

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC

2021-2022

MUST KNOW CONCEPTS

CIVIL

Course Code & Curse Name Year/Sem/Sec : 19CEC04/Design of Steel Structures

: III/VI

1

Subject		16CED05 / Design of Steel structures				
S. No	Term	Notation (Symbol)	Concept/Definition/Meaning/ /Equation/ Expression	Units		
UNIT:I-INTRODUCTION						
1.	Staggered pitch	p _s	Distance between two consecutive rivets in a zigzag riveting	m		
2.	Gauge distance	g	Distance between two consecutive bolts of adjacent serves	m		
3.	Pitch of the bolt	р	Center spacing of bolts in a row	m		
4.	Structures based on shape and geometry		Rolled steel beam ,channel ,angle section,I- section			
5.	Efficiency of bolted joints		Strength of the bolt joint/ Strength of the solid plates	%		
6.	Types of bolts		Unfinished (or) black bolts, turned bolts, high strength bolts			
7.	Types of weld	DE	Butt weld, Fillet weld, Slot weld, Plug weld, Spot weld, Pipe weld, Seam weld			
8.	Types of Limit states		Limit state of collapse & Serviceability			
9.	Efficiency of Riveted joint		Strength of riveted joint/ Strength of unriveted joint			
10.	Rivet line		Imaginary line passing through the rivets			
11.	Slip factor		Ratio of the load per effective interface			
12.	Throat thickness		Throat thickness = 0.7 X Size of the weld			
13.	Different forms of structural steel section		Beams, Channels, Angles, Flats			
14.	High tension bolts		A bolt made from high strength			
15.	Use of high tension bolts		High tensile bolt have replaced the use of steel rivet in steel frame construction			
16.	Modes of failure of Riveted Joint		Shear failure of Rivets, Plates, Tearing Bearing failure			

	Advantages of			
17.	welded connection		Economy, Rigidity, aesthetic effect, versatility	
18.	Disadvantage of		Requires skilled labour, joints are over rigid,	
18.	welded connection		difficult to inspect	
19.	19 Uses of bolt		Bolts can be used in both bearing and slip critical	
17.	connections		connections	
20.	Disadvantage of		Rigidity of joints is reduced due to loose fit,	
	bolted connection		resulting into excessive deflection.	
21.	Bolted joint		Less rigidity, easy to remove, skilled labours not required ,appearance is not good.	
			Improve the rigidity ,difficult to remove ,skilled	
22.	Welded joint		labours required, good appearance.	
	Nominal diameter	d		
23.	of the rivet		The diameter of the shank before driving.	m
24.	Gross diameter of	D	Gross diameter = nominal diameter +clearance	
24.	rivet		Gross diameter = nominal diameter +clearance	m
25.	Effective length of	L	Length for which the specified size of the weld	m
	the butt weld	e butt weld exists.		
		UN	IT:II-TENSION MEMBERS	
26.	Tension member		The available length is less than the required length	
	splice		of the tension member	
27.	Types of tension members		Wires and cables, rods and bars, built up members	
28.	Tension member		Structural member subjected to tensile force	
29.	Net sectional area		Gross sectional area of the member	
	Types of steel		Single angle, double angle placed back to back, tee	
30.	structure		section	
	Factors influencing		Tomails stress type of the section areas sectional	
31.	the strength of		Tensile stress, type of the section, cross sectional	
	tension member		area pitch ,gauge and edge distance.	
32.	Built up member		Two or more than two members	
33.	Uses of lug angles		Size of gusset plate can be decreased	
		DES		
<u>34.</u> 35.	Net effective area	A AN ACT	The reduced net sectional area of such a section	
<u> </u>	Gross area		Area of cross section without reducing rivet hole	
50.	Lug angle Types of tension		It is an short length of an angle section	
37.	member		Square and circular rods, Built up steel sections	
			Tension splices are provided to join two length of	
38.	Tension splice		the member	
39.			Shear deformation effect.	
40.	Shear force		The in plane force at any transverse cross section	
41.	Shear stress		Stress component acting parallel to face plane	
42.	Examples of		Single angle, double angle placed back to back, tee	
	tension members		section	
43.	Net area		Net area is equal to the gross area	
	Single angle section		$A_{max} = A_1 + A_2 k k = 3A_1 3A_1 + A_2$	
44.	connected by one		$A_{net} = A_1 + A_2 k, k = \underline{3A_1}, 3A_1 + A_2$	
	leg angle			
45.	Pair of angles back		$A_{net} = A_1 + A_2 k, k = \underline{5A_1}, 5A_1 + A_2$	
101	to back (or single			

