

## **MUTHAYAMMAL ENGINEERING COLLEGE**

## (An Autonomous Institution)



(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2021-22

CIVIL

Course Code & CourseName : 19CEC02 / Strength of Material

Year/Sem/Sec

II/IV/-

:

| 0     |                                        |           |                                                                                                         |            |  |  |  |  |
|-------|----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| S.No  | Term                                   | Notation  | Concept/Definition/Meaning/Units/Equation/Express                                                       | Units      |  |  |  |  |
| 5.110 | I CI III                               | ( Symbol) | ion                                                                                                     |            |  |  |  |  |
|       | Unit I - Energy Principles             |           |                                                                                                         |            |  |  |  |  |
| 1     | Strain                                 | е         | Change in length by original length when load is applied (dL/L)                                         | No<br>Unit |  |  |  |  |
| 2     | Young's<br>Modulus                     | Е         | Stress/Strain E= pL/Ae                                                                                  | N/mm<br>2  |  |  |  |  |
| 3     | Resilience                             |           | The strain energy stored by the body within elastic limit, when loaded externally is called Resilience. | -          |  |  |  |  |
| 4     | Proof Resilience                       | -         | The Maximum strain energy stored in a body is known as proof resilience.                                | -          |  |  |  |  |
| 5     | Modulus of resilience                  | -         | The proof resilience of a body per unit volume is known as modulus of resilience. $\sigma_p^2/2E$       | N/mm<br>2  |  |  |  |  |
| 6     | Strain energy                          | 555       | The energy stored in a body due to straining effect<br>is known as strain energy $U=\sigma^2 v/2E$      | -          |  |  |  |  |
| 7     | strain energy<br>due to axial<br>loads | U         | $U = \int \underline{P^2} dx \text{ limit 0 to L}$ 2AE                                                  | -          |  |  |  |  |
| 8     | strain energy<br>due to bending        | -         | $U = \int \underline{M^2} dx \qquad \text{limit 0 to L}$                                                | -          |  |  |  |  |
| 9     | strain energy<br>due totorsion         | -         | $U = \int \frac{T^2}{2GJ} dx \qquad \text{limit 0 to L}$                                                | -          |  |  |  |  |
| 10    | State Maxwel<br>reciprocal<br>theorems | -         | $\delta D = \delta E$                                                                                   | -          |  |  |  |  |
| 11    | castigliano's<br>first theorem         | -         | $\partial U/\partial P = \delta$                                                                        | -          |  |  |  |  |
| 12    | castigliano's<br>second theorem        | -         | $\partial U/\partial \delta = P$                                                                        | -          |  |  |  |  |

| -               |
|-----------------|
| -               |
| -               |
| -               |
| -               |
| -               |
| -               |
| -               |
| -               |
| -               |
| -               |
| Mm <sup>4</sup> |
| N-M             |
|                 |
| -               |
| -               |
| -               |
| _               |
| -               |

| 28 | degree of<br>indeterminacy<br>of 2 D trusses                                | -         | Degree of indeterminacy of 2D trusses =m-2j+r                                                                                             | -               |
|----|-----------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 29 | Beam                                                                        | _         | Beam is a structural member which is subjected to external loads acting transversely                                                      | -               |
| 30 | Statically<br>determinate<br>structures                                     | -         | Conditions of equilibrium are sufficient to analyze the structure                                                                         | -               |
| 31 | Statically<br>indeterminate<br>structures                                   | -         | Conditions of equilibrium are insufficient to analyze the structure                                                                       | -               |
| 32 | Continuous<br>beam                                                          | -         | A continuous beam is one, which is supported on more than two supports.                                                                   | -               |
| 33 | The advantages<br>of continuous<br>beam over<br>simply<br>supported<br>beam | -         | The maximum bending moment in case of<br>continuous beam is much less than in case of SSB                                                 | -               |
| 34 | Shear modulus                                                               |           | The ratio of shear stress to shear strain is called as bulk modulus                                                                       | -               |
| 35 | Flexural rigidity<br>of Beams                                               | - 1       | The product of young's modulus (E) and moment<br>of inertia (I) is called flexural rigidity (EI) of beams<br>The unit is Nmm <sup>2</sup> | -               |
| 36 | Fixed beam                                                                  | -         | A beam whose both ends are fixed is known as a fixed beam.                                                                                | -               |
| 37 | The advantages of fixed beams                                               | -         | For the same loading, the maximum deflection of<br>a fixed beam is less than that of a simply<br>supported beam                           | -               |
| 38 | The<br>disadvantages<br>of a fixed beam                                     | DESI<br>E | Large stresses are setup by temperature changes<br>and<br>if a little sinking of one support takes place                                  | -               |
| 39 | Bending<br>moment for<br>point load                                         | М         | Load X distance                                                                                                                           | N-M             |
| 40 | Bending<br>moment for udl                                                   | М         | Load X Distance X Distance/2                                                                                                              | N-M             |
| 41 | Moment of<br>Inertia for<br>rectangular                                     | Ι         | I=bd <sup>3</sup> /12                                                                                                                     | Mm <sup>4</sup> |
| 42 | Bending<br>moment<br>equation                                               | М         | $M/I= \sigma_b / y = E/R$                                                                                                                 | N-M             |

