

EEE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2020-21

Course Code & Course Name Year/Sem 19EEC12 & Transmission and Distribution

III/V

:

:

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	UN	IT 1 STRUCTUR	E OF POWER SYSTEM	
1.	Generation	G	Generation of electrical power through alternators/AC generators/Synchronous motors.	KV
2.	Transmission		Transmitting electrical power from generating station to the load centers.	-
3.	Distribution	\sim	Distributing electrical power from the substations to the consumer end.	-
4.	Distributor	\times	It is a conductor from which tapping are taken for supply to consumers.	-
5.	Service mains	\mathbf{X}	A small cable which connects the distributor and consumer.	-
6.	Feeder DES	IGNING YOU	It is a conductor which connects the substation to the area where power is to be distributed.	-
7.	Interconnectors	Estd. 20	An electrical <i>interconnector</i> is a high power AC or DC connection, typically across national borders or between different electrical grids.	-
8.	Grid	-	Electrical grid or power grid is defined as the network which interconnects the generation, transmission and distribution unit. It supplies the electrical power from generating unit to the distribution unit.	-
9.	Microgrid	-	It is a small-scale power network that comprises generating units and consumers. Often including renewable power sources such as	-

			wind turbines solar panels, etc.	
10.	Bus Bar		A Busbar is a metallic strip or bar (typically copper, brass or aluminium). It is a electrical junction in which all the incoming and outgoing electrical current meets.	-
11.	Connected load	-	The connecting load is "the total electric power-consuming rating of all devices (as lamps or motors and other devices) connected to a distribution system".	KW
12.	Maximum demand		It is the highest demand of load on the power station during a given period. The maximum of all the demands that have occurred during a given period is the maximum demand.	KW
13.	EHVAC		EHVAC stands for Extra High Voltage Alternating Current	KV
14.	UHV	\otimes	Ultrahigh voltage. Voltage in excess of 800 kilovolts (kV) and is feasible over distances as far as 3,000 km and above.	KV
15.	Converter		An electrical device, comprising a rectifier and inverter, used to alter the voltage and frequency of incoming alternating current in an electrical system.	-
16.	HVDC	Estu: 2	HVDC stands for high voltage direct current, a technology used to transmit electricity over long distances by overhead transmission lines. When the line length exceeds above 500km HVDC is advantageous.	-
17.	FACTS	The second secon	A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the AC transmission of electrical energy.	-
18.	Series Compensation	Generator Generator	It results in the improvement of the maximum power-transmission capacity of the line. It reduces the overall line reactance and voltage drop.	-
19.	Shunt Compensation	Generator	Shunt capacitors are used to increase the power-transfer capacity	-

				and to Companyate for the reactive	
				and to Compensate for the reactive- voltage drop in the line.	
				Radial distribution system is the	
			Radial Datebutor	cheapest to build, and is widely	
20.	Radial System			used in sparsely populated areas.	_
20.	Radiai System			It has only one power source for a	
				group of customers.	
				Each distribution transformer is fed	
			My the	with two feeders but in different	
21.	Ring main			paths. The feeders in	-
			Service mans	this system form a loop which starts	
				from the substation bus-bars.	
				It is the transient voltage appearing	
22	D 14			across the breaker contacts	X 7 - 14 -
22.	Restriking volt	tage		immediately after the opening of	Volts
	_			breaker contacts.	
				DC line reactor is used to limit AC	
23.	DC Reactor			component on DC. The current in	Henry
23.	DC Reactor			line reactor is direct current with	11etill y
				AC component.	
				The voltage at which a current	
24.	Flashover volt	age		flashes from electrode to electrode	Volts
<i>2</i> 1,	Thashover voltage		\sim	or ground with the formation of a	Volto
				sustained arc.	
			\sim	The process of deliberately	
				removing (either	
25.	Load Shedding	g		manually/automatically) of a	-
			$\sim \times \times$	preselected customer load demand	
			\sim X	to maintain integrity/outages of	
		LINIT	TOTDANCMICCI	power system.	
				ON LINE PARAMETERS	
26.	Outogo	DED		The period during which either the	
20.	Outage		Eated 20	generating unit/transmission line is out of service	-
			cstu. Zt	It is the process in an AC system,	
				where the matching of the speed,	
27.	Synchronizatio	on	-	frequency, voltage, and phase	-
21.		, 11		sequence is matched with the EB	
				mains.	
				A complete loss of power resulting	
20	D1 1			from damage or equipment failure	
28.	Blackout		-	in a power station, power lines or	-
				other parts of the power system.	
				A dip in the voltage level of a	
20	Decorrect			power system, which can damage	
29.	Brownout		-	electrical equipment or cause it to	-
				cheetheat equipment of eause it to	
29.	Brownout		-	power system, which can damage	-
	210 110 00			under perform, eg, lights dim.	

