Reversal Property.	-
	transform		Differentiation and Integration Properties.	
			Multiplication and Convolution Properties.	
			Transform is used in a wide range of	
0.0	Applications of		applications such as image analysis ,image	
98	transform	-	filtering, image reconstruction and image	-
			compression.	
	Converting of		Laplace Transform can be converted to Z-	
99	Laplace to z	-	transform by the help of bilinear	-
	transform		Transformation.	

100	Importance of inverse z transform	-	The Inverse Z-transform is very useful to know for the purposes of designing a filter.	-
	UNIT-5 LI	NEAR TIMEIN	VARIANT DISCRETE TIME SYSTEMS	
101	Casual LTI system	-	A discrete-time LTI system is causal if the current value of the output depends on only the current value and past values of the input. A necessary and sufficient condition for causality is. Where. Is the impulse response.	-
102	LTI	-	Linear Time-invariant	-
103	Z transform		In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain representation. It can be considered as a discrete-time equivalent of the Laplace transform	-
104	Types of Z transform	-	Bilateral Z-transform. Unilateral Z-transform.	_
105	Block diagram		A block diagram illustrates the sub-systems and signal paths within a larger system for processing signals.	-
106	Importance of LTI	K	Time-invariant systems are systems where the output does not depend on when an input was applied. These properties make LTI systems easy to represent and understand graphically	_
107	Convolution Sum		The total response of the system is referred to as the CONVOLUTION SUM or superposition sum of the sequences x[n] and h[n].	_
108	Properties of Linear Convolution	_ Est	Commutative Law Associate Law Distribute Law	-
109	Commutative Law	-	(Commutative Property of Convolution) x(n) * h(n) = h(n) * x(n)	-
110	Associate Law	-	(Associative Property of Convolution	-
111	Distribute Law	_	(Distributive property of convolution) $x(n)$ * [$h1(n) + h2(n)$] = $x(n) * h1(n) + x(n) * h2(n)$	-
112	Types of convolution sum	-	Continuous convolution. Discrete convolution.	-
113	Fourier Transform	-	The Fourier Transform is a mathematical technique that transforms a function of time, $x(t)$, to a function of frequency, $X(\omega)$. It is closely related to the Fourier Series.	-

				
114	D		A recursive system is a system in which	
114	Recursive system	-	current output depends on previous	-
			output(s) and inputs	
115	Non-Recursive	_	In non-recursive system current output	_
	system		does not depend on previous output(s	
	Application of Z		The z-transform is an important signal-	
116	transform	-	processing tool for analyzing the	-
			interaction between signals and systems.	
			Generally, an impulse response is the	
117	Impulse response	-	reaction of any dynamic system in response	-
			to some external change.	
			"Continuous-time, linear, time invariant	
	Lineartime		systems" refer to circuits or processors that	
118	invariant systems	_	take one input	_
110	mvariant systems		signal and produce one output signal with	
			the following properties.	
			Continuous convolution.	
110	Types of		Discusto a succhetica	
119	convolution sum		• Discrete convolution.	-
			In signal processing, a recursive filter is a	
120	Recursive filter		type of filter which re-uses one or more of	_
			its outputs as an input.	
			Continuous convolution is an operation on	
121	Continuous		two continuous time signals defined by the	_
121	convolution		integral.	
			Any discrete time signal x[n] can be	
122	Discrete		represented as a linear combination of	_
122	convolution		shifted Unit Impulses scaled by X(n)	
	Impulse response		The recorded spectrum by a recording	
123	convolution		spectrophotometer it may be considered as	_
123	example		the convolution of the impulse response	
	enumpie	DESIGN	Time-invariant systems are systems where	
			the output does not depend on when an	
124	Advantage of	- Fst	input was applied. These properties make	_
147	LTI systems		LTI systems easy to represent and	
			understand graphically.	
			Disadvantages are LTI does not handle so	
125	Disadvantage of	_	well discontinuity and non-linearity (eg	_
123	LTI systems		amplitude quantization, saturation).	
		LACENIENI	QUESTION AND ANSWERS	
	Y (t) = x (t/5) is			
	a) Compressed		Answer: b - Expanded signal	
	a) Compressed		Explanation: $y(t) = x(at)$, comparing this	
106	signal		with the given expression we get $a = 1/5$. If	
126	b) Expanded	-	0 <a<1 (stretched)<="" expanded="" is="" it="" td="" then=""><td>-</td></a<1>	-
	signal		version of x (t).	
	c) Time shifted			
	signal			
	d) Amplitude			