| 43 | Section<br>modules                                            | Z                                                                  | Z=I/y                                                                                                                           | mm <sup>3</sup> |  |
|----|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 45 | Section<br>modules of<br>rectangular                          | Z                                                                  | $Z=bd^2/6$                                                                                                                      | mm <sup>3</sup> |  |
| 46 | Moment of<br>inertia of<br>circular section                   | Ι                                                                  | $\Pi d^4 / 64 = I$                                                                                                              | mm <sup>4</sup> |  |
| 47 | Moment of<br>Inertia of<br>hollow circle                      | Ι                                                                  | П ( D <sup>4</sup> -d <sup>4</sup> )/64                                                                                         | mm <sup>4</sup> |  |
| 48 | Section<br>Modules of<br>triangle                             | Z                                                                  | $Z_{AB} = bh^3/4$                                                                                                               | N/mm<br>2       |  |
| 49 | Section<br>modules of 'I'<br>section                          | Z                                                                  | $Z=BD^{3}-bd^{3}/6D$                                                                                                            | N/mm<br>2       |  |
| 50 | Deflection of a<br>fixed beam with<br>eccentric point<br>load | -                                                                  | $\Box = - w l^3 / 192 EI$                                                                                                       | -               |  |
|    |                                                               | UNIT III (                                                         | COLUMNS AND CYLINDER                                                                                                            |                 |  |
| 54 | Column                                                        | -                                                                  | A column is a vertical member subjected to an axial compressive load and fixed rigidly at both ends.                            | -               |  |
| 55 | Types of columnfailure                                        | -                                                                  | Crushingfailure, Bucklingfailure:                                                                                               | -               |  |
| 56 | Strut                                                         | 0.851                                                              | A strut is a member or slender bar in any position<br>other than vertical, subjected to a compressive load<br>and fixed rigidly | -               |  |
| 57 | Unsupported<br>length(l)                                      | -                                                                  | The unsupported length or actual length (l) of a column or strut is the clear distance between the end restrains                | E               |  |
| 58 | Effective<br>length(l <sub>e</sub> )                          | -                                                                  | The distance between adjacent points of inflexion<br>is called effective length or equivalent length                            | Repr            |  |
| 59 | Radius of<br>gyration                                         | -                                                                  | K <sup>2</sup> =I/A                                                                                                             | -               |  |
| 60 | Slenderness<br>ratio                                          | - Slenderness ratio = Unsupported length/ Least radius of gyration |                                                                                                                                 | -               |  |
| 61 | Buckling factor                                               | -                                                                  | It is the ratio between the equivalent length of column to the minimum radius of gyration(L <sub>e</sub> /k)                    | -               |  |

