

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

МКС

2020-21

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

CSE

	Course Code & Course Na Year/Sem/Sec		19CSC12/SOFTWARE ENGINEERING I/IV/A & B	
S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	UNIT I:SOF	FWARE P	ROCESS AND PROJECT MANAGEMENT	
1.	Software		Software is a program that enables a computer to perform a specific task, as opposed to the physical components of the system	
2.	Software Engineering		Software engineering is the systematic application of engineering approaches to the development of software.	
3.	Software Process		Software process (also known as software methodology) is a set of related activities that leads to the production of the software.	
4.	Waterfall Model		The waterfall model is a sequential approach, where each fundamental activity of a process represented as a separate phase, arranged in linear order.	
5.	Prototype		A prototype is useful when a customer or developer is not sure of the requirements, or of algorithms, efficiency, business rules, response time, etc.	
6.	Spiral Model		The spiral model is a risk-driven where the process is represented as spiral rather than a sequence of activities.	
7.	Framework Activities		 Communication Planning Modelling Construction Deployment 	
8.	Types of prescriptive process models		 The Waterfall Model Incremental Process model Evolutionary Process Models Concurrent Models 	
9.	Incremental Process Model		The incremental model combines the elements of waterfall model and they are applied in an iterative fashion.	
10.	Evolutionary Model		The Evolutionary development model divides the development cycle into smaller, incremental waterfall models in which users are able to get access to the product at the end of each cycle.	
11.	Concurrent Process Model		The concurrent process model defines a series of events that will trigger transitions from state to state for each of the software engineering activities.	
12.	Special process models		Special process models take many features from one or more conventional models.	
13.	Component based development		The component based development model incorporates many of the characteristics of the spiral model.	

14.	Aspect oriented Software Development	Aspect Oriented Software Development (AOSD) often referred to as aspect oriented programming (AOP), a relatively new paradigm that provides process and methodology for defining, specifying designing and constructing aspects.
15.	Software Project Management	Software Project Management (SPM) is a proper way of planning and leading software projects. It is a part of project management in which software projects are planned, implemented, monitored and controlled.
16.	Management Spectrum	Effective software project management focuses on the four P's: people, product, process, and project.
17.	Project estimation Types	Software size estimation Effort estimation Time estimation Cost estimation
18.	Project size estimation techniques	Lines of Code Number of entities in ER diagram Total number of processes in detailed data flow diagram Function points
19.	Lines of Code (LOC):	As the name suggest, LOC count the total number of lines of source code in a project.
20.	units of LOC	KLOC- Thousand lines of code NLOC- Non comment lines of code KDSI- Thousands of delivered source instruction
21.	Function Point Analysis:	In this method, the number and type of functions supported by the software are utilized to find FPC(function point count).
22.	COCOMO Model	Cocomo (Constructive Cost Model) is a regression model based on LOC, i.e number of Lines of Code. It is a procedural cost estimate model for software projects and often used as a process of reliably predicting the various parameters associated with making a project such as size, effort, cost, time and quality.
23.	COCOMO Model key parameters	Effort & Schedule
24.	Types of COCOMO Models	Basic COCOMO Model Intermediate COCOMO Model Detailed COCOMO Model
25.	Project-task scheduling	Project-task scheduling is a significant project planning activity. It comprises deciding which functions would be taken up when.
	UNIT II : REQUIR	EMENTS ANALYSIS AND SPECIFICATION
26.	Requirement Engineering	The process to gather the software requirements from client, analyze and document them is known as requirement engineering.
27.	Software requirements	Software requirements is a field within software engineering that deals with establishing the needs of stakeholders that are to be solved by software
28.	User requirements	User requirements, often referred to as user needs, describe what the user does with the system, such as what activities that users must be able to perform.
29.	System requirements	System requirements are the configuration that a system must have in order for a hardware or software application to run smoothly and efficiently.
30.	Hardware system requirements	Hardware system requirements often specify the operating system version, processor type, memory size, available disk space and additional peripherals, if any, needed.