	Tee) connected by							
	one leg angle to							
	the same side of a							
	gusset.							
46.	Design strength of tension member		Due to yielding of cross section					
47.	T _{nf}		Nominal tensile strength of friction type bolt.					
48.	T _{nb}		Nominal strength of bolt under axial tension					
49.	T _{nd}		Design tension capacity					
50.	T _{ndf}		Design tension capacity of friction type bolt.					
	UNIT:III-COMPRESSION MEMBERS							
51.	slenderness ratio		Ratio of effective length to corresponding radius of gyration					
52.	Effective length of column		Distance between successive inflection point					
53.	Types of column base		Slab base Gusseted base					
54.	Minimum number of batten plates required for a column		Not less than 3 bays					
55.	lacing		minimum radius of gyration without increasing the area					
56.	Batten plates		connecting rolled steel section on either side					
57.	Basics in design of compression members		Assume a suitable trial section, effective length slenderness ratio					
58.	Requirements of lacing system		Uniform Bars inclined at 40° to 70 ⁰					
59.	Latticed column		Connect the element sections so as they act as a composite section					
60.	Gusseted base		It consist of base plate connected to the column through the gusset plate					
61.	Eulers formula	10E	$P = \pi^2 E I / l_e^2$					
62.	Purpose of lacing and battens		Act together as a single unit					
63.	End post		End compression members are called end post					
64.	End post used in		Column Bridge members					
65.	Bearing strength of concrete		0.45f _{ck}					
66.	Area of base plate		P _u /0.45 f _{ck}					
67.	Eccentrically loaded column		Distance from assumed point of application					
68.	Short struct		the applied forces will cause a compressive strain					
69.	Both ends pin ended		1.0L					
70.	Both ends pin ended		0.5L					
71.	One end fixed and the other end		0.707L					

	pinned				
	One end fixed, and				
72.	the other free to sway		1.2L		
73.	One end fixed and the other end free		2.0L		
74.	f _{cd}		Design compressive stress		
75.	f _{cc}		Euler buckling stress		
			UNIT:IV-BEAMS		
76.	Lateral torsional building		Twisting of beams near support		
77.	Castellated beam		Rolled beam with increased depth		
78.	Web crippling		Introduction of an excessive load over a small length of a beam		
79.	Plastic moment		$M_{P} = F_{y*}Z_{P}$	KN.m	
80.	Shape factor		K=Z _P /Z _e		
81.	Beam column		axial compression and bending moment		
82.	Beams	-	Used for shorter spans consist of rolled section.		
83.	Built up beams		Ready made available beams sections are not sufficient		
84.	Plate girder		Used to carry extensively large load		
85.	Stiffeners		An element used to retain out of plane deformation of plates		
86.	Web splice		Required length of web plate is more than available length		
87.	Simple bending equation		M/I=f/y=E/R		
88.	Section modulus		Z=I/Y		
89.	Classifications in Stiffeners		Intermediate ,Load carrying stiffeners,Bearing stiffeners		
90.	purlin	D. D. C.	Provide full torsional resistant		
91.	Laterally restrained beam	- DES	Compression flange is restrained laterally		
92.	Compact section		Section which develops full plastic moment		
93.	Laterally unrestrained beams		Compression flange is not restrained against lateral bending		
94.	Ζ		Section modulus	mm ³	
95.	Z _P		Plastic section modulus	mm^3	
96.	Ze		Elastic section modulus	mm^3	
97.	M _P		Plastic moment capacity of the section	KN.m	
98.	M _q		Applied moment on the stiffener	KN.m	
99.	M _S		Moment at service laod	KN.m	
100.					
	UNIT:V-ROOF TRUSS AND INDUSTRIAL STRUCTURES				
101.	Component of roof truss		Top chord, Main tie, Panel points		
102.	Gantry girder		Concrete or steel member of short cantilever span		
103.	importance of steel decking		Reduces the volume of concrete in tension zone		
	decking		It distributes shrinkage strains		