	scaled signal by factor 1/5			
127	Time scaling is an operation performed on a) Dependent variable b) Independent variable c) Both dependent and independent variable d) Neither dependent nor independent variable	-	Answer: b - Independent variable Explanation: Time scaling is an example for operations performed on independent variable time. It is given by $y(t) = x$ (at).	-
128	Which of the component performs integration operation? a) Resistor b) Diode c) Capacitor d) Inductor		Answer: c - Capacitor Explanation: Capacitor performs integration. V (t) developed across capacitor is given by v (t) = $(1/C)^* \int_{-\infty}^{t} i(\partial) . d\partial$, I (t) is the current flowing through a capacitor of capacitance C.	-
129	AM radio signal is an example for \overline{a} y (t) = a x (t) b) y (t) = x1 (t) + x2 (t) c) y (t) = x1 (t) * x2 (t) d) y (t) = -x(t)	DESIGN	Answer: c Explanation: AM radio signal is an example for y (t) = x1 (t) * x2 (t) where, x1 (t) consists of an audio signal plus a dc component and x2 (t) is a sinusoidal signal called carrier wave.	-
130	Which of the following is an example of amplitude scaling? a) Electronic amplifier b) Electronic attenuator c) Both amplifier and attenuator d) Adder	-	Answer: c -) Both amplifier and attenuator Explanation: Amplitude scaling refers to multiplication of a constant with the given signal. It is given by $y(t) = a x (t)$. It can be both increase in amplitude or decrease in amplitude.	_
131	Exponentially damped sinusoidal signal	-	Answer: b - Non periodic Explanation: Exponentially damped sinusoidal signal of any kind is not periodic	-

	is		as it does not satisfy the periodicity	
	a) Periodic		condition.	
	b) Non periodic			
	c) Insufficient			
	information			
	d) Maybe			
	periodic			
	The time period			
	of continuous-		Answer: a - T = 2π / w	
	time sinusoidal		Explanation: X (t) = A $\cos(wt+\phi)$ is the	
	signal is given by		continuous-time sinusoidal signal and its	
132		-	period is given by	-
	a) T = $2\pi / w$		$T = 2\pi / w$ where w is the frequency in	
	b) T = $2\pi / 3w$		radians per second.	
	c) T = π / w			
	d) T = π / 2w			
	A causal DT			
	system is BIBO			
122	stable only if its		A causal DT system is stable if poles of its	
133	transfer function		transfer function lie within the unit circle.	-
	has			
	Which are the			
	fourier		Answer: $a - a_0$, a_n and b_n	
	coefficients in		Explanation: These are the fourier	
	the following?		coefficients in a trigonometric fourier	
134	a) a_0 , a_n and b_n	- - - -	series.	-
	b) a_n		$a_0 = 1/T \int x(t) dt$	
	c) b_n		$a_n = 2/T \int x(t) \cos(nwt) dt$	
	d) a_n and b_n		$b_n = 2/T \int x(t) \sin(nwt) dt$	
	,			
	Do exponential			
	fourier series		Answer: a - True	
	also have fourier	DESIGN	Explanation:	
135	coefficients to be	L DESTON	The fourier coefficient is : $X_n = 1/T \int x(t)e^{-t}$	-
_	evaluated.	Ent	^{jwt} dt.	
	a) True	ES	.u. 2000	
	b) False			
	The fourier series			
	coefficients of		Answer: a - True	
	the signal are		Explanation: Yes, the coefficients	
136	carried from –	-	evaluation can be done from $-T/2$ to T/2. It	_
150	T/2 to $T/2$.		is done for the simplification of the signal.	
	a) True		is cone for the simplification of the signal.	
	b) False			
	Fourier series is			
137	not true in case			
	of discrete time		Answer: b - False	
			Explanation: Fourier series is also true in	
	signals.	-	case of discrete time signals. They just	-
	a) True		need to follow the dirichlet's conditions.	
	b) False			

