

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

2021-22

	Subject 19ECC08 ANTENNA SYSTEM ENGINEERING				
	Unit I Antenna Fundamentals				
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/ Equation/Expression	Units	
1	Antenna		Antenna is a transition device or a transducer between a guided wave and a free space wave or vice-versa.		
2	Radiation Pattern		Radiation pattern is the relative distribution of radiated power as a function of distance in space .		
3	Isotropic radiator		It is a hypothetical loss less radiator having equal radiation in all directions.		
4	Radiation Intensity		The power radiated from an antenna per unit solid angle is called the radiation intensity U		
5	Directivity of an antenna	V	The ratio of the maximum value of the power radiated		
6	Radiation Intensity	DESIG	The area over which the antenna collects energy from the incident wave and delivers it to the receiver load.		
7	Beam Efficiency		The total beam area (WA) consists of the main beam area (WM) plus the minor lobe area (Wm).		
8	Radiation resistance		Radiation resistance is defined as a fictitious or hypothetical resistance that would dissipate an amount of power equal to the radiated power.		
9	The Different Types Of Aperture		a. Effective aperture.b. Scattering aperture.c. Loss aperture.d. Collecting aperture.e. Physical aperture.		

10	Self-impedance of an antenna		Impedance at the point where transmission line is connected is referred to as feed point impedance or antenna input impedance.	
11	Bandwidth of an antenna		Bandwidth describes the range of frequencies over which the antenna can properly radiate or receive energy.	
12	Directive gain of an antenna		$g_{d}(\theta,\phi) = \frac{\Phi(\theta,\phi)}{\Phi_{av}} = \frac{4\pi \Phi(\theta,\phi)}{W_{r}}$	
13	Beam solid angle		$\Omega_{A} = \int_{0}^{2\pi} \int_{0}^{\pi} P_{n}(\theta, \phi) \ d\Omega \qquad steradian$ $P_{n}(\theta, \phi) = Normalized \ power \ pattern$	
14	Half power beam width (HPBW) of an antenna	HPBW	It is an angular width in degrees, measured on the radiation pattern (main lobe) between points where the radiated power has fallen to half its maximum value.	
15	Gain	G	The ratio of maximum radiation intensity in given direction to the maximum radiation intensity from a reference antenna.	
16	Mutual Impedance		The presence of nearby antenna no.2 induces a current in the antenna no.1 indicates that presence of antenna no.2 changes the impedance of the antenna no.1.	
17	Beam Width between First Null		The angular width in degrees, measured on the radiation pattern between first null points on either side of the main lobe.	
18	Beam Area	A DESIG	The beam area or beam solid angle or WA of an antenna is given by the normalized power pattern over a sphere.	
19	The Field Zones	Es	The fields around an antenna may be divided into two principal regions.a. Near field zone (Fresnel zone)b. Far field zone (Fraunhofer zone)	
20	Effective Height		It may be defined as the ratio of the induced voltage to the incident field.	
21	The need for BALUN		A Balun is used to transform the balanced input of the antenna into unbalanced impedance.	
22	A half wave length dipole		A half wave length dipole antenna can be formed from a two wire transmission line.	
23	Polarization		Polarization of an antenna means the orientation of the electric field (E-vector) of the electromagnetic wave being radiated by the transmitting antenna in the far field.	
24	Folded dipole		A folded dipole consists of two parallel dipoles	

25	Radiated Power Density		$W_{rad} = a_r W_r = a_r A_o \sin \theta / r^2 (W/m^2)$	
	· ·	Un	it II Antenna Arrays	
26	Antenna Array		Antenna array is system of a similar antennas oriented similarly to get greater directivity in a desired direction.	
27	Uniform Linear Array		An array is linear when the elements of the array are spaced equally along the straight line.	
28	The Types of Array		 Broad side array. End fire array Collinear array. Parasitic array. 	
29	Broad Side Array		An arrangement in which the principal direction of radiation is perpendicular to the array axis.	
30	End Fire Array		End fire array is defined as an arrangement in which the principal direction of radiation is coincides with the array axis.	
31	Relationship between Directivity and HPBW		If HPBW is greater; directivity is less and vice-versa.	
32	Tapering of array		The techniques used in reduction of side lobe level are called as tapering.	
33	Adaptive Array		Adaptive arrays have an awareness of their environment and adjust to it in a desired fashion.	
34	Main advantage of Binomial Array	DESIG	No side lobe in the radiation pattern of Binomial array.Half Power Beam width is more.	
35	Uniform linear array	Es	Uniform linear array is one in which the elements are fed with a current of equal amplitude (magnitude) with uniform progressive phase shift along the line.	
36	Null Directions in Radiation Pattern		Direction in which radiation is not present is defined as null direction.	
37	Non-Uniform amplitude distribution		non- uniform amplitude distribution to reduce side lobe levels.	
38	Difference between Uniform and non- uniform Arrays		Uniform linear array is one in which the elements are fed with a current of equal amplitude. Non-uniform linear array is one in which the elements are fed with currents of un equal amplitude.	
39	Advantages of Antenna array		A radiating system composed of several spaced and properly phased radiators is called as an Antenna array.	

