

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC 2021-22

Must Know Concepts (MKC)

Course Code & Course Name		19ECC12 – VLSI CIRCUIT DESIGN					
Year/S	Sem/Sec	III/V/A,B	III / V /A,B & C				
UNIT I MOS TRANSISTOR THEORY							
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units			
1	VLSI	-	An integrated circuit (IC) by combining thousands of transistors into a single chip.	-			
2	FET	-	To control the conductivity of a particular channel in a semiconductor material.	-			
3	Enhancement Mode	-	The device that is normally cut-off with zero gate bias	-			
4	Depletion Mode	-	The Device that conduct with zero gate bias.	-			
5	different layers in MOS transistors	-	Drain , Source & Gate	-			
6	Channel pinched –off	_	If a large Vds is applied this voltage with deplete the Inversion layer .This This causes pinch off.	-			
7	BiCMOS Technology	-	It is the combination of Bipolar technology & CMOS technology	-			
8	pull down device	-	To pull the output voltage to the lower supply voltage usually 0V.	-			
9	pull up device	-	To pull the output voltage to the upper supply voltage usually VDD.	-			
10	Stick Diagram	-	To convey information through the use of color code. Also it is the cartoon of a chip layout.	-			
11	Uses of Stick diagram	-	It can be drawn much easier and faster than a complex layout. These are especially important tools for layout built from large cells.	-			
12	Threshold voltage	-	To create a conducting path between the source and drain terminals.	-			
13	NMOS		Transistors are turned on or off by the movement of electrons.	-			
14	PMOS	-	Transistors are turned on or off by the movement of holes.	-			
15	Semiconductor	-	Semiconductors are materials which have a conductivity between conductors and nonconductors or insulators.	-			

	1			
16	CMOS	-	CMOS in which both n-channel MOS and p- channel MOS are fabricated in the same IC	-
17	Twin tub	-	Provides the basis for separate optimization of p type and n type transistors.	-
18	SOI	_	Fabrication of silicon semiconductor devices in a	-
19	BiCMOS	_	layered silicon–insulator–silicon substrate.BiCMOS is a technology that integrates bipolar	-
20	Channel		and CMOS together.The current flow between source and drain in	-
			FET. The voltage difference between the substrate and	
21	Body effect	-	the source of MOS transistor.	
22	Gate	-	The width of the channel is controlled by the voltage on an electrode.	-
23	Source	-	The charge carriers enter the channel at source	-
24	Drain	-	The charge carriers exit via the drain	-
25	IC	-	It can hold anywhere from hundreds to millions of transistors, resistors, and capacitors.	-
26	Cutoff region	-	This is the region in which transistor tends to behave as an open switch	-
27	Linear	-	Linear region is a part of the active region of a transistor.	-
28	Saturation	-	This is the region in which transistor tends to behave as a closed switch.	-
29	Aspect ratio	-	The ratio of width and length of gate.	-
		UNIT II	MOS CIRCUITS AND DESIGN	
30	Channel length modulation	-	Shortening of the length of the i nverted channel region with increase in drain bias.	-
31	Mobility variation	-	carriers drift in the substrate material	-
32	Noise margin	-	To determine allowable noise voltage on the input of a gate.	-
33	Scaling	-	The dimensions of MOSFETs, is commonly referred to as scaling.	-
34	Delay	-	Time between trigger on any pin and the change in signal level of the same.	-
35	Sheet resistance	_	Measure of resistance of thin films that are nominally uniform in thickness.	-
		_	To build reliably financial circuits in as small an	_
36	Need for design rules		area as possible. They represent a compromise between performance and yield.	
37	Lambda layout design rules	-	minimum feature sizes and minimum allowable feature separations are started in terms of a λ	-
38	Types of layout design rules	-	a) Lambda design rules b) Micro rules	-
39	Various issues in Technology CAD	-	a. Design Rule Checking (DRC) b. Circuit Extraction	-

