

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

Subje	Subject Code/Name		19ECC04 / DIGITAL SYSTEM DESIGN	
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation /Expression	Units
	UNIT I - BASIC C	ONCEPTS	OF DIGITAL SYSTEMS AND LOGIC FAMIL	IES
1	Digital Electronics		Digital (electronic) circuits operate on digital signals (0 and 1).	
2	Number system		Decimal Number system (0-9) base 10 Binary Number system(0 and 1) base 2 Octal Number system (0-7) base8 Hexadecimal Number system(0-9, A- F) base 16	
3	Signed Numbers		Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front of number. If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which indicates the binary number is negative.	
4	Representation of Signed Binary Numbers	DESIC	Sign-Magnitude form 1's complement form 2's complement form T U R E	
5	Un-Signed Binary Numbers	E	The bits present in the un-signed binary number holds the magnitude of a number. That means, if the un-signed binary number contains 'N' bits, then all N bits represent the magnitude of the number	
6	1's complement form		The 1's complement of a number is obtained by complementing all the bits of signed binary number (1 change into 0, 0 change into 1)	
7	The 2's complement		The 2's complement of a binary number is obtained by adding one to the 1's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number. That means, if you perform two times 2's	

			complement of a binary number including sign bit, then you will get the original signed binary number.
8	Code and binary code.		The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.
9	Types of binary code		Weighted codesUn weighted codes
10	WEIGHTED CODE		The weighted code are those that obey the position weighting principle, which states that the position of each number represent a specific weight.
11	Un weighted codes		The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position.
12	Commutative law		$x + y = y + x$ $x \cdot y = y \cdot x$
13	Associative Law		x + (y + z) = (x + y) + z x.(y.z) = (x.y).z
14	Distributive Law		x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z)
15	Duality theorem	DESIG	This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.
16	DeMorgan's Theorem		1. $(x + y)' = x'.y'$ 2. $(x.y)' = x' + y'$
17	Boolean function		It is described by an algebraic expression consists of binary variable, constant and logic operators.
18	min terms	m	Boolean product terms are called as min terms. It denoted by "m"

			Canonical Sum of Products form. In this form, each product term contains all literals. So,	
19	Canonical SoP	$\sum m$	these product terms are nothing but the min terms. Hence, canonical SoP form is also	
			called as sum of min terms form.	
20	Max terms	М	Boolean sum terms are called as Max terms . It denoted by "M"	
20	wax terms	IVI		
			Canonical Product of Sums form. In this form, each sum term contains all literals. So, these	
21	Canonical PoS	πМ	sum terms are nothing but the Max terms.	
			Hence, canonical PoS form is also called	
			as product of Max terms form. It is graphical representation of Boolean	
	Karnaugh or K-		functions and is used to simplify Boolean	
22	Map		functions .K map is a matrix of squares and	
	-		each square or Cell represents a minterm or maxterm from of Boolean expression	
			If don't care terms also present, then place	
			don't cares 'x' in the respective cells of K-	
23	don't care		map. Consider only the don't cares 'x' that are	
			helpful for grouping maximum number of adjacent zeroes. In those cases, treat the don't	
		1 7	care value as '0'.	
			It is difficult to simplify the functions using K-	
24	Tabular method		Maps. Because, the number of cells in K-map gets doubled by including a new variable.	
			gets doubled by menduing a new variable.	
			Boolean product terms are called as min terms.	
25	min terms	m	It denoted by "m"	
		UNIT II -	COMBINATIONAL LOGIC	
		-	It is consist of Logic gates. These circuits	
26	Combinational		operate with binary values. The output(s) of	
20	circuits		combinational circuit depends on the	
			combination of present inputs 1. Basic Logic gate – NOT,AND,OR	
77	Types of		 Dasie Logie gate – NOT, AND, OR Universal Logic gate – NAND, NOR 	
27	Logical Gate		3. Special Logic gate – EX OR, EX NOr	
			Half adder is a combinational circuit, which	
28			performs the addition of two binary numbers A	
20	Half Adder		and B are of single bit. It produces two outputs sum, S & carry, C.	
			•	
			Full adder is a combinational circuit, which performs the addition of three bits A, B and	
29	Full Adder		C _{in} . Where, A & B are the two parallel	
			significant bits and C _{in} is the carry bit, which is	