| 62 | Buckling load                                                  | -           | The maximum limiting load at which the column tends to have lateral displacement                                                   | _  |
|----|----------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------|----|
| 63 | Factor of safety                                               | -           | The ratio between the ultimate load to the permissible load                                                                        | -  |
| 64 | Safe load                                                      | -           | It is obtained by dividing the buckling load by a<br>suitable factor of safety (FOS)<br>Safe load= Buckling load/ Factor of safety | -  |
| 65 | Short column                                                   | -           | L< 8d or slenderness ratio less than 32 are called short column.                                                                   | _  |
| 66 | Medium<br>column                                               | -           | L< 8d < 30 or slenderness ratio more than 120 are<br>called Medium columns                                                         | _  |
| 67 | Long column                                                    | -           | L>30 or slenderness ratio more than 120 are called columns.                                                                        | -  |
| 68 | Assumptions<br>made in the<br>Euler's theory<br>of long column | -           | The material of the column is homogeneous,<br>isotropic and elastic. column is uniform<br>throughout.                              | -  |
| 69 | Limitatins of<br>the Euler's<br>theory                         | -           | It takes no account of direct stress.                                                                                              | -  |
| 70 | factors affect<br>the strength<br>column                       | -           | Slendernessratio,End conditions                                                                                                    | -  |
| 71 | Euler's formula<br>for Both ends<br>fixed                      | -           | $P_{\rm E} = \pi^2 {\rm EI}/(0.5 L)^2$                                                                                             | KN |
| 72 | Euler's formula<br>for Both ebds<br>Hinged                     | -           | $P_{\rm E} = \pi^2 E I / L^2$                                                                                                      | KN |
| 73 | Euler's formula<br>for one end<br>fixed one end<br>hinged      | 5.5         | $P_{\rm E} = \pi^2 {\rm EI}/(0.7 {\rm L})^2$                                                                                       | KN |
| 74 | Equivalent<br>length of the<br>column                          | -           | The distance between the adjacent points of<br>inflexion is called effective length or equivalent<br>length                        | -  |
| 75 | Rakine's<br>formula                                            | -           | $P_{R=} = \frac{f_{C}A}{(1 + a (l_{eff} / r)^{2})}$                                                                                | KN |
|    | U                                                              | nit IV - St | ate Of Stress In Three Dimensions                                                                                                  |    |
| 76 | Thin cylinder                                                  | _           | t < d/20                                                                                                                           | _  |
| 77 | Thick cylinders                                                | -           | t 🗆 d/20                                                                                                                           | _  |

| <br>I |                                                             |                                                                                                                                                         |   |
|-------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 78    | Assumptions of lame's theory                                | The material is homogeneous and isotropic<br>The material is stressed within elastic limit                                                              | - |
| 79    | variation of<br>hoop stress in a<br>thick cylinder          | The hoop stress is maximum at the inner<br>circumference and minimum at the outer<br>circumference of a thick cylinder                                  | - |
| 80    | How can you<br>reduce hoop<br>stress in a thick<br>cylinder | The hoop stress in thick cylinders is reduced by shrinking one cylinder over another cylinder.                                                          | - |
| 81    | Compound<br>cylinders                                       | <ul> <li>Compound cylinders are thick cylinders shrinking</li> <li>one tube on the other tube to reduce</li> <li>circumferential stress</li> </ul>      | - |
| 82    | Obliquity                                                   |                                                                                                                                                         | - |
| 83    | types offailures                                            | - Brittlefailure, Ductilefailure                                                                                                                        | - |
| 84    | Brittlefailure                                              | - Failure of a material represents direct separation of particles from each other                                                                       | _ |
| 85    | Ductilefailure                                              | - Slipping of particles accompanied, by considerable plastic deformations                                                                               |   |
| 86    | different<br>theories<br>offailure                          | - Maximum Principal Stress Theory, Maximum<br>Principal Strain Theory, Maximum Shear Stress<br>Theory,                                                  |   |
| 87    | Maximum<br>Principal Stress<br>Theory.                      | $\sigma 1 = f y.$                                                                                                                                       | - |
| 88    | Maximum<br>Principal Strain<br>Theory.                      | $- e_1 = f_y / E$                                                                                                                                       |   |
| 89    | Maximum<br>Shear Stress<br>Theory                           | - In3D, $(\sigma_1 - \sigma_3)/2 = f_y/2 \rightarrow (\sigma_1 - \sigma_3) = f_y$<br>In2D, $(\sigma_1 - \sigma_2)/2 = f_y/2 \rightarrow \sigma_1 = f_y$ | - |
| 90    | Maximum<br>Shear Strain<br>Theory                           | - In 3D, $2f_y^2 = (1/12G)[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]$                                                | - |