104.	Purlin spacing for G.I sheets		1.5 to 1.7 m	
105.	Purlin spacing for A.C sheets		Limited to 1.4 m	
106.	Loads to be considered for gantry girder		Vertical load,Impact loads,Horizontal force	
107.	Loads to be considered in roof truss		Dead load,Live load,Snow load ,wind load	
108.	Pitch of a roof		Ratio found by dividing the rise by the span	
109.	Roof coverings		Slates ,Tiles ,Load sheets	
110.	Use of Sag rod		To provide lateral support for the purlins	
111.	Serviceability criteria for gantry girder		Deflection limit, Vibration limit, Fire resistance	
112.	Load combinations for purlin		Dead load+live load,Dead load+wind load,Dead load+snow load	
113.	Simple span for Elastic cladding		Span/240	
114.	Simple span for brittle cladding		Span/300	
115.	Cantilever span for Elastic cladding		Span/120	
116.	Cantilever span for brittle cladding		Span/150	
117.	Clear span		Horizontal distance between inside faces or supports	
118.	girder		Main truss supporting secondary truss	
119.	structs		Member do not belong to top and bottom chord	
120.	Spacing of truss		Distance between two consecutive stress	
121.	Sway		Lateral deflection of a frame	
122.	Sway member		Tranverse displacement of one end	
123.	Snow load	DES	Load on a structure due to accumulation of snow and ice	
124.	Gravity load		Load arising due to gravitational effects	
125.	Wind load		Load due to wind pressure	

	Placement Questions						
126.	The brick laid with its length parallel to the face of a wall		Stretcher				
127.	In verandah (corridor) floors outward slope is		1 in 60				
128.	The local swelling of a finished plaster		Blistering				
129.	The portion of a brick cut across the width		Bat				
130.	According to ICAO, all markings on the runways are		White				

131.	Free body diagram is an		Isolated joint with all the forces	
132.	Bulking of sand is maximum if moisture content is about		4	%
133.	For masonry work with solid bricks, consistency of mortar should be		9 to 13	cm
134.	The forces acting on the web splice of a plate girder are		Shear and bending forces	
135.	Settling velocity increases with		Depth of tank	
136.	The plinth area of a building not includes		Area of cantilevered porch	
137.	Los Angeles testing machine is used to conduct		Abrasion test	
138.	The meander pattern of a river is developed by		Dominant discharge	
139.	Canals taken off from ice-fed perennial rivers, are known	\sim	Perennial canals	
140.	Different grades are joined together by		Vertical curve	
141.	What is the average of first five multiples of 12?		36	
142.	What is the HCF of 1095 and 1168?		73	
143.	What is the area of triangle with base 5m and height 10m	X	25	m^2
144.	A: B: C is in the ratio of 3:2:5. How much money will C get out of Rs1260?	X	630	
145.	What is the probability of getting an even number when a dice is rolled?		1/2	
146.	What is the market price of a 9% share when a person gets 180 by investing Rs4000?		Rs.200	
147.	If 30% of a certain number is 12.6, what is the number?	O URE	42	
148.	Complete the series 2, 5, 9, 19, 37	U	75	
149.	Find the average of first 4 consecutive even numbers		5	
150.	Find the average of first 9 consecutive odd numbers		9	

Faculty Team Prepared

Signature

Mr.K.Sankar, AP/Civil