			generated from previous stage. This Full adder	
			also produces two outputs sum, S & carry,	
			C _{out} , which are similar to Half adder.	
			The 4-bit binary adder performs the addition of	
			two 4-bit numbers. Let the 4-bit binary	
	4-bit Binary			
30			numbers, $A=A_{3}A_{2}A_{1}A_{0}$ and	
	Adder		$B= B_{3}B_{2}B_{1}B_{0}$. We can	
			implement 4-bit binary adder in one of the two	
			following ways. The parallel adder causes a unstable factor on	
			carry bit, and produces longest propagation	
31	Carry look-		delay. That limit can be overcome by this	
	ahead		technique	
			The circuit, which performs the subtraction of	
20	Binary		two binary numbers, is known as Binary	
32	subtractor		subtractor. We can implement Binary	
		\sim	subtractor in following two methods.1's and	
			2's complement form When the binary sum is greater than 1001, The	
	Rules of BCD		addition of binary $6(0110)$ to the binary sum	
33	adder		converts it to the correct BCD representation	
	adder		converts it to the context BCD representation	
			Its compares two digital or binary	
			numbers in order to find out whether one	
24	Magnitude		binary number is equal, less than or greater	
34	comparator		than. logically design a circuit -two inputs one	
	1		for A and B and have three output terminals,	
			A > B, $A = B$, $A < B$.	
			Decoder is 'n' input lines and maximum of	
25	Deceder	\sim	2 ⁿ output lines. One of these outputs will be	
35	Decoder		active High based on the combination of inputs	
			present, when the decoder is enabled.	
		DESIG	An Encoder is a combinational circuit that	
36	Encoder		performs the reverse operation of Decoder. It	
50		F	has maximum of 2 ⁿ input lines and 'n' output	
			lines.	
			Encoders are used to translate rotary or linear	
	Encoder		motion into a digital signal. Usually this is for	
37	Applications		the purpose of monitoring or controlling	
			motion parameters such as speed, rate,	
			direction, distance or position.	
			If two inputs are active simultaneously, the	
38	Priority encoder		output produces an undefined combination.	
			We can establish an input priority to ensure	
			that only one input is encoded.	
			Multiplexer is a combinational circuit that has maximum of 2^n data inputs 'n' solution lines	
39	Multiplayor		maximum of 2^n data inputs, 'n' selection lines and single output line. One of these data inputs	
57	Multiplexer		and single output line. One of these data inputs will be connected to the output based on the	
			values of selection lines.	

			Communication System Multiplayer and]
			Communication System – Multiplexer and Demultiplexer both are used in communication	
			systems to carry out the process of data	
40	Applications of		transmission. A De- multiplexer receives the	
40	Demultiplexer		output signals from the multiplexer ; and, at	
			the receiver end, it converts them back to the	
			original form	
			De-Multiplexer is a combinational circuit that	
41	De-Multiplexer		performs the reverse operation of Multiplexer.	
			It has single input, 'n' selection lines and maximum of 2^{10} outputs	
			maximum of 2^n outputs.	
			A parity bit is a check bit, which is added to a	
42	Parity Bit		block of data for error detection purposes. It is	
42			used to validate the integrity of the data. The	
			value of the parity bit is assigned either 0 or 1	
			Even perity concreter	
43	Types of Parity		• Even parity generator	
	Bit Generator		Odd parity generator	
			Parity checker checks error in the transmitted	
			data, which contains message bits along with	
44	Parity checker	-	parity bit.	
			puilty off.	
			• Even parity checker	
45	Types of Parity		Odd parity checker	
43	checker			
			The reflected binary code or Gray code is an	
			ordering of the binary numeral system such	
			that two successive values differ in only one	
			bit (binary digit). Gray codes are very useful in	
46	Gray code		the normal sequence of binary numbers	
		DESIG	generated by the hardware that may cause an	
		0.0010	error or ambiguity during the transition from	
		E .	one number to the next. Gray code is not	
			weighted code	
			It is also called as 8421 code because each of	
			the four bits is given a 'weighting' according to	
47	BCD		its column value in the binary system. The	
			least significant bit (lsb) has the weight or	
			value 1, the next bit, going left, the value 2.	
			It is unweighted and can be obtained by adding	
48	Excess-3 codes		3 to each decimal digit then it can be	
			represented by using 4 bit binary number for	
			each digit	
			1. The problem definition.	
			2. The no of available and required output	
49	Design		variable is determined	
	procedure		3. The input and output variables are	
			assigned letter symbols.	
			4. The truth table that defines the required	