r]
30.	Line Parameters		Resistance, inductance and capacitance are the transmission line parameters which are spread over the entire length of the conductor.	-
31.	Distributed constants	-	AC transmission line is a distributed constants R,L,C are uniformly distributed over the length of the conductor.	-
32.	Resistance	$-\underset{R}{\longrightarrow}$	The resistance is an inherent property of any material, due to which it resists the flow of current. It takes electrical energy and dissipates in the form of heat.	Ohms
33.	Inductance		Inductance is the property by virtue of which an inductor stores energy in magnetic field during positive half cycle and gives away this energy during negative half cycle of single phase ac power supply.	Henry
34.	Capacitance	c⊥⊤	Capacitance is the property by virtue of which a capacitor stores energy in static electric field during positive half cycle and give away during negative half cycle of supply.	Farads
35.	Flux	ф	When current flows in the transmission lines, a magnetic flux is produced in the form of concentric circles surrounding the conductor.	Webers
36.	Copper loss	Este. 20	Copper loss is the term often given to heat produced by electrical currents in the conductors due to the internal resistance of the inductance of transformer windings.	Watts
37.	Symmetrical spacing	-	The three phase line conductors spacing between the conductor is uniform throughout the length of the conductor.	metres
38.	Unsymmetrical spacing	-	When the distance between the three phase line conductors are not same i.e. they are not spaced equally from each other then it is said to have unsymmetrical spacing.	metres
39.	Transposition	-	Transposition is the periodic swapping of positions of the	-

			conductors of a transmission line.	
40.	Stranded Conductors		Two or more conductor elements are coupled in parallel is called stranded conductors.	_
41.	ACSR Conductors		Aluminium conductor steel- reinforced cable (ACSR) is a type of high-capacity, high-strength stranded conductor typically used in overhead power lines.	-
42.	Bundled conductors	3undle 1 Bundle 2 Bundle 3	It is a conductor made up of two or more sub conductor and is used as one phase conductor. Here two or more stranded conductors are used per phase. It reduces the reactance in the transmission lines.	-
43.	Self GMD	Ds	It is the physical radius of a round solid conductor	-
44.	Mutual GMD	Dm	The distance between one conductor to another conductor or the difference between the largest and smallest distance is known as mutual GMD.	_
45.	Carona	Nil	It is a phenomenon which is accompanied by a violet glow, hissing noise production and production of ozone gas.	-
46.	Disruptive critical voltage	Vd	It is defined as the minimum phase to neutral voltage required for the Corona discharge to start.	Volts
47.	Visual critical DES voltage	Estd. 20	It is the minimum phase- neutral voltage at which corona glow appears all along the line conductors. $V_v > V_d$	Volts
48.	Skin Effect	-	The tendency of alternating current to concentrate near the surface of the conductor.	-
49.	Proximity effect	-	The alternating magnetic flux in a conductor caused by the current flowing a neighboring conductor which gives rise to circulating current that cause an apparent increase in the resistance of a conductor.	-
50.	Inductive Interference	-	In normal practice communication lines runs along the same route as the user of electronic	-

			communication system. The	
			transmission line transmits power	
			at relatively higher voltage.	
	UNIT 3 MODELL	ING AND PERFO	RMANCE OF TRANSMISSION LIN	NES
			A, B, C and D are the constants also	
			known as	
			the transmission parameters. It is	
51.	ABCD Constants	-	also used for determining the	-
			performance of input, output	
			voltage and current of	
			the transmission network.	
			The power obtained at the	
	Transmission		receiving end to the sending end	
52.	Efficiency	η	power of the transmission line is	%
			generally called transmission	
			efficiency.	
			When a transmission line is	
52	Voltage magnification	V-	carrying current, there is	
53.	Voltage regulation	VR	voltage drop in the line due to resistance and inductance of the	%
			line.	
		$\mathbf{I}_{S} \qquad \mathbf{Z} = R + j\omega L \qquad \mathbf{I}_{R}$	When length of an overhead line is	
54.	Short line	+ R L +	upto 50 Km and the line voltage is	Kms
54.	Short line	\mathbf{V}_S \mathbf{V}_R	comparatively low ≤ 20 KV.	N 111S
			When length of an overhead line is about $50 - 150$ Km and the line	Kms
55.	Medium line	NOX	voltage is comparatively low ≥ 20	
			$KV \le 100 \text{ KV}.$	
			When length of an overhead line	
			more than 150 Km and the line	*7
56.	Long line	-	Voltage is comparatively greater	Kms
	DE	IGNING YOU	than 100 KV.	
		East of the	Susceptance is the reciprocal of a	
57.	Susceptance	Estel. 20	pure reactance, X and is given the	Siemens
			symbol B.	
			Conductance is defined as the	
58.	Conductance	G	reciprocal of resistance.	Mho
			SI unit of conductance	
59.	Admittance	Y	$Y=(1/Z)$ where $Z = R+jX_L$	Siemens
		Ŧ	When the voltage is applied across	
		I _C	the sending end of the transmission	
60.	Charging Current		line, current starts flowing between	Amps
	BB current	Ţ, Ī, Ī,	the conductors and the capacitance	
		, Ic	formed in between two conductors	
			charges.	
61.	Real Power	Р	Real power is the actual power	Watts
			consumed by the equipment to do	