			SPICE provides a wide variety of MOS	_
40	Device modeling		transistor models with various tradeoffs.	_
	Power	_	The rate at which energy is taken from the	_
41	dissipation		source (Vdd) and converted into heat .	
10	T_{PHL} and T_{PLH} in	_	$T_{PHL} = 0.69 \text{ X RnC}_1$	-
42	terms of Cload.		$T_{PLH}=0.69 \text{ X RpC}_1$	
10	Transistor sizing	-	Delay of combinational circuit can be controlled	-
43	problem		by varying the sizes of transistors.	
4.4	F 1	-	It estimates the delay of a RC ladder and a	-
44	Elmore delay		supply multiplied by the capacitor on the node.	
		_	To determine if chip layout satisfies a number	-
45	DRC(Design Rule Checking)		of rules as defined by the semiconductor	
	Rule Checking)		manufacturer.	
		-	It is the communication link between the	-
46	Design rules		designer specifying requirements and the	
			fabricator.	
47	Moore's law	-	Moore's law states that the number of transistor	-
			would double every 18 months.	
	Variety of	-	More Specialized Circuits	-
48	Integrated		Application Specific Integrated Circuits(ASICs)	
	Circuits		Systems-On-Chips	
49	Oxidation	-	Oxidation of silicon is achieved by heating	-
			silicon wafers in an oxidizing atmosphere	
50	Diffusion	-	To introduce impurity atoms (dopants) into	-
	Advantages of		silicon to change its resistivity. All the logic is performed with nMOS	
51	Advantages of CVSL family	-	transistors, thus reducing the input capacitors.	-
			A ratioed logic which uses a grounded pMOS	
52	Ratioed logic		load is referred to as a pseudo-nMOS gate.	
			·	
		UNIT III	SUBSYSTEM DESIGN & LAYOUT	
53	Dynamic CMOS	-	The temporary storage of signal values on the	-
55	logic		capacitance high impedance nodes.	
54	Static power	-	Due the leakage current through normally off the	-
54	dissipation		transistor is called static power dissipation	
55	Dynamic power	-	Due to circuit switching to charge and discharge	-
	dissipation		the output load capacitance at a particular node.	
	short circuit	-	During switching, both NMOS and PMOS	-
56	power dissipation		transistors will conduct simultaneously	
			CMOS based and better for the last	
57	CMOS Domino	-	CMOS-based evolution of the dynamic	-
57	logic		logic techniques based on either PMOS or NMOS transistors.	
			It reduces the count of transistors used to make	
58	Pass transistor	-	different logic gates, by eliminating redundant	-
50	1 255 11 211515101		transistors	
	Transmission	_	Electronic element that will selectively block or	
59	gate	-	pass a signal level from the input to the output.	-
	Static CMOS		The output is always strongly driven due to it	_
60	logic	-	always being connected to either VCC or GND	-
		_	In dynamic CMOS output is taken across a	_
			in a finance chilos output is taken across a	
61	Dynamic CMOS		capacitor .Output is not always connected to	
61	Dynamic CMOS logic		capacitor .Output is not always connected to supply or gnd.	

62	Combinational	-	The output is a pure function of the present input	-
63	logic Sequential logic	-	only. The output depends not only on the present value	-
64	Two phase	-	of its input signals. Clock signals distributed on 2 wires, each with	-
65	clocking Latch	_	non-overlapping pulses. Latch is level-triggered (outputs can change	-
66	Flip flop	-	as soon as the inputs changes) . Flip-Flop is edge triggered (only changes state when a control signal goes from high to low or low to high).	-
67	Clock skew	-	The clock signal arrives at different components at different times.	-
68	Multiplexer	-	It is a device allowing one or more low-speed input signals to be selected, combined and transmitted at a higher speed.	-
69	Metastability	-	Metastability is an unknown state it is neither zero nor one.	-
70	Synchronizers	-	Synchronizers are used to reduce metastability and ensure synchronization between asynchronous input and synchronous system.	-
71	Pipelining	-	It is a designing technique used to increase the operation of data paths in digital processor.	-
72	clock jitter	-	True periodicity of a presumably periodic signal, often in relation to a reference clock signal.	-
73	Register	-	A register is usually realized as several flip-flops with common control signals that control the movement of data to and from the register.	-
74	Counter	-	The output of the counter can be used to count the number of pulses.	-
75	Latch up	-	Short circuit formed between power and ground rails in an IC leading to high current and damage to the IC.	-
	U	NIT IV P	ROGRAMMABLE LOGIC DEVICES	
76	FPGA	-	It is a programmable logic device that supports implementation of relatively large logic circuits.	-
77	types of gate arrays in ASIC	-	Channeled gate arrays Channel less gate arrays Structured gate arrays	-
78	Full custom	-	logic cells, circuits or layout specifically for one ASIC	-
79	Semi custom	-	Standard cell libraries are themselves designed using full-custom design techniques.	-
80	cell-based ASIC (CBIC)	-	The standard cell areas also called flexible blocks in a CBIC are built of rows of standard cells	-
81	Macros	-	The logic cells in a gate-array are often called macros.	-
82	programmable Interconnects	-	In a PAL, the device is programmed by changing the characteristics if the switching element	-
83	programmable logic array	-	The PLA has programmable connections for both AND and OR arrays.	-