		derived. 5.The simp output is o 6. The log Label all input va Determine	p between inputs and plified Booleanfunction obtained. ic diagram is drawn. gate outputs that are riables with arbition	on for each e a function of rary symbols.	
50	Analysis procedure	variables other arbit Find the B Repeat the outputs of substitutio	gates that are a fur and previously laber rary symbols. soolean functions for t e process outlined in the circuit are obtained on of previously defined output Boolean funct ables.	led gates with hese gates. step 2 until the ed. By repeated ed functions,	
		UNIT III - SEQUEN	NTIAL CIRCUITS		
51	Memory Elements		two types of memory e of triggering that is s		Memory Elements
52	Latches	Latches of is level ser	operate with enable nsitive	signal, which	Latches
53	Flip-Flops	Memory of circuits	element used in cloc	cked sequential	Flip-Flops
54	Register	DESIC information The group (store) the	on. In order to store 1 on, we require mult of flip-flops, which a binary data is known	iple flip-flops. are used to hold as register.	Register
55	Types Of Register	Serial In – Serial In – Parallel In Parallel In	- Serial Out shift regis - Parallel Out shift reg - Serial Out shift reg - Parallel Out shift reg	ter ister ister egister	Types Of Register
56	Johnson Ring Counter	Counters", feedback e <i>Counter</i> inverted o connected	son Ring Counter or , is another shift exactly the same as the above, except that output Q of the last f back to the input D o own below.	register with e standard <i>Ring</i> this time the lip-flop is now	
57	Required Components of Serial Adder/Subtracto r		2 register and one FA	and one FF	Required Component s of Serial Adder/Subt ractor

		The convertial simulations of C is the
58	Sequential Circuit	The sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit depends not only on the combination of present inputs but also on the previous output(s). Previous output is nothing but the present state.
59	Types of Sequential Circuits	Asynchronous sequential circuits Synchronous sequential circuits
60	Synchronous sequential circuits	Output changes at discrete interval of time. It is a circuit based on an equal state time or a state time defined by external means such as clock
61	Asynchronous sequential circuits	Output can be changed at any instant of time by changing the input. It is a circuit whose state time depends solely upon the internal logic circuit delays.
62	Types of Triggering	Level triggering Edge triggering
63	S-R Flip Flop	It is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output = "1"), and is labelled S and one which will "RESET" the device (meaning the output = "0"), labelled R.
64	J-K Flip Flop	It is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level "1".
65	D Flip Flop	It is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level
66	T Flip Flop	These are basically a single input version of JK flip flop. This modified form of JK flip-flop is obtained by connecting both inputs J and K together. This flip-flop has only one input along with the clock input.
67	Master Slave Flip Flop	The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops connected together in a series configuration. One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.
68	Propagation Delay Time	The Interval of time required after an input signal has been applied for the resulting output change to occur.