| 91  | Limitations of<br>Maximum<br>Shear Stress<br>Theory      | -        |    | It does not give the accurate results for the state of<br>pure shear in which the max. amount of shear is<br>developed | -               |
|-----|----------------------------------------------------------|----------|----|------------------------------------------------------------------------------------------------------------------------|-----------------|
| 92  | limitations of<br>Maximum<br>Shear Strain<br>Theory      | -        |    | It cannot be applied for the materials under hydrostatic pressure                                                      | -               |
| 93  | limitations of<br>Maximum<br>Strain Energy<br>Theory     | -        |    | This theory does not apply to brittle materials                                                                        | -               |
| 94  | Principal axes                                           | -        |    | The moment of inertia abut a principal axis is called the Principal moment of inertia                                  | -               |
| 95  | OctahedralStres<br>ses                                   | -        | <  | $\tau_{oct} = 1/3 \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$                  | -               |
| 96  | Shear centre                                             | -        |    | It is defined as the point on the beam section<br>where the load is applied and no twisting is<br>produced.            | -               |
| 97  | Assumptions<br>made in the<br>analysis of<br>curved bars | -        | 2  | Plane sections remain plane duringbending, The<br>material obeys Hooke's law, Radial strain<br>isnegligible            | -               |
| 98  | Bending<br>moment for udl                                | М        |    | Load X Distance X Distance/2                                                                                           | N-M             |
| 99  | Moment of<br>Inertia for<br>rectangular                  | I        |    | I=bd <sup>3</sup> /12                                                                                                  | Mm <sup>4</sup> |
| 100 | Types of<br>columnfailure                                | -        |    | Crushingfailure, Bucklingfailure:                                                                                      | _               |
| _   |                                                          | Unit V - | Ad | vanced Topics In Bending Of Beams                                                                                      |                 |
| 101 | Unsymmetrical bending                                    | -        | F  | If the bending caused by loads that does not coincident the principal centroidal axis of inertia.                      | -               |
| 102 | Symmetrical sections                                     | -        |    | The neutral axis passes through the geometrical centre of the section                                                  |                 |
| 103 | Unsymmetrical sections                                   | -        |    | The neutral axis does not pass through the geometrical centre of the section                                           | Repris          |
| 104 | Curved beams                                             | -        |    | A beam in which the neutral axis in the unload<br>condition is curved instead of straight termed as<br>curved beams.   | -               |
| 105 | Assumption of<br>winkler -bach<br>theory                 | -        |    | Transverse sections which are plane before<br>bending remains plane even after bending                                 | -               |
| 106 | resultant stress<br>in a curved bar                      | -        |    | $\Box_{\mathbf{r}} = \Box_{\mathbf{o}} + \Box_{\mathbf{b}}$                                                            | _               |

| 107 | shape of<br>distribution of<br>bending stress<br>in a curved<br>beam          | -          | The distribution of bending stress is hyperbolic in a curvedbeam                                                 | -              |
|-----|-------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|----------------|
| 108 | Where does the<br>neutral axis lie<br>in a<br>curvedbeam                      | -          | The neutral axis does not coincide with the geometric axis.                                                      | -              |
| 109 | What is the<br>nature of stress<br>in the inside<br>section of a<br>cranehook | -          | Tensilestress                                                                                                    | -              |
| 110 | Where does the<br>maximum<br>stress in a ring<br>under<br>tensionoccur        |            | The maximum stress in a ring under tension occurs along the line of action of load.                              | -              |
| 111 | What is the<br>most suitable<br>section for<br>acrane                         |            | Trapezoidal section                                                                                              | -              |
| 112 | pure bending of abeam                                                         |            | When the loads pass through the bending axis of a beam, then there shall be pure bending of the beam             | -              |
| 113 | principal<br>moment of<br>inertia                                             |            | The moments of inertia with respect to principal axes                                                            | -              |
| 114 | Minor principal<br>moment of<br>inertia                                       | -          | The minimum moment of inertia is known as minimum principal moment of inertia                                    | -              |
| 115 | Crushingfailure                                                               | 52551<br>F | The column will be subjected to the ultimate<br>crushing stress, beyond this the column will fail by<br>crushing | -              |
| 116 | Buckling<br>Failure                                                           | -          | The load at which the column just buckles is called<br>buckling load or crippling load or critical load.         | _              |
| 117 | Differential for<br>bending<br>moment                                         | М          | EI. $d^2y/dx^2 = M$                                                                                              | N-M            |
| 118 | reasons for<br>unsymmetricalb<br>ending                                       | -          | The section is symmetrical but the load line is inclined to both the principalaxes                               | -              |
| 119 | stress due to<br>unsymmetricalb<br>ending                                     |            | $\Box = \frac{Mu.u}{Ivv} \Box \frac{Mv.v}{Iuu}$                                                                  | N/mm<br>2      |
| 120 | Area for<br>triangular                                                        | А          | A=1/2 X b X h (Multiplications of half of the length                                                             | m <sup>2</sup> |