			useful work. In a single phase	
			system, the true power, $P = VI\cos \Phi$	
			Watts.	
62.	Reactive Power	$(Q= \begin{array}{c} Q \\ VI \sin \Phi \\ var) \end{array}$	Reactive power is produced either by generators or capacitors. Reactive power is required to maintain the voltage to deliver active power (watts) through transmission lines.	VAR
63.	Stability	-	The ability of the system to return to synchronism after having undergone some disturbance due to switching on and off of load or due to line transience.	-
64.	Compensation		The management of reactive power to improve the performance of alternating-current (ac) power systems. To keep voltage within tolerable limit and to improve power factor, transmission line compensation is done.	-
65.	Attenuation constant	α	It determines the sinusoidal amplitude/phase of the signal along a transmission line, at a constant time.	Nepers/meter
66.	Phase constant	ф	The phase of the signal along a transmission line, at a constant time. The phase constant tells how much a signal is shifted along the x-axis.	radians/mete
67.	Characteristic Impedance	IGNING YOU Estd. 20	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ohms
68.	Ferranti effect	-	Under light load conditions the voltage at the receiving end of the transmission line is greater than the sending end is known as Ferranti effect.	-
69.	Automatic Voltage Regulators	AVR	AVR is a electronic device for automatically maintaining generator output terminal voltage at a set value under varying load and operating temperature.	Volts
70.	Autotransformer Tap Changing	-	It is used to adjust the performance of transformers. Adjusting the tap	Volts

			changes the voltage of the	
			transformer's input or output can be	
-			increased nor decreased.	
71.	Current Transformers	СТ	A current transformer is an instrument transformer, used along with measuring or protective devices. It is used to measure the current in a transmission line.	Amps
72.	Tap-Changing transformers	Program and the second	Secondary of the transformer is provided with no. of tappings. By varying the no. of turns in the secondary of the transformer the supply voltage can be increased nor decreased.	-
73.	Synchronous Condenser		The voltage at the receiving end of the transmission line can be controlled by installing a synchronous motor, which is called as synchronous condenser.	-
74.	Current Limiting Reactors		It is an inductive coil having a large inductive reactances in comparison to their resistance and is used for limiting short circuit currents during fault conditions.	Henry
75.	Power Factor	Cosφ	The Cosine of the angle between voltage and current is called power factor.	-
		UNIT 4 INSULAT	TORS AND CABLES	
76.	Insulators DES		The insulators provide necessary insulation between line conductor and supports and prevent leakage current from conductors to earth.	-
77.	Dielectrics	Estd. 20	Dielectric materials are electrically non-conducting materials such as glass, porcelain, mica, rubber, wood and paper. Dielectric materials are insulators which conduct when subjected to an external electric field.	-
78.	Grading	-	The process of achieving uniform electrostatic stress in the dielectric of cables is known as grading of cables.	-
79.	Dielectric Stress	-	In a pure insulating material, the maximum electric field that the material can withstand under ideal conditions without breaking is called dielectric stress.	-