69	Characteristics of register	i. Memory Register (or) Bufferii. Shift Register	Register
70	Buffer Register	It is a simplest form of registers which simply used to store binary information	
71	Shift Register	A register may input and output data or parallel form. A number of flip flo connected together in such a way that be shifted into and out of the register.	08
72	Universal Shift Register	A shift registers which can shift the d both directions as well as loads it para	
73	Uni-directional shift register	A shift registers which can shift the d only one direction.	ata in
74	Bi-directional shift register	A shift registers which can shift the d both directions.	ata in
75	Counter	It is a digital sequential logic device t go through a certain predefined states the application of the input pulses.	
	UNIT IV - SYNCH	ONOUS AND ASYNCHRONOUS SEQUENTI	AL CIRCUITS
76	Asynchronous circuit	The circuit in which the change in the signals can affect the memory element instants of the time.	
77	Different modes of operation	The different modes of opera fundamental mode and sequenti circuits.	
78	Ripple counters	DESIC Counter circuits made from cascaded flops where each clock input reconstruction pulses from the output of the previou invariably exhibit a ripple effect, we output counts are generated betwee steps of the count sequence.	ceives its s flip-flop here false
79	Race condition	Race condition (race) is a con sequential circuits in which two variables change at one time.	
80	Non-critical race	The final stable state does not deperture order of state variables	nd on the
81	Critical race	The change order of state variables in different stable states	vill result

82	State assignment		State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.	
83	Cycle		If an input change induces a feedback transitions through more than one unstable state	
84	Hazard		Hazard is the unwanted transient i.e Spike or glitch that occurs due to unequal propagation delays through a combination circuit.	
85	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.	
86	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram	
87	Glitch		The unwanted switching transients that may appear at the output of a circuit	
88	Static hazard	Z	Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.	
89	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.	
90	Flow Table		It is similar to a transition table except the states are represented by letter symbols.	
91	Faults in asynchronous sequential circuits	<u>Desto</u>	 (1) Hazards (2) Oscillations (3) Critical races 	
92	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.	
93	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between	
94	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.	

95	Maximal compatibles		The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states	
96	Types of hazards		Static hazard, Dynamic hazard, Essential hazard.	
97	Primitive flow table		primitive flow is the flow table that has only one stable state in each row.	
98	Secondary variables of asynchronous sequential circuits		The present state and the next state variables in asynchronous sequential circuits are called Secondary / excitation variables.	
99	Application areas of asynchronous sequential circuits		 i. Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock. 	
100	State of sequential circuit	~	The binary information stored in the memory elements at any given time defines the "state" of sequential circuit.	
	UNIT V - PRO	GRAMMAB	LE LOGIC DEVICES MEMORY AND VHDI	
101	Types Of Memory		 Primary memory (RAM and ROM). Secondary memory(hard drive,CD,etc.) 	
102	Random Access Memory	DESIG	It is a volatile memory as the data loses when the power is turned off. The programs and data that the CPU requires during execution of a program are stored in this memory.	
103	RAM Types	E	 SRAM (Static Random Access Memory) DRAM (Dynamic Random Access Memory). 	
104	Read Only Memory (ROM)		Stores crucial information essential to operate the system, like the program essential to boot the computer. It is not volatile	
105	ROM Types		ROM, PROM, EPROM, and EEPROM.	
106	Error detection codes		To detect the errors, present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream.	

			To compare the among present in the market	
107	Error correction codes		To correct the errors, present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes	
108	Parity Code		A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.	
109	Types of Parity Codes		1.Even Parity Code2. Odd Parity Code	
110	Even parity		Checks if there is an even number of ones; if so, parity bit is zero. When the number of one's is odd then parity bit is set to 1.	
111	Odd Parity		Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1.	
112	Hamming code		It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.	
113	Programmable Array Logic	Z	PAL is a programmable logic device that has Programmable AND array & fixed OR array.	
114	Programmable Logic Array		PLA is a programmable logic device that has both Programmable AND array & Programmable OR array.	
115	PROM (Programmable read-only memory)	DESIG	It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.	
116	EPROM (Erasable Programmable read only memory)	E	It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.	
117	EEPROM (Electrically erasable programmable read only memory)		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.	
118	Sequential programmable devices		Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.	