	Software system	Software system requirements, in addition to the	
31.	Software system	aforementioned requirements, may also specify additional	
011	requirements	software dependencies (e.g., libraries, driver version,	
		framework version).The System Requirement Document (SRD) defines	
	System Requirement	system level functional and performance requirements for	
32.		a system.	
	Document (SRD)	It should include a system level description of all software	
		elements required by the preferred system concept.	
	Dequinement	Feasibility Study Requirement Elicitation and Analysis	
33.	Requirement	Software Requirement Specification	
	Engineering Process	Software Requirement Validation	
		Software Requirement Management	
2.4	Types of Feasibility	Technical Feasibility	
34.		Operational Feasibility	
	Problems of Elicitation	Economic Feasibility	
		Getting all, and only, the right people involved. Stakeholders often don't know what they want	
35.	and Analysis	Stakeholders express requirements in their terms.	
		Stakeholders may have conflicting requirements.	
		Software requirement specification is a kind of document	
	Software requirement	which is created by a software analyst after the	
36.	specification	requirements collected from the various sources - the	
	specification	requirement received by the customer written in ordinary	
	Software Requirement	language. Requirement management is the process of managing	
37.	-	changing requirements during the requirements	
	Management	engineering process and system development.	
	Classical Analysis	The evaluation of an activity to identify its desired	
38.	Classical Analysis	objectives and determine procedures for efficiently	
		attaining them. Data Flow Diagrams	
		Data Flow Diagrams Data Dictionary	
39.	Structured Analysis	Decision Trees	
39.	Tools	Decision Tables	
		Structured English	
		Pseudocode DED is easy to understand and quite effective when the	
40.		DFD is easy to understand and quite effective when the required design is not clear and the user wants a	
т 0 .	Data Flow Diagrams	notational language for communication.	
		A context diagram helps in understanding the entire	
41.	Context Diagram	system by one DFD which gives the overview of a	
		system.	
		A data dictionary is a structured repository of data elements in the system.	
42.		It stores the descriptions of all DFD data elements that is,	
	Data Distignation	details and definitions of data flows, data stores, data	
	Data Dictionary	stored in data stores, and the processes.	
40		Decision trees are a method for defining complex	
43.	Decision Trees	relationships by describing decisions and avoiding the	
		problems in communication. Decision tables are a method of describing the complex	
44.		logical relationship in a precise manner which is easily	
	Decision Tables	understandable.	
		Structure English is derived from structured programming	
45.	Structured English	language which gives more understandable and precise	
		description of process.	

10	Pseudocode	A pseudocode does not conform to any programming	
46.	1 scuubcouc	language and expresses logic in plain English.	
		Technical feasibility evaluates the current technologies,	
47.	Technical Feasibility	which are needed to accomplish customer requirements	
		within the time and budget.	
40	Functional Requirement	A functional requirement defines a system or its	
48.		component. It describes the functions software must	
		perform.	
	Non-Functional	A non-functional requirement is essential to ensure the	
49.	Dequinement	usability and effectiveness of the entire software system. Failing to meet non-functional requirements can result in	
	Requirement	systems that fail to satisfy user needs.	
		It is a detailed logical representation of the data for the	
50.	E-R diagram	organization and uses three main constructs i.e. data	
50.		entities, relationships, and their associated attributes.	
	U	NIT III : SOFTWARE DESIGN	
		Software design is a process to transform user	
51.	Software design	requirements into some suitable form, which helps the	
51.		programmer in software coding and implementation.	
		Correctness:	
	Objectives of Software	Efficiency:	
52.		Understandability	
	Design	Completeness:	
		Maintainability	
	Levels Of Phases Of	Interface Design	
53.	Design	Architectural Design	
	Design	Detailed Design	
		Interface design is the specification of the interaction	
54.	Interface design	between a system and its environment.	
		This phase proceeds at a high level of abstraction with	
		respect to the inner workings of the system.Architectural design is the specification of the major	
		components of a system, their responsibilities, properties,	
55.	Architectural design	interfaces, and the relationships and interactions between	
		them.	
		Gross decomposition of the systems into major	
50	Issues in architectural	components.	
56.	design	Allocation of functional responsibilities to components.	
		Component Interfaces	
		Design is the specification of the internal elements of all	
57.	Detailed Design	major system components, their properties, relationships,	
51.		processing, and often their algorithms and the data	
		structures.	
		The software design concept simply means the idea or	
F 0	Software Design	principle behind the design.	
58.	Concepts	It describes how you plan to solve the problem of	
		designing software, the logic, or thinking behind how you will design software.	
		Heuristics refers to a non-optimal solution for experience-	
		based techniques to solve problems, learning, and	
59.	Design Heuristic	discovery.	
		The main goal of heuristic evaluations is to identify any	
		problems associated with the design of user interfaces.	_
		Architectural design is a process for identifying the sub-	
		systems making up a system and the framework for sub-	
60.	Architectural design	system control and communication.	
		The output of this design process is a description of the	
		software architecture.	