		-	PROM array that allows the signals present on	-
84	programmable		the devices pins to be routed to an output logic	
0.	logic plane		macro cell.	
o -	manufacturing	_	It is defined as the time it takes to make an IC	_
85	lead time		not including the design time.	
0.4	- The predefined pattern of transistor on a gate			_
86	primitive cell		array is the base array.	
		_	On application of appropriate programming	-
87	anti fuse		voltages, the anti fuse is changed permanently to	
			a low resistance structure.	
		_	A standard cell is group of transistor and	-
88	standard cell		interconnects structures, which provides a	
	design		Boolean logic function or a storage function.	
		-	The process of mathematically transforming the	-
89	89 Synthesis		ASIC's register-transfer level (RTL) description	
		into a technology-dependent net list.		
0.0	DI	-	The placer tool assigns locations for each gate in	-
90	Placement		the net list.	
0.1	DAT	-	A device has a programmable AND array and	-
91	PAL		fixed connections for the OR array.	
		_	The PROM has a fixed AND array and	-
92	PROM		programmable connections for the output OR	
		gates array.		
		-	A CPLD contains a bunch of PLD blocks whose	_
93	CPLD		inputs and outputs are connected together by a	
			global interconnection matrix.	
	<i>a</i> .	_	Connection boxes, which are a set of	_
94	Connection		programmable links that can connect input and	
	boxes		output pins of the CLBs.	
05	0.111	-	Set of programmable links that can connect wire	_
95	Switch boxes		segments in the horizontal and vertical channels	
0.6	Programmable	-	It can be configured either as input buffers,	-
96	I/O		output buffers or input/output buffers.	
		-	Programmable Logic Devices consist of a large	-
97	PLD		array of AND gates and OR gates that can be	
			programmed to achieve specific logic functions.	
		-	A finite state machine may be any model	-
98	FSM		implemented through software or hardware to	
			simplify a complex problem.	
		_	A state machine which uses only Entry Actions,	-
99	Moore model		so that its output depends on the state, is called	
			a Moore model.	
		_	A state machine which uses only Input Actions,	-
100	Mealy model		so that the output depends on the state and also	
			on inputs, is called a Mealy model.	
	UN	IT V VERI	LOG HDL DES IGN PROGRAMMING	
		-	It can be used to model a digital system at many	-
101	Verilog		levels of abstraction anging from the algorithmic	
101	, 011105		level to the switch level.	
	modeling used in	_	1. Gate-level modeling 2. Data-flow modeling 3.	_
102	Verilog		Switch-level modeling 4. Behavioral modeling	
	1011105		Switch level modeling +. Denavioral modeling	