40	Parasitic Array	The power is given to one element from that other elements get by electromagnetic coupling.	
41	Pattern Multiplication	Individual source pattern and the array pattern of isotropic point sources each located at the phase center of the individual source having the same amplitude and phase.	
42	Advantage of Pattern Multiplication	Makes it possible to sketch rapidly, almost by inspection, the radiation pattern of complicated arrays without making lengthy calculations.	
43	Phased Arrays	An array of many elements with the phase (also amplitude) of each element being a variable, providing control of the beam direction and pattern shape including side lobes.	
44	Huygen's Principle	Huygen"s principle states that, "each point on a primary wave front can be considered to be a new source of a secondary spherical wave and that a secondary wave front can be constructed as the envelope of these waves.	
45	Array pattern	Array pattern = Element pattern * Array Factor	
46	Disadvantages of Binomial Arrays	 The beam width of the main lobe is large which is undesirable. The directivity is small. High excitation levels are required for the centre elements of large arrays. 	
47	Difference Between Isotropic and Non- Isotropic Source	 Isotropic source radiates energy in all directions but non-isotropic source radiates energy only in some desired directions. Isotropic source is not physically realizable but non-isotropic source is physically realizable. 	
48	Induction Field	The induction field will predominate at points close to the current element, where the distance from the center of the dipole to the particular point is less.	
49	A Loop Antenna	A loop antenna is a radiating coil of any convenient cross-section of one or more turns carrying radio frequency current.	

50	Types of Loop Antennas		 Electrically Small (Circumference < λ / 10) Electrically Small (Dimension comparable to λ) 	
		Unit III	Aperture and Slot Antennas	
51	Three aperture antennas		Slot antenna, horn antenna, lens antenna.	
52	Uniqueness theorem		Uniqueness theorem states that, for a given set of sources and boundary conditions in a lossy medium, the solution to Maxwell''s equations is unique.	
53	Application of Lens Antenna		They are used in the higher end of the microwave spectrum and millimetre wave frequencies.	
54	Slot radiator		When a slot in a large metallic plane is coupled to an R.F source, it behaves like a diploe antenna mounted over a reflecting surface.	
55	Corner Reflector	7	A corner reflector is made up of two flat-plate reflectors joined together to form a corner.	
56	Features of pyramidal horn antenna		 It is one of the most often used horn antennas. It is used as a primary feed for reflector antennas. It is used as standard gain reference antennas in antenna measurements. 	
57	Principle of E-plane metal plate lens antenna	DESIG	When the feed antenna is kept at the focal point of the lens antenna, the spherical wave fronts are collimated forming a plane wave front.	
58	Sectoral Horn	Es	Horn antenna is a wave guide one end of which is flared out.	
59	Sectoral E-plane horn		If flaring is along the direction of electric field, it is called sectoral E-plane horn.	
60	Sectoral H-plane horn		If flaring is along the direction of magnetic field, it is called sectoral H-plane horn.	
61	Two examples for microwave antenna		Horn antenna, Lens antenna	
62	'Zoning' in lens antenna		Zoning is a method used to reduce the bulk (weight) of the antenna.	
63	'Zoning' in dielectric lens antenna		Zoning the non-refracting surface, zoning the refracting surface.	
64	Drawbacks of lens		• Due to the reflection at the dielectric-air	