61.	Architectural styles	The software that is built for computer-based systems can
62.	Data flow architectures	exhibit one of these many architectural styles.This kind of architecture is used when input data to be transformed into output data through a series of computational manipulative components.
63.	User Interface Design	User interface is the front-end application view to which user interacts in order to use the software.
64.	Command Line Interface	Command Line Interface provides a command prompt, where the user types the command and feeds to the system.
65.	Graphical User Interface	Graphical User Interface provides the simple interactive interface to interact with the system.
66.	Abstraction	Abstraction simply means to hide the details to reduce complexity and increases efficiency or quality.
67.	Modularity	Modularity in design means to subdivide a system into smaller parts so that these parts can be created independently and then use these parts in different systems to perform different functions.
68.	Refinement	Refinement simply means to refine something to remove any impurities if present and increase the quality.
69.	Pattern	The pattern simply means a repeated form or design in which the same shape is repeated several times to form a pattern.
70.	Refactoring	Refactoring simply means to reconstruct something in such a way that it does not affect the behaviour or any other features.
71.	Two levels of abstraction	Architecture in the small Architecture in the large
72.	User Interface Golden rules	Strive for consistency - Consistent sequences of actions should be required in similar situations. Identical terminology should be used in prompts, menus, and help screens. Consistent commands should be employed throughout.
73.	Traditional Components	Traditional components are designed based on different constructs like. Sequence implements processing steps that are essential in the specification of any algorithm.
74.	Interface Validation	This phase focuses on testing the interface. The interface should be in such a way that it should be able to perform tasks correctly and it should be able to handle a variety of tasks.
75.	Information Hiding	Information hiding simply means to hide the information so that it cannot be accessed by an unwanted party.
	Unit-IV :	TESTING AND IMPLEMENTATION
76.	Software Testing	Software Testing is vital for any software development life cycle, it is fundamental to ensure the software quality and to have a workable functional software at the end of the project.
77.	White-box testing	It is conducted to test program and its implementation, in order to improve code efficiency or structure. It is also known as 'Structural' testing.
78.	White-box testing techniques	Control-flow testing Data-flow testing
79.	Basic Path Testing	Path Testing is a method that is used to design the test cases. In path testing method, the control flow graph of a program is designed to find a set of linearly independent paths of execution.

80.	Advantages of Path Testing	Path testing method reduces the redundant tests. Path testing focuses on the logic of the programs. Path testing is used in test case design.
81.	Control structure testing	Control structure testing is used to increase the coverage area by testing various control structures present in the program.
82.	Condition Testing	Condition testing is a test cased design method, which ensures that the logical condition and decision statements are free from errors.
83.	Loop Testing	Loop testing is actually a white box testing technique. It specifically focuses on the validity of loop construction.
84.	Concatenated Loops	If loops are not dependent on each other, contact loops can be tested using the approach used in simple loops. if the loops are interdependent, the steps are followed in nested loops
85.	Black box testing	Black box testing is a type of software testing in which the functionality of the software is not known. The testing is done without the internal knowledge of the products.
86.	Regression Testing	Regression Testing is the process of testing the modified parts of the code and the parts that might get affected due to the modifications to ensure that no new errors have been introduced in the software after the modifications have been made.
87.	Advantages of Regression Testing	It ensures that no new bugs have been introduced after adding new functionalities to the system.
88.	Disadvantages of Regression Testing	It can be time and resource consuming if automated tools are not used. It is required even after very small changes in the code.
89.	Unit testing	Unit testing, a testing technique using which individual modules are tested to determine if there are any issues by the developer himself. It is concerned with functional correctness of the standalone modules.
90.	Integration testing	Integration testing is the process of testing the interface between two software units or module. It's focus on determining the correctness of the interface.
91.	Bottom-Up Integration Testing	In bottom-up testing, each module at lower levels is tested with higher modules until all modules are tested.
92.	Top-down integration testing	Top-down integration testing technique used in order to simulate the behaviour of the lower-level modules that are not yet integrated.
93.	System Testing	System Testing is a type of software testing that is performed on a complete integrated system to evaluate the compliance of the system with the corresponding requirements.
94.	Performance Testing	Performance Testing is a type of software testing that is carried out to test the speed, scalability, stability and reliability of the software product or application.
95.	Top-Down Integration Testing Advantages	Separately debugged module. Few or no drivers needed. It is more stable and accurate at the aggregate level
96.	Top-Down Integration Testing Disadvantages	Needs many Stubs. Modules at lower level are tested inadequately.

