

11.

12.

13.

 Ω -notation

θ -notation

Asymptotic Notations

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2020-21

CSE Course Code & Course Name :

19CSC11 & Design and Analysis of Algorithm

Y	/ear/Sem/Sec	:	II/IVA&B	
S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I : I	NTRODUCTION	
1.	Algorithm	\leq	Sequence of instructions for solving a problem	
2.	pseudo code		Mixture of a natural language and programming language	
3.	Time efficiency		How much amount of time needed to execute	
4.	Space efficiency	\sim	How much amount of space needed to execute	
5.	Exact Algorithm		Solving the problem exactly	
6.	Approximate Algorithm		solving it approximately	
7.	sorting problem	Estd	Rearrange the items of a given list in non decreasing order	
8.	searching problem		Finding a given value,	
9.	Analysis Framework		 Measuring an Input's Size Units for Measuring Running Time Orders of Growth Worst-Case, Best-Case, and Average-Case Efficiencies Recapitulation of the Analysis Framework 	
10.	O-notation		t (n) \leq cg(n) for all n \geq n0.	

 $t(n) \ge cg(n)$

•

 $c_2g(n) \le t(n) \le c_1g(n)$

O-notation

for all $n \ge n_0$.

for all $n \ge n_0$.

		Omega -notation
		• • -notation
	Fundamental Data	Linear Data Structures
14.	Structures	• Graphs
		• Trees
15.	Vertices	a collection of points
16.	Edges	A collection of points connected by line segments
17.	Characteristics of	Simplicity, Time consuming, easy to
17.	Algorithm	understand, generality.
18.	Methods specifying for an algorithm	Flow chart, Natural language, Program
19.	Understanding the Problem	It is the first step in solving the problem
20.	The main measure for efficiency algorithm are	Time and space
21.	Algorithmic analysis count	The number of arithmetic and the operations that are required to run the program
	The concept of order	It can be used to decide the best algorithm
22.	Big O is important D E G G because	that solves a given problem
	Es	std. 2000
23.	Non-recursive function	Does not references itself
24.	Recursive function	Function which calls itself again and again
25.	What are the case doesexist in complexitytheory	Best case,Worst case,Average case
	Un	it-II : BACKTRACKING
26.	Disjoint Operations	A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non- overlapping) subsets.

27	Two Operations of	Find
27.	Disjoint set	Union
28.	Find	Determine which subset a particular element is in. This can be used for determining if two elements are in the same subset.
29.	Union	Join two subsets into a single subset.
30.	Graph	A Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of nodes
31.	Spanning tree	A spanning tree is a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a minimum possible number of edges.
32.	Minimum Spanning Tree	A minimum spanning tree is a spanning tree in which the sum of the weight of the edges is as minimum as possible.
33.	The minimum spanning tree from a graph is found using the following algorithms:	1.Prim's Algorithm 2.Kruskal's Algorithm
34.	Hamiltonian circuit	A cycle that passes through all the vertices of the graph exactly once.
35.	Eight-queens problem	Classic puzzle of placing eight queens on an 8×8 chessboard
36.	Spanning Tree Applications	Computer Network Routing Protocol Cluster Analysis Civil Network Planning
37.	Subset Problem	Subset sum problem is to find subset of elements that are selected from a given set whose sum adds up to a given number
38.	Divide and Conquer method	Smaller sub problems, sub problems are solved recursively
39.	Applications of divide and conquer	Binary search, quick sort, merge sort, multiplication of large integers
40.	Backtracking	Depth-first node generation with bounding method.