			Gate-level modeling is based on using primitive	
103	structural gate-	-	logic gates and specifying how they are wired	-
105	level modeling		together.	
	Switch-level		Verilog allows switch-level modeling that is	
104	modeling	-	based on the behavior of MOSFETs.	-
	modering		Identifiers are names of modules, variables and	_
105	Identifiers	-	other objects that we can reference in the design.	-
			Verilog supports four levels for the values	
106	value sets in	-	needed to describe hardware referred to as value	-
100	Verilog		sets.	
	Condition in	-	0 Logic zero, false condition	-
107			1 Logic one, true condition	
	hardware circuits		X Unknown logic value	
			Z High impedance, floating state•	
		-	* Multiply Two	-
			/ Divide Two	
108	arithmetic		+ Add Two	
100	operators		- Subtract Two	
			% Modulus Two	
			** Power (exponent) Two	
		-	~ Bitwise negation One	-
			& Bitwise and Two	
			Bitwise or Two	
109	Bitwise operator		^ Bitwise xor Two	
			^~ or ~^ Bitwise xnor Two	
			~& Bitwise nand Two	
			~ Bitwise nor Two	
110	Cata animitivas	-	Primitive logic function keyword provides the	-
110	Gate primitives		basics for structural modeling at gate level.	
	blocks in	_	1. initial block	-
111	behavioral		2. always block	
	modeling			
	Ŭ	-	An initial block executes once in the simulation	-
112	initial block		and is used to set up initial conditions and step-	
			by-step data flow.	
110		_	An always block executes in a loop and repeats	_
113	always block		during the simulation.	
		-	1. No else statement	_
114	conditional		2. One else statement	
	statements		3. Nested if-else-if	
	No else	_	if ([expression]) true – statement;	_
115	statement		a ([enpression]) and statement,	
115				
	One else	_	if ([expression]) true – statement; else false-	_
116	statement		statement;	
			: if ([expression1]) true statement 1; else if (
		_	[expression2]) true-statement 2; else if (_
117	Nested if-else-if		[expression2]) true-statement 2; else in ([expression3]) true-statement 3; else default-	
			statement;	
110	Dataflow	-	Dataflow modeling uses a number of operators	-
118	modeling		that act on operands to produce the desired	
			results.	

			A module can be an element of Collection of	
119	Module	-	A module can be an element or Collection of lower level design blocks.	-
		_	When a module is invoked, Verilog creates a	-
120	Instance		unique object from the template. Each object has	
120	Instance		its own name, variables, parameters and I/O	
			interfaces. These objects are called as instances.	
121	Nets	-	Nets represents connections between hardware	-
			elements.	
100	Data type	-	Registers represent data storage elements. They	-
122	registers		retain value until another value is placed on to	
	_		them.	
123	Vectors	-	Register and net data types can be declared as	-
125	vectors		vectors i.e single element that is multiple bit wide.	
124	A maxia	-	Reg, net, integer, real, real time, time data types	-
124	Arrays		can be declared as arrays. Arrays are multiple elements that are 1-bit or n-bits wide.	
├				
125	Top-down design	-	In top-down methodology, first the top level	-
125	methodology		block is defined and the necessary sub blocks are	
			identified to build the top level block.	
		<u>PL</u> A	ACEMENT QUESTIONS	
	Why does the	-	Compared to BJTs, MOSFETs can be made very	-
1	vlsi circuit use		small as they occupy very small silicon area on	
1	mosfets instead		IC chip and are relatively simple in terms of	
	of bjts?		manufacturing.	
	various factors	-	The Vt depends on the voltage connected to the	-
2	on which		Body terminal.	
2	threshold voltage		It also depends on the temperature.	
	depends			
	steps involved in	-	Proper synchronizers are used that can be two	-
3	preventing the		stage or three stage whenever the data comes	
	metastability		from the asynchronous domain.	
	different types of	-	Global skew	-
4	skews used in		Local skew	
	VLSI		Useful skew	
	Chain	-	Tool available that automate the reordering of	-
5	Reordering		the chain to reduce the congestion that is	
ļļ	- condorning		produced at the first stage.	
		-	Size is less	-
6	advantages of IC		High Speed	
	ua vantagos 01 1C		Less Power Dissipation	
		_	In Verilog code, the unit of time is 1 ns and the	_
7	"timescale 1 ns/		accuracy/precision will be upto 1ps.	
	1 ps" signifies			
		-	It is a type of rectifier that is controlled by a	-
8	SCR		logical gate signal. It is a 4 layered, 3-terminal	
U U			device.	
Ū				
		-	Time delay difference from the expected delay	-
9	Slack	-		-