	Mixed Integration	For mixed integration testing, require very high cost	
97.	Testing Disadvantages	because one part has Top-down approach while another part has bottom-up approach.	
98.	Load Testing	Load Testing is a type of software Testing which is carried out to determine the behavior of a system or software product under extreme load.	
99.	Stress Testing	Stress Testing is a type of software testing performed to check the robustness of the system under the varying loads.	
100.	Scalability Testing	Scalability Testing is a type of software testing which is carried out to check the performance of a software application or system in terms of its capability to scale up or scale down the number of user request load.	
	Uı	nit-V : PROJECT MANAGEMENT	
101.	Project management	Project management is the application of processes, methods, skills, knowledge and experience to achieve specific project objectives according to the project acceptance criteria within agreed parameters.	
102.	Make or buy decision	Make or buy decision is always a valid concept in business. No organization should attempt to make something by their own, when they stand the opportunity to buy the same for much less price.	
103.	Reasons for Making	Cost concerns Desire to expand the manufacturing focus Need of direct control over the product	
104.	COCOMO II Model	COCOMO-II is the revised version of the original Cocomo (Constructive Cost Model) and is developed at University of Southern California. It is the model that allows one to estimate the cost, effort and schedule when planning a new software development activity.	
105.	Project planning	Project planning is an organized and integrated management process, which focuses on activities required for successful completion of the project.	
106.	Project Planning Process	The project planning process involves a set of interrelated activities followed in an orderly manner to implement user requirements in software and includes the description of a series of project planning activities and individual(s) responsible for performing these activities.	
107.	Objectives and scope of the project	Techniques used to perform project planning Effort (in time) of individuals involved in project Project schedule and milestones Resources required for the project Risks associated with the project.	
108.	Project Plan	A project plan helps a project manager to understand, monitor, and control the development of software project. This plan is used as a means of communication between the users and project management team.	

109.	RFP	An RFP stands for "request for proposal" and is generated as part of the bidding procedure for a product or service. The purpose of an RFP is to provide a structured way for companies to learn about doing business with software development teams.
110.	Risk management	Risk management is a management specialism aiming to reduce different risks related to a preselected domain to the level accepted by society. It may refer to numerous types of threats caused by environment, technology, humans, organizations and politics.
111.	Task	Task is part of a set of actions which accomplish a job, problem or assignment.
112.	Management process	Management process is a process of planning and controlling the performance or execution of any type of activity.
113.	Process	Process is an ongoing collection of activities, with an inputs, outputs and the energy required to transform inputs to outputs.
114.	Task analysis	Task analysis is the analysis or a breakdown of exactly how a task is accomplished, such as what sub-tasks are required
115.	Project manager	Professional in the field of project management. Project managers can have the responsibility of the planning, execution, and closing of any project, typically relating to construction industry, architecture, computer networking, telecommunications or software development.
116.	Resources	Resources are what is required to carry out a project's tasks. They can be people, equipment, facilities, funding, or anything else capable of definition (usually other than labor) required for the completion of a project activity.
117.	Allocation	Allocation is the assignment of available resources in an economic way.
118.	Project network	Project network is a graph (flow chart) depicting the sequence in which a project's terminal elements are to be completed by showing terminal elements and their dependencies.
119.	Quality, Cost, Delivery (QCD)	Quality, Cost, Delivery (QCD) as used in lean manufacturing measures a business's activity and develops Key performance indicators. QCD analysis often forms a part of continuous improvement programs
120.	Scope	Scope of a project in project management is the sum total of all of its products and their requirements or features.
121.	Six Sigma	Six Sigma is a business management strategy, originally developed by Motorola, that today enjoys widespread application in many sectors of industry.
122.	Case study	Case study is a research method which involves an in-depth, longitudinal examination of a single instance or event: a case. They provide a systematic way of looking at events, collecting data, analyzing information, and reporting the results.
123.	Portfolio	Portfolio in finance is an appropriate mix of or collection of investments held by an institution or a private individual.
124.	Project	Project : A temporary endeavor undertaken to create a unique product, service, or result.
	1	Placement Questions
125.	What is the average of first five multiples of 10?	Average = $10*(1+2+3+4+5)*\frac{1}{5}$