138	What is the disadvantage of exponential Fourier series? a) It is tough to calculate b) It is not easily visualized c) It cannot be easily visualized as sinusoids d) It is hard for manipulation	-	Answer: c -) It cannot be easily visualized as sinusoids Explanation: The major disadvantage of exponential Fourier series is that it cannot be easily visualized as sinusoids. Moreover, it is easier to calculate and easy for manipulation leave aside the disadvantage.	-
139	How does Fourier series make it easier to represent periodic signals? a) Harmonically related b) Periodically related c) Sinusoidally related d) Exponentially related		Answer: a - Harmonically related Explanation: Fourier series makes it easier to represent periodic signals as it is a mathematical tool that allows the representation of any periodic signals as the sum of harmonically related sinusoids.	-
140	The lengths of two discrete time sequence $x_1[n]$ and $x_2[n]$ are 5 and 7 respectively. The maximum length of a sequence $x_1[n] * x_2[n]$ is <u>a) 5</u> b) 6 c) 7 d) 11	DESIGN	Answer : d – 11 Explanation : 5+7-1 = 11	-
141	A signal x (t) has its FT as X (f). The inverse FT of X(3f +2) is \overline{a} 12x(t2)ej3 π t b) 13x(t3)e-j4 π t/ 3 c) 3x(3t)e ^{-j4πt d) x(3t + 2)}	-	Answer: b - $13x(t3)e-j4\pi t/3$ Explanation: Applying the time shifting and scaling property, we get, X [3(f+2/3)] = $13x(t3)e-j4\pi t/3$.	-

142	The impulse response of a continuous time system is given by $h(t) = \delta(t-1) + \delta(t-3)$. The value of the step response at t=2 is $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 	-	Answer: b - 1 Explanation: For step response, the impulse response can be integrated. So, y (t) = u (t-1) + u (t-3) Hence, y (2) = u (1) + u (-1) = $1 + 0 = 1$.	-
143	Fourier series uses which domain representation of signals? a) Time domain representation b) Frequency domain representation c) Both combined d) Neither depends on the situation		Answer: b - Frequency domain Explanation: Fourier series uses frequency domain representation of signals. $X(t)=1/T\sum X_n e^{jnwt}$. Here, the $X(t)$ is the signal and $X_n = 1/T \int x(t) e^{-jwtn}$.	_
144	What is the polar form of the fourier series? a) $x(t) = c_0 +$ $\sum cncos(nwt+\phi_n)$ b) $x(t) = c_0 +$ $\sum cncos(\phi_n)$ c) $x(t) =$ $\sum cncos(nwt+\phi_n)$ d) $x(t) = c_0 +$ $\sum cos(nwt+\phi_n)$	DESIGN ES	Answer: a Explanation: $x(t) = c_0 + \sum cncos(nwt+\phi_n)$, is the polar form of the fourier series. $C_0=a_0$ and $c_n = \sqrt{a_2} + b_2 n$ for $n \ge 1$ And $\phi_n = tan^{-1} b_n/a_n$.	_
145	Advantage of FFT over DFT	-	FFT algorithm reduces number of computations	-
146	Steps involved in finding convolution sum	-	folding Shifting Multiplication Summation	-

147	Zero padding	-	The method of appending zero in the given sequence is called as Zero padding	-
148	In the equation x (t) = be ^{at} if $a < 0$, then it is called a) Growing exponential b) Decaying exponential c) Complex exponential d) Both Growing and Decaying exponential	-	Answer: b - Decaying exponential Explanation: If $a > 0$ in x (t) = be ^{at} it is called growing exponential and if <0 it is called decaying exponential. Hence Decaying exponential is correct.	_
149	Examples of CT signals	·	AC waveform, ECG, Temperature recorded over an interval of time etc	-
150	Causal condition for LTI CT system		An LTI continuous time system is causal if and only if its impulse response is zero for negative values of t.	-
Facul	Faculty Prepared M.Gayathri Dev Assistant Profess Department of B		ssor, Signature	

HOD

Estd. 2000

DESIGNING YOUR FUTURE