10	Defparam	_	Parameter values can be configured in any module instance in the design.	-
11	LEF	-	It is an ASCII format from cadence design to describe standard cell library.	-
12	DEF	-	It is an ASCII format from cadence design to describe design related information.	-
13	Various yield losses	-	Functional yield losses and Parametric yield losses	-
14	Virtual clock definition	-	To model the I/O timing specification	-
15	MTBF? What it signifies?	-	•MTBF-Mean Time Before Failure •Average time to next failure	-
16	Is verilog/VHDL is a concurrent or sequential language?	-	Verilog and VHDL both are concurrent languages. Any hardware descriptive language is concurrent in nature.	-
17	Cross talk can be avoided by	-	a. Decreasing the spacing between the metal layersb. Shielding the netsc. Using lower metal layers d. Using long nets	-
18	What is the goal of CTS?	-	a. Minimum IR Drop b. Minimum EM c. Minimum Skew d. Minimum Slack	-
19	What is SDC constraint file contains?	-	Clock definitions Timing exception-multicycle path, false path Input and Output delay	-
20	How to find total chip power?	-	Total chip power=standard cell power consumption, Macro power consumption pad power consumption.	-
21	What are the problems faced related to timing?	-	Prelayout: Setup, Max transition, max capacitance, Post layout: Hold	-
22	How did you resolve the setup and hold problem?	-	Setup: upsize the cells Hold: insert buffers	-
23	significance of negative slack	-	negative slack==> there is setup voilation==> deisgn can fail	-
24	track assignment	-	Second stage of the routing wherein particular metal tracks (or layers) are assigned to the signal nets.	-
25	clock trees	-	Distribution of clock from the clock source to the sync pin of the registers.	-

LABORATORY QUESTIONS

1	Intrinsic Semiconductor	-	The pure Silicon is known as Intrinsic Semiconductor.	-
2	Extrinsic Semiconductor	-	When impurity is added with pure Silicon, its electrical properties are varied.	-
3	different MOS layers	-	• n-diffusion• p-diffusion• Polysilicon• Metal	-
4	Epitaxy	-	Epitaxy means arranging atoms in single crystal fashion upon a single crystal substrate	-
5	processes involved in photo lithography	-	(1) Masking process (2) Photo etching process	-
6	Purpose of masking in fabrication of IC	-	Masking is used to identify the location in which Ion-Implantation should not take place	-
7	materials used for masking	-	Photo resist, Si02, SiN, Poly Silicon.	-
8	diffusion process	-	Diffusion is a process in which impurities are diffused into the Silicon chip at 1000 °C temperature	-
9	Ion-Implantation process	-	It is process in which the Si material is doped with an impurity by making the accelerated impurity atoms to strike the Si layer at high temperature.	-
10	Isolation	-	It is a process used to provide electrical isolation between different components and interconnections.	-
11	Channel-stop Implantation	-	In n-well fabrication, n-well is protected with the resist material. Then Boron is implanted except n-well. The above said process is done using photo resist mask.	-
12	LOCOS	-	LOCOS mean Local Oxidation of Silicon. This is one type of oxide construction	-
13	LDD	-	LDD means Lightly Doped Drain Structures. It is used for implantation of n- region in n-well process.	-
14	steps involved in BiCMOS process	-	Additional masks defining P base region• N Collector area• Buried Sub collector (SCCD)• Processing steps in CMOS process	-
15	Silicide	-	The combination of Silicon and tantaleum is known as Silicide. It is used as gate material in Polysilicon Interconnect.	-

16	Types of Inter connect	-	1. Metal Inter connect 2. PolySilicon Inter connect 3. Local Interconnect.	-
17	demarcation line	-	Demarcation line is an imaginary line used in stick diagram, to separate p-MOS and n-MOS transistors.	-
18	LVS	-	LVS means Layout Versus Schematic. It checks layout against schematic diagram. It is very important to verify layout.	-
19	software used for VLSI design	-	Microwind, Tanner, Hspice, Pspice, Mentor graphics, Xilinx etc	-
20	RTL	-	RTL stands for Register Transfer Level. It is a high-level hardware description language (HDL)used for defining digital circuits.	-
21	Simulation	-	to verify the functionality of the circuit. a)Functional Simulation: study of ckt's operation b) Timing Simulation :study including estimated delays.	-
22	Synthesis	-	VHDL or VERILOG description to a set of primitives or components(as inFPGA'S) to fit into the target technology.	-
23	Testing	-	A manufacturing step that ensures that the physical device , manufactured from the synthesized design.	-
24	Verification	-	To ensure that the synthesized design, when manufactured, will perform the given I/O function	-
25	how binary number can give a signal?	-	Binary number consists of either 0 or 1, number 1 represents the ON state and number 0 represents OFF state.	-

Faculty Prepared	HoD
1. Dr.U.Saravanakumar/Mrs.P.Subhasundari	
2. Dr.R.Praveena	
3. Mrs.S.Punitha	