		1
		= 10 * 15 * 5
		= 10 * 3 = 30
		The digit 5 has two place values in the numeral, 5 *
	What is the difference in	$10^5 = 50,000 \text{ and } 5 * 10^1 = 50.$
126.	the place value of 5 in the	∴Required difference = $50000 - 50 = 49950$
	numeral 754853?	Required difference – $50000 - 50 - 49950$
		On dividing 1459 by 12, the remainder is 7.
107	A number added to 1459	\therefore The number to be added would be = 12 - 7 = 5
127.	so that it is exactly	
	divisible by 12.	
	In the given expression	(1.05)2 *x=44.1
128.		Or, $x = 44.1/(1.05)2 = 44.1/(1.05 * 1.05)$
120.	(1.05)2 *x = 44.1, find the	Hence, $x = 40.00$
	value of x.	
	If January 1, 1996, was	The year 1996 is divisible by 4, so it is a leap year with
100	Monday, what day of the	2 odd days.
129.		As per the question, the first day of the year 1996 was
	week was January 1,	Monday, so the first day of the year 1997 must be two
	1997?	days after Monday. So, it was Wednesday.
	A: B: C is in the ratio of 3:	C's share = [C's ratio/ sum of ratios] * total amount C's share = (5/10) * 1280
130.	2: 5. How much money	C's share = $(5/10) + 1280$ C's share = 640
	will C get out of Rs 1280?	C s snare - 640
	win C get out of KS 1200.	Each day of a week is repeated after 7 days, so after 70
131.	Today is Wednesday,	days, it will be Wednesday.
151.	after 69 days, it will be	Therefore, after 69 days, it will be Tuesday.
		The hands of a clock coincide only once between 11 O'
	A Number times the	clock and 1 O' clock, so in every 12 hours, the hands of
132.		a clock will coincide for 11 times.
152.	hands of a clock coincide	∴ In a day or 24 hours, the hands of a clock will coincide for
	in a day	22 (11+11) times.
		Area of a triangle = $\frac{1}{2}$ * base * height
133.	The area of a triangle with	So, the area = $\frac{1}{2}$ * 10 * 20
155.	base 10 meters and height	=100 square meters
	20 meters.	
	A: B: C:D is in the ratio of	C's share = [C's ratio/ sum of ratios] * total amount
134.	3: 2: 5:2. Calculate C's	C's share = $(5/10) * 1260$
	share out of 1260.	C's share $= 630$
	share out of 1200.	The second and fourth letters (K and L) in the series are
135.	CKDL, EKFL, GKHL, _,	static. The first and third letters are in alphabetical order
	KKLL,	starting with the letter C. So, the missing letters are IKJL.
136.		The series consists of letters in reverse alphabetical order.
130.	RQP, ONM, _, IHG, FED,	Therefore, the missing letters are LKJ.
		The middle letters in this series follow the order ABCDE.
137.	GAH, IBJ, KCL, MDN	The first and third letters are in alphabetical order starting
		with the letter G.
		The letters are the same in the series; they differ only in
138.	E3FG, _, E5FG, E6FG,	numbers. So, focus on the number series which is a simple series of numbers; 3, 4,5,6,7. Therefore, the missing letters
	E7FG	are E4FG.
		The first letters of the series are in an alphabetical order in
		which a letter is skipped between each two letters; B, D, F,
100		H, J. The second and third letters are repeated in each
139.	BKK, DMM, FOO, _, JSS	segment, and they are also in alphabetical order with a
		skipped letter; K, M, O, Q, S. So, the missing letters are
		HQQ.
140.	4 7 12 10 20	In this series, the difference between the consecutive
1 101	4, 7, 12, 19, _, 39	