	antenna		interface, a matching quarter wave transformer is requiredA lens antenna is generally heavy and bulky.	
65	Advantage of Cassegrain reflector configuration		The main advantage is that the primary feed horn and the associated receiver or transmitter can be located conveniently behind the main reflector.	
66	Disadvantage of Cassegrain Reflector Configuration		The main disadvantage of Cassegrain reflector configuration is the large aperture blockage by the sub-reflector.	
67	Types of lens antenna		Dielectric lens antenna, Metallic lens antenna, Zoned lens antenna, Stepped lens antenna.	
68	Field Equivalence Principle		The fields in V_2 due to the sources in V_1 can also be generated by an equivalent set of virtual sources on surface S , Js=nxH, Ms=Exn.	
69	Microstrip antenna		A microstrip patch antenna consists of a thin metallic patch etched on the dielectric substrate using PCB technology.	
70	Pill Box Antenna	Z	This is a reflector antenna which has a cylindrical reflector enclosed by two parallel conducting plates perpendicular to the cylinder, spaced less than one wavelength apart.	
71	Curved Reflector Shapes	$ \leq $	Parabolic, Parabolic cylinder, Hyperboloid	
72	Features & Advantages of Microstrip Antennas		These are antennas made from patches of conducting material on a dielectric substrate above a ground plane. Small size, low cost, low weight, ease of installation.	
73	Applications of Microstrip Antennas	DESIG	They are used in space crafts, aircrafts, telemetry, satellite communications and defense radar systems.	
74	Numerical tools that can be used to analyze an Antenna		Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.	
75	Snell's law of refraction		$\begin{aligned} \frac{\sin \theta_t}{\sin \theta_i} &= \sqrt{\frac{\epsilon_{r1}}{\epsilon_{r2}}} \\ \theta_i &= angle \ of \ incidence, \ \theta_t = angle \ of \ refraction \\ \epsilon_{r1} &= relative \ dielectric \ cons \ tan \ t \ of \ region1 \\ \epsilon_{r2} &= relative \ dielectric \ cons \ tan \ t \ of \ region2 \end{aligned}$	
	Unit I	V Special A	ntennas and Antenna Measurements	
76	Resonant antenna		Resonant antennas are those which correspond to a resonant transmission line that is an exact number of half wave length long and is open at both ends.	

77	Helical antenna		It is used for extraterrestrial communication	
78	Radiation pattern of resonant and non- resonant antenna		Resonant antenna - bidirectional radiation pattern Non-resonant antenna – unidirectional radiation pattern	
79	Non-resonant antenna		Non- resonant antennas are also called as travelling wave antenna.	
80	Modes of radiation of helical antenna		(i) normal mode (ii) axial mode	
81	Advantages of indoor antenna measurements		Absence of electromagnetic interference (EMI) Protection of expensive equipments from environmental severities.	
82	LPDA		LPDA is log periodic dipole array and radiation characteristics that are regularly repetitive as a logarithmic function of frequency.	
83	Anechoic Chamber		An Anechoic Chamber can be made reflection- free or echo-free by lining all the surfaces of the chamber with absorbing material. It can be made dust free and error free environment.	
84	Applications of helical antenna		Used for satellite and space communication. Used in radio astronomy. In the ballistic missiles and satellites used as telemetry links.	
85	Feed method for Micro strip antenna		(i) micro strip transmission line (ii) Coaxial transmission line	
86	Spiral Antenna		Spiral is a geometrical shape found in nature. A spiral can be geometrically described using polar coordinates.	
87	Frequency Independent Antennas	DESLG	An antenna in which the impedance, radiation pattern and directivity remain constant as a function of frequency is called as frequency independent antenna. Eg; Spiral antenna.	
88	Advantages of reconfigurable antenna	Es	Ability to support more than one wireless standard: good isolation between different wireless standards.	
89	Reconfigurable antenna		Reconfigurable antenna has the ability to radiate more than one pattern at different frequencies and polarizations.	
90	Different ranges of antenna measurements		Outdoor range, Indoor range, Reflection range, Slant range, Elevated range, Compact range, Near field range, Ground range and Radar cross section range.	
91	Length of driven element		Length of driven element $=\frac{478}{f_{MHz}} = \frac{478}{200} = 2.39$ feet	