|     | section                                     |   | and breadth)              |                 |  |  |
|-----|---------------------------------------------|---|---------------------------|-----------------|--|--|
| 121 | Rectangular<br>moment of<br>inertia         | Ι | A=bd <sup>3</sup> /12     | mm <sup>4</sup> |  |  |
| 122 | Bending<br>moment<br>equation               | М | $M/I= \sigma_b / y = E/R$ | N-M             |  |  |
| 123 | Section<br>modules                          | Z | Z=I/y                     | mm <sup>3</sup> |  |  |
| 124 | Section<br>modules of<br>rectangular        | Z | $Z=bd^2/6$                | mm <sup>3</sup> |  |  |
| 125 | Moment of<br>inertia of<br>circular section | I | $\Pi d^4 / 64 = I$        | mm <sup>4</sup> |  |  |
|     |                                             |   |                           |                 |  |  |

|          | Placement Questions                                |                        |                                                                                        |       |  |  |  |  |
|----------|----------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|-------|--|--|--|--|
| S.N<br>o | Term                                               | Notation<br>( Symbol)  | Concept/Definition/Meaning/Unit<br>s/<br>Equation/Expression                           | Units |  |  |  |  |
| 126      | At the first point of Aeries, the sun moves        | $\sim$                 | From south to north of the equator                                                     | -     |  |  |  |  |
| 127      | According to ICAO, all markings on the runways are | $\left  \right\rangle$ | White                                                                                  | -     |  |  |  |  |
| 128      | The time period of a simple pendulum depends on    | $\sim$                 | Mass of suspended particle, Length of the pendulum                                     | -     |  |  |  |  |
| 129      | Free body diagram is an                            | IING <b>YO</b>         | Isolated joint with all the forces,<br>internal as well as external, acting<br>on it   | -     |  |  |  |  |
| 130      | In verandah (corridor) floors outward slope is     | ιu <u>.</u> 2          | 1 in 60                                                                                | -     |  |  |  |  |
| 131      | Jumper is a tool used for                          | -                      | Quarrying of stones                                                                    | -     |  |  |  |  |
| 132      | Diagonal tension in a beam                         | -                      | Increases below the neutral axis<br>and decreases above the neutral<br>axis            | -     |  |  |  |  |
| 133      | Sensitivity analysis is a study of                 | -                      | Change in output due to change in input                                                | -     |  |  |  |  |
| 134      | The elastic strain for steel is about              | -                      | 1/12 of strain at the initiation of<br>strain hardening and 1/200 of<br>maximum strain | -     |  |  |  |  |
| 135      | The risk coefficient k, depends<br>on              | -                      | Mean probable design life of structures and Basic wind speed                           | -     |  |  |  |  |

| 136 | column splice is used to                                               | _        | Length of the column                                                                                      | _ |
|-----|------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------|---|
|     | increase                                                               | _        |                                                                                                           | - |
| 137 | photo-interpretation                                                   | -        | Identification, Recognition of objects, Judging the significance of objects                               | - |
| 138 | Current ratio                                                          | -        | The ratio of current assets to<br>current liabilities is known as<br>Current ratio                        | - |
| 139 | polluted water                                                         | -        | Consists of undesirable substances rendering it unfit for drinking                                        | - |
| 140 | The plinth area of a building not includes                             | -        | Area of cantilevered porch                                                                                | - |
| 141 | Tyre pressure influences the                                           | -        | Quality of surface course                                                                                 | - |
| 142 | Steady flow occurs when                                                | -        | The velocity of successive fluid<br>particles, at any point, is the same<br>at successive periods of time | - |
| 143 | super-sonic flow                                                       | -        | Mach number is between 1 and 6                                                                            | - |
| 144 | syphon aqueduct                                                        |          | Canal passes over the drainage and<br>H.F.L. of the drainage is above the<br>bottom                       | - |
| 145 | The load stress of a section can be reduced by                         | X        | Replacing larger bars by greater number of small bars                                                     | - |
| 146 | grillage foundation                                                    | $\sim$   | Is provided for heavily loaded isolated columns,                                                          | - |
| 147 | Angle of friction                                                      | $\sim$   | Angle between normal reaction<br>and the resultant of normal reaction                                     | - |
| 148 | The three moments equation is applicable only when                     | $\times$ | There is no discontinuity such as hinges within the span                                                  | - |
| 149 | The fixed support in a real beam<br>becomes in the conjugate beam<br>a | $\leq$   | Free end                                                                                                  | - |
| 150 | Lami's theorem                                                         |          | If three forces acting at a point are in equilibrium                                                      | - |

## Faculty Team Prepared

Signature

1. Mrs.M.Sanchaya

HoD