applications Intelligence, Network communication 42. Application of Graphs: Physics and Chemistry, Mathematics, Social Science 43. Mid value in binary search mid = (low + high /2, low-0 th value and high-last value 44. Which method used to find Hamiltonian circuit Backtracking 45. N - Queens problem The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types ESC BES.DFS Unit-III : CREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	41.	Backtracking		Electrical engineering, Robotics, Artificial
42. Application of Graphs: Science 43. Mid value in binary search mid = (low + high) /2, low-0 th value and high-last value 44. Which method used to find Hamiltonian circuit Backtracking 45. N - Queens problem The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	11.	applications		Intelligence, Network communication
43. Mid value in binary search mid = (low + high) /2, low-0 th value and high-last value 44. Which method used to find Hamiltonian circuit Backtracking 45. N - Queens problem The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BES,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	42.	Application of Graphs:		•
43. search high-last value 44. Which method used to find Hamiltonian circuit Backtracking 45. N - Queens problem The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method				
44. Which method used to find Hamiltonian circuit Backtracking 45. N - Queens problem The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method	43.			_
44. find Hamiltonian circuit The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 45. N - Queens problem A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 46. Hamiltonian cycle It is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 47. vertex coloring. Binary search working 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method		search		high-last value
circuit The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 45. N - Queens problem A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS.DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	4.4			Backtracking
45. N - Queens problem chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	44.			
45. N - Queens problem each other by being same row or in the same column or the same diagonal. 46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution				The problem is to area n-queens on an n-by-n
46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 46. Hamiltonian cycle I is a way of coloring the vertices of a graph where every node (vertex) is visited exactly once. 47. vertex coloring. I is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method	45.	N - Queens problem		
46. Hamiltonian cycle A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	101			
46. Hamiltonian cycle graph where every node (vertex) is visited exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution				column or the same diagonal.
46. Hamiltonian cycle exactly once. 47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types EStop Unit-III : GREEDY METHOD 51. Greedy Method			<	A Hamiltonian cycle is a closed loop on a
47. vertex coloring. t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method				
47. vertex coloring. a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method	46.	Hamiltonian cycle		exactly once.
47. vertex coloring. a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method				
47. vertex coloring. a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method				
47. vertex coloring. a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. 48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method			\sim	t is a way of coloring the vertices of
48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method	47	vertex coloring	\sim	
48. Binary search working Binary search works by dividing the array into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types ESto Unit-III : GREEDY METHOD 51. Greedy Method	47.	vertex coloring.	$<$ \times	of the same color; this is called a
48. Binary search working into 2 halves around the middle element 49. Graph Consists of a set of vertices, and set of edges 50. Graph types ESTO BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution				vertex coloring.
49. Graph DE Consists of a set of vertices, and set of edges 50. Graph types ESto BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	10	Dinamu aganah unauking	$\langle \rangle$	Binary search works by dividing the array
50. Graph types Estel BFS,DFS Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	40.	Binary search working		into 2 halves around the middle element
Graph types LStor. 2000 Unit-III : GREEDY METHOD 51. Greedy Method Greedy Method is also used to get the optimal solution	49.	Graph DE	STGNING	Consists of a set of vertices, and set of edges
51. Greedy Method Greedy Method is also used to get the optimal solution	50.	Graph types	Estd.	BFS,DFS
51. Greedy Method optimal solution			Unit-III : GF	REEDY METHOD
optimal solution	51	Greedy Method		
	01.	Greedy Method		optimal solution
		Applications of Greedy Algorithms		Finding an optimal solution (Activity
Applications of Selection, Fractional Knapsack, Job				_
52. Sequencing, Huffman Coding). 2. Finding	52.			
close to the optimal solution for NP-Hard problems like TSP.				_
A spanning tree is a subset of an undirected				
53. spanning tree Graph that has all the vertices connected by	53.	spanning tree		
minimum number of edges				minimum number of edges