Зі
is to
of ar
ve ar nd
ng ar
in
on ed th
th
ed gy th er
ce ed

r				[
			Two types:	
107	The Type Of Fading		a. Inverse fading.	
			b. Multi path fading.	
108	Fading		Fading is variation of signal strength occur on line of sight paths as a result of the atmospheric conditions. It cannot be predicted properly.	
109	Multi Path Fading		Inverse bending may transform line of sight path into an obstructed one. Multi path fading is caused by interference between the direct and ground reflected waves as well as interference between two are more paths in the atmosphere.	
110	Attenuation		Attenuation of this wave is directly affected by the constant of earth along which it travels.	
111	Diversity Reception		To minimize the fading and to avoid the multi path interference the technique used are diversity reception.	
112	Types of Diversity Reception		 Space diversity reception. Frequency diversity reception. Polarization diversity. 	
113	Space Diversity Reception		This method exploits the fact that signals received at different locations do not fade together	
114	Frequency Diversity Reception		This method takes advantage of the fact that signals of slightly different frequencies do not fade synchronously.	
115	Polarization Diversity Reception	DESIG	It is used in normally in microwave links, and it is found that signal transmitted over the same path in two polarization have independent fading patterns	
116	Factors Affect The Propagation of Radio Waves	Es	 Curvature of earth. Earth' s magnetic field. Frequency of the signal. Plane earth reflection. 	
117	Critical Frequency		For any layer, the highest frequency that will be reflected back for vertical incidence is $fcr = 9 \sqrt{Nmax}$	
118	Define Magneto-ions Splitting		The phenomenon of splitting the wave into two different components (ordinary and extra- ordinary) by the earths magnetic field is called Magneto-Ions Splitting.	
119	Refractive Index		It is defined as $n = c / Vp$ where $n = \sqrt{\epsilon r}$	
120	Maximum Usable Frequency		The maximum Frequency that can be reflected back for a given distance of transmission is called	

	I	
		the maximum usable frequency (MUF) for that distance.
121	Skip Distance	The distance with in which a signal of given frequency fails to be reflected back is the skip distance for that frequency. The higher the frequency the greater the skip distance.
122	Optimum Frequency	Optimum frequency for transmitting between any two points is therefore selected as some frequency lying between about 50 and 85 percent of the predicted maximum usable frequency between those points.
123	Antenna Matching	When the antenna is receiving with a load resistance matched to the antenna radiation resistance, maximum power is transferred to the load and the power is also re-radiated from the dipole.
124	Short Dipole	A short dipole is one in which the field is oscillating because of the oscillating voltage and current. It is called so, because the length of the dipole is short and the current is almost constant throughout the entire length of the dipole.
125	Oscillating Dipole	The dipole has two equal charges of opposite sign oscillating up and down in a harmonic motion.
	Gen	eral & Placement Oriented Questions
126	Path difference of two waves with single source traveling by different paths	$\beta x (\lambda/2)$
127	Highest recombination rate of Ionization Layer	D-region
128	The occurrence of sporadic E-region	ESIG 90 km - 130 km
129	Conditions for Radiation of Wire Antenna	ESTO. 2000 For a charge oscillating in time motion
130	Non-isotropic directional antenna	Back lobe
131	Angle for front to back ratio	0° & 180°
132	Role in determining the radiation pattern in Dipole Antenna	Current
133	Radiation Pattern of an Isotropic Antenna	Spherical
134	Condition of an Ordinary Endfire	$\alpha = \pm \beta d$
		10

	Array		
135	Propagation is adopted in HF antennas	Ionospheric	
136	Receiving Antenna in Ionospheric Propagation	Reflection or Scattering	
137	Ionospheric Propagation	Sky wave propagation	
138	Mid-frequency operation corresponding to Ionospheric Region	Partial reflection & refraction	
139	Linear wire Antenna	Dipole Antenna	
140	Antennas especially adopted for Apace craft Applications	Microstrip	
141	Parabolic Reflector antenna converts	Spherical to plane wave	
142	Sterdian is a measurement unit	Solid angle	
143	Vector Magnetic Potential shows the inverse relationship with its	Distance of point from the source (R)	
144	Nature of Current Distribution over the small dipoles		
145	Disadvantage of rhombic antenna	Maximum radiated power along main axis	
146	Polarization is provided by helical antennas	Circular	
147	Effect of selective fading reduced	By high carrier reception By single side band system	
148	Functioning role of an antenna in receiving mode	Sensor	
149	Self impedance of an antenna is basically	Its input impedance during the removal of all other antennas	

150	Applications of an Infinitesimal dipole		Field pattern estimation du antenna. Improvement in ra increasing dipole length.		
Faculty Team Prepared		 Dr.T.Koswalya, Prof/ECE Mr.S.Bhoopalan, AP/ECE 		Signatures:	

HOD