119Sequential programmable devices Types1. Sequential (or simple) programmable logic device (SPLD) 2. Complex programmable logic device (CPLD) 3. Field-programmable gate array (FPGA)				
Sequential (or simple)The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register				
121Complex programmable logic device (CPLD)It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be connected to each other in the same way that can be done with individual PLDs				
122Field-programm able gate array (FPGA)FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A lookup table is a truth table stored in an SRAM and provides the combinational circuit functions for the logic block				
123Application Specific Integrated Circuit(ASIC)These are usually designed from root level based on the requirement of the particular application. Examples are chips used in toys, the chip used for interfacing of memory and microprocessor				
 124 Advantages of ASIC 124 Advantages of				
125 ASIC Types 125 ASIC Types Programmable FUTURE 1. FPGAs 2. PLDs Semi Custom 1.Gate Array Based i) Structured Gate ii) Channel-less iii) Channeled 2.Standard Cell Based > Full Custom				
Placement Questions				
126Simplification $1899.981 \div \sqrt{1444.12 - 119.910} \% \text{ of } 34.975 + 4.932 * 104.292 = ?126Array 529$				
Ans: 528				

127	Profit and Percentage	A box contains six pink balls and four orange balls and three balls drawn one after other. Find the probability of all three balls being Pink balls if the balls drawn are not replaced? Ans: 1/6	
128	Number Series	Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117	
129	Number Series	Ans: 103What value should come in the place of question mark in the given series?19, 23, 32, 48, 73, 109, ?Ans: 158	
130	Relation ship	Ans. 138Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-in- law of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not has any child.If J is married to X, then how is X related to E?Ans: Cannot be determined	
131	Computer Awareness	The address of input/output device or memory is carried by the and the data to be transferred is carried by the Ans: Address bus, Data bus	
132	Directions	A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	
133	Speed and Time	A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly, then find the probability that 2 marbles are Pink?	
134	Time and Work	Ans: 27/91A can do a work in 15 days, B can do it in 12 days but C can do (3/4)th of the work in 18 days. Find the time taken by all together to complete the work?	

			Ans: 5 5/23 days	
135	Time and Work		A contractor hired 40 men to complete a project in 15 days. 40 men started working, after 9 days the contractor notices that only three-fifth of the work gets completed. Then how many extra men can be employed to complete the remaining work on time? Ans: 0	
136	Carry flag		Set when carry occurs after an operation, otherwise reset.	
137	Parity flag		Set if the result of an operation contains even number of 1 bits, otherwise reset.	
138	Stack Pointer		Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address of the top of the stack.	
139	Program Counter		Program counter holds the address of either the first byte of the next instruction to be fetched for execution.	
140	Bus	7	A bus is a group of conducting lines that carriers data, address, & control signals.	
141	Tri-state Logic	N	Three Logic Levels are used and they are High, Low, High impedance state.	
142	Hardware Interrupts		TRAP, RST7.5, RST6.5, RST5.5, INTR.	
143	Software Interrupts	DESIG	RST0, RST1, RST2, RST3, RST4, RST5, RST6, RST7.UR FUTURE	
144	Addressing Modes	E	Immediate, Direct, Register, Register indirect, Implied addressing modes.	
145	Quality Factor Mean		The Quality factor is also defined, as Q. So it is a number, which reflects the lossness of a circuit. Higher the Q, the lower are the losses.	
146	Assembler		Assembler is used to translate the high level language program to machine code.	
147	Emulator		Emulators are used to test and debug the hardware and software of an external system.	
148	Compiler		Compiler is used to translate the high-level language program into machine code at a time.	

149	BIU	Bus interface unit is responsible for transferring the data addresses on the buses necessary for -execution unit.	
150	Multiplexing	Using a single bus for two different functions is called multiplexing.	

Signatures:

Faculty Team	1.	Dr.S.S.Selvarasu, ASP/ECE	1.
Prepared	2.	Dr.P.Padmaloshani, ASP/ECE	2.

HoD