54.	Warshalls algorithm	Solve all pair shortest path problem
55.	Floyds algorithm	Find optimal solution
56.	Greedy technique used in	Minimum spanning tree, shortest path problem
57.	Examples of Greedy Algorithms	Prim's Minimal Spanning Tree Algorithm.Travelling Salesman Problem.Graph - Map Coloring.Kruskal's Minimal Spanning Tree Algorithm.Dijkstra's Minimal SpanningTree Algorithm.Graph - Vertex Cover.Knapsack Problem.Job Scheduling Problem.
58.	Assignment problem	Assign a number of jobs to an equal number of machines so as to minimize the total assignment cost for execution of all the jobs
59.	single source shortest path algorithm	find minimum distance from source vertex to any other vertex
60.	All pair shortest path algorithm	find all pair shortest path problem from a given weighted graph
61.	Knapsack Problem	Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack
62.	applications of Knapsa ck problem: DESIGNING	Home Energy Management. Cognitive Radio Networks. Resource management in software.
63.	job sequencing problem	find a sequence of jobs, which is completed within their deadlines and gives maximum profit.
64.	Analysis for job sequencing problem	O(n2)
65.	Minimum spanning tree	Minimum spanning tree is the spanning tree where the cost is minimum among all the spanning trees.
66.	Single source shortest path problem	The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.

	single-source shortest	Dijkstra's algorithm is one of the most
67.	path application	popular algorithms for solving many single- source shortest path problem
68.	Time Complexity of Dijkstra's Algorithm	O(V2)
69.	Jobsequencing proble ms has the time complexity	O(n2)
70.	Memory function	provides the smallest possible search time
71.	Warshalls algorithm	Solve all pair shortest path problem
72.	Floyds algorithm	Find optimal solution
73.	Properties of spanning trees	A spanning tree does not have any cycle. Any vertex can be reached from any other vertex.
74.	state-space tree	The processing of backtracking is resolved by constructing a tree of choices being made. This is known as state-space tree.
75.	Knapsack problem	The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
	Uni	-IV : DYNAMIC PROGRAMMING
76.	Dynamic programming	ESto Reduce the time complexity, provide optimal solution
77.	Advantages of dynamic programming	Computing Fibonacci numbers, completing binomial coefficient
78.	Applications of dynamic programming	Find shortest path between all pair of vertices
79.	chained matrix multiplication	Given a sequence of matrices, find the most efficient way to multiply these matrices together.
80.	chained matrix multiplication complexity	O (n3)

81.	Optimal binary search trees	An optimal binary search tree, sometimes called a weight-balanced binary tree
82.	Traveling sales person problem.	The Travelling Salesman Problem (TSP) is the challenge of finding the shortest yet most efficient route for a person to take given a list of specific destinations.
83.	Reliability design	Reliability is the probability that a product will continue to work normally over a specified interval of time, under specified conditions
84.	Optimization problem	To maximize or minimize some values.Ex: Finding the shortest path between two vertices in a graph.
85.	Polynomial time algorithm.	For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a constant
86.	Optimal binary search trees complexity analysis	O (n3)
87.	Floyd Warshall Algorithm	The problem is to find shortest distances between every pair of vertices in a given edge weighted directed Graph.
88.	The most popular solutions to the Traveling Salesman Problem	The Brute-Force Approach The Branch and Bound Method The Nearest Neighbor Method YOUR FUTURE
89.	0/1 knapsack problem	put these items in a knapsack of capacity W to get the maximum total value in the knapsack
90.	Dynamic programming	methods can be used to solve the matrix chain multiplication problem
91.	Techniques in lower bound theory	 Comparisons Trees. Oracle and adversary argument State Space Method
92.	Real-world TSP Applications	Google Map

93.	Combinatorial optimization Problems		Combinatorial optimization is a subfield of mathematical optimization that is related to operations research, algorithm theory, and computational complexity theory	
94.	Maximum Flow problem		Maximum amount of flow that the network would allow to flow from source to sink.	
95.	Fundamental Data Structures		Linear Data Structures Graphs Trees	
96.	Vertices		a collection of points	
97.	Edges		A collection of points connected by line segments	
98.	Characteristics of Algorithm		Simplicity, Time consuming, easy to understand, generality.	
99.	Methods specifying for an algorithm	$\boldsymbol{\times}$	Flow chart, Natural language, Program	
100	Recursive function	\mathbf{x}	Function which calls itself again and again	
	Unit-V : BRANCH AND I	BOUND&	NP-HARD,NP-COMPLETE PROBLEMS	
101	P-class	X	Problems are solvable in polynomial time	
102	NP-class		Problems are verifiable in polynomial time.	
103	Branch and Bound DESI applications	std.	Knapsack Problem VOUR FUTURE N-Queens Problem Traveling Salesman Problem	
104	class does a CNF- satisfiability problem		NP complete	
105	The choice of polynomial class has led to the development of an extensive theory called	2	computational complexity	
106	Travelling Sales man Problem	TSP	The problem is to find the shortest possible route.	
107	Branch and bound		It is generally used for solving combinatorial optimization problems.	