	numbers increases by 2; $7 - 4 = 3$	
	12 - 7 = 5	
	19 - 12 = 7, Therefore, the next number would be $19 +$	
	9 = 28	
15 20 24 15 29 22 15		
_		
_, 15	added to each number to arrive at the next number	
	This is a simple subtraction series in which each number is 7	
77, 70, 63, 56, 49, _,		
	This is an alternating multiplication and subtraction series;	
12, 24, 14, 28, 18, 36,	first multiply by 2 then subtract 10. Therefore, 26 (36 - 10)	
12, 24, 14, 20, 10, 00,,	should come next.	
	On dividing 72 by 2, we get 36	
72. 36. 18	On dividing 36 by 2, we get 18	
, 2, 00, 10,	So, on dividing 18 by 2, we will get 9	
	<u>x</u> * n	
	x % of a given number 'n' =100	
40 % of 200 =	x = 40 and $n = 200$	
TU /U UI 200 -	40	
	$\therefore 40 \% \text{ of } 200 = 100 * 200 = 80$	
	The middle letters in this series follow the order ABCDE.	
GAH, IBJ, KCL, MDN,	The first and third letters are in alphabetical order starting	
	with the letter G.	
	The series contains vowels in reverse order, U, O, I, E, A.	
U, O, _, E, A		
467X4 is divisible by 9		
	C.P. = Rs. 2000	
A shonkeener sold an		
cost price of the article is		
2000, find the profit		
-		
percent	2000	
KDLOC	$E_i = a^*(KDLOC)b$	
	15, 20, 24, 15, 28, 32 15, _, _, 15 77, 70, 63, 56, 49, _, 12, 24, 14, 28, 18, 36,, 72, 36, 18, 40 % of 200 = GAH, IBJ, KCL, MDN, U, O, _, E, A 467X4 is divisible by 9 A shopkeeper sold an article for Rs. 3500. If the cost price of the article is 2000, find the profit percent. KDLOC	15, 20, 24, 15, 28, 32 15,This is a simple addition series in which the number "15" is interpolated as every third number. And, except 15, four is added to each number to arrive at the next number77, 70, 63, 56, 49,,This is a simple subtraction series in which each number is 7 less than the previous number.77, 70, 63, 56, 49,,This is a alternating multiplication and subtraction series; first multiply by 2 then subtract 10. Therefore, 26 (36 - 10) should come next.72, 36, 18,On dividing 72 by 2, we get 36 On dividing 72 by 2, we get 18 So, on dividing 18 by 2, we will get 940 % of 200 = $\frac{40}{2}$ $\times 40$ of a given number 'n'=100a 200 = $\frac{40}{2}$ $\times 40$ of a low number in 'sime' number 'n'=100GAH, IBJ, KCL, MDN, $_$.The middle letters in this series follow the order ABCDE. The first and third letters are in alphabetical order starting with the letter G.40 % of 200 =The missing letter is I.GAH, IBJ, KCL, MDN, $_$.The series contains vowels in reverse order, U, O, I, E, A. So, the missing letter is I.41So, on divisible by 9So the sum of its digits would be divisible by 9. So the sum of its digits would be divisible by 9. So the sum of its digits would be divisible by 9. So the sum of its digits would be divisible by 9. 2. P. = Rs. 3500 Profit or Gain = S.PC.P. = 3500 - 2000 = 1500A shopkeeper sold an article for Rs. 3500. If the cost price of the article is 2000, find the profit percent.C.P. = Rs. 3500 2000 = 1500A ply formula: Profit $\% = \frac{Profit}{2000} \times 100 = 75\%$ 2000S.P. = Rs. 3500 2000

Signatures

Faculty Prepared By

- 1. V.Karuppuchamy
- 2. S.R.Sridhar