108	How many stages of procedure does a non- deterministic algorithm consist of?	2
109	The worst-case efficiency of solving a problem in polynomial time is	O(p(n))
110	Tractable	Problems that can be solved in polynomial time
111	NP	the class of decision problems that can be solved by non-deterministic polynomial algorithms
112	Un decidable problems	Problems that cannot be solved by any algorithm
113	Example of un decidable problem	Halting problem
114	Backtracking problem	To solve combinational problem, optimization problem, decision problem
115	Applications of travelling sales man problem	planning, scheduling, logistics and packing
116	Approximation problem	Near optimal solution for problem
117	Examples for backtracking	Puzzles such as eight queens puzzle, crosswords, verbal arithmetic, Sudoku, and Peg Solitaire.
118	Backtracking applications	Electrical engineering, Robotics, Artificial Intelligence, Network communication
119	Backtracking technique used in	N Queens problem, sum of subset, Sudoku puzzle, Hamiltonian cycle
120	NP hard problem	Algorithm for solving it can be translated into one for solving any NP-problem (nondeterministic polynomial time)
121	2-approximation algorithm	Returns a solution whose cost is at most twice the optimal
122	Examples of NP problem	integers, rearrange the numbers

123	Base Bound Theory	Calculation of minimum time for execute a algorithm
124	NP Hard problems	 The circuit-satisfiability problem Set Cover Vertex Cover Travelling Salesman Problem
125	NP complete problem	No polynomial time algorithm
		Placement Questions
1	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer $= x + 4 = 15$.
2	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
3	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.
4	Look at this series: 53, 53, 40, 40, 27, 27,	In this series, each number is repeated, then 13 is subtracted to arrive at the next number.
5	Look at this series: 1.5, 2.3, 3.1, 3.9,	In this simple addition series, each number increases by 0.8.
6	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer $= x + 4 = 15$.
7	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
8	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on. $(112 \times 5^4) = 112 \times (10)4 = 112 \times 1000$
	$(112 \text{ x } 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$
9	It was Sunday on Jan 1, 2006. The day of	On 31 st December, 2005 it was Saturday.

	the week Jan 1, 2010 is		Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.
10	Today is Monday. After 61 days, it will be:		 Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday.
11	If 6 th March, 2005 is Monday,The day of the week on 6 th March, 2004 is		 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005).
12	The days inx weeks x days?	$\langle \times$	x weeks x days = $(7x + x)$ days = $8x$ days.
13	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	Estd.	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday.
14	The greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.		Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.
15	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:		Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$

16	$(112 \times 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$
17	It was Sunday on Jan 1, 2006.The day of the week Jan 1, 2010 is	On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.
18	Today is Monday. After 61 days, it will be:	 Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday.
19	If 6 th March, 2005 is Monday, The day of the week on 6 th March, 2004 is D E	 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005).
20	The daysin x weeks x days?	x weeks x days = $(7x + x)$ days = $8x$ days.
21	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday.
22	Find the greatest number that will divide 43, 91 and 183 so as to leave the same	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.

	remainder in each case.	
23	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:	Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$
24	Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:	Let the speeds of the two trains be x m/sec and y m/sec respectively. Then, length of the first train = 27x meters, and length of the second train = 17y meters. $\frac{27x + 17y}{x + y} = 23$ $\Rightarrow 27x + 17y = 23x + 23y$ $\Rightarrow 4x = 6y$ $\Rightarrow \frac{x}{y} = \frac{3}{z}$

HoD

1.

2.