			It is a series unit of insulators found	
80.	String	-	on the overhead transmission lines.	-
81.	String efficiency	-	The ratio of voltage across the whole string to the product of number of discs and the voltage across the disc nearest to the conductor is known as string efficiency.	-
82.	Flashover	-	An arc flash is the light and heat produced when high voltage electric discharge occurs over or around an insulator, or sparking between two or more adjacent conductors.	-
83.	Grading		The process of equalizing the stress in the dielectric of the cable	-
84.	Capacitance Grading		It is the process of using various layers of dielectrics with each dielectric having their own permittivity. The permittivity values should be in decreasing order from the surface of the conductor to the sheath of a cable.	-
85.	Belted Cables		In such cables, each conductor is insulated using paper impregnated with a suitable dielectric. The gaps between the conductors and the insulating paper belt are filled with a fibrous dielectric material such as Jute.	-
86.	Sheath in a cables		The sheath does not allow the moisture to enter and protects the cable from all external influences like chemical or electrochemical attack fire	-
87.	Segmental conductors		The stranded wires which are compacted by the rollers to minimize the air spaces between the individual wires are called segmented conductors .Here the conductor size is reduced for a given conductance.	-
88.	Properties of insulating materials	-	It should have high insulation resistance ,high dielectric strength ,good mechanical properties ,non- hygroscopic, capable of being operated at high temperatures ,low thermal resistance and low power factor.	-

89.	Commonly used		Impregnated paper, Polyvinyl	
<u>89</u> .	power cables	-	chloride and polyeth	-
90.	Underground transmission	-	Transmission line have more initial cost	-
91.	Service Mains	-	Cable or conductor which connects the distributor to the consumer terminals	-
92.	Low tension	-	Cables are meant for use up to 1 kV	-
93.	Extra high tension cable	-	Operating voltage of Extra high tension cable is upto 66KV	-
94.	Suspension Insulator	-	Used in High voltage transmission lines	-
95.	Porcelain	-	Transmission line insulators are made of Porcelain	-
96.	Use of strain type insulators		Strain type insulators is made where the conductors are Dead End, Road Crossing & Intermediate anchor towers	_
97.	Pin type insulators		Pin type insulators are generally not used for voltages beyond 33 kV	-
98.	Direct laying	X	The cable is laid over the sand-belt after that cable is covered with another layer of sand.	_
99.	Strain Insulators	\sim	When there is a dead end of the line or there is corner or sharp curve, the line is subjected to greater tension	-
100.	Cracking Of Insulator	\sim	Unequal expansion and contraction of porcelain, steel and cement are the chief cause of cracking of insulator.	-
	UNIT 5 MEC	HANICAL DESIG	GN OF LINES AND GROUNDING	
101.	Sag	Esta. 20	The distance between the supports and the lowest point 'O' of the conductor is called sag.	in meters
102.	Tension	Т	If the tension of the conductor is increased beyond the limit, it may get broken, and the power transmission of the system get erupts.	in Kg
103.	Substation	SS	Substations are the junction in the power system network which links the transmission lines and distribution feeders through bus bars.	-
104.	Transformer	V_1 V_1 V_1 V_1 V_1 V_1 V_2 V_2 V_2	It transfers power from one circuit to other without change in supply frequency. They are either step- up/down, normally in generating	-

				stations step-up is used and in	
				substations step-down is used.	
				It is used to regulate the supply of	
105.	Distribution				
105.	Transformer		-	power to residential premises, factories.	-
				A circuit breaker is an automatically	
100			· · · · · · ·	operated electrical switch designed	
106.	Circuit Brea	ker	}-}-)	to protect an electrical circuit from	-
				damage caused by excess current	
				from an overload or short circuit.	
				Whenever maintenance work is to	
			S1	be carried out on an equipment in a	
107.	Isolators		1 2	substation, it is disconnected from	_
			Isolator 1P	supply from the isolators. It is off	
				load device and is operated	
				manually.	
		-		Busbars are used within electrical	
				installations for distributing power	
108.	Busbars		strale mbols are	from a supply point to a number of	_
	2000010		ww.electr	output circuits. i.e it is connected by	
				a incoming and outgoing circuits. It	
				is made up of ACSR conductor.	
				Relays are switches that open and	
			Î	close circuits electromechanically or	
109.	Relays			electronically. When a fault occurs	-
1071	licitys		Normally Normally open	the relay senses the fault and gives	
			Common	command signal to the circuit	
				breaker.	
				Lightning Arrester is a device used	
			+ + +	on electrical power systems and	
110.	Lightening			telecommunications systems to	_
	Arrestor	DES	IG YYY You	protect the insulation and	
				conductors of the system from the	
			Estd 20	damaging effects of lightning.	
				An electric grid is a network of	
				synchronized power providers and	
111.	Grid		-	consumers that are connected by	-
				transmission and distribution lines	
				and operated by one or more control	
				centers.	
			\frown	Ground is a source for unwanted	
112.	Grounding		()	currents and also as a return path for	-
	8		ヘーノ	main current. It is used for the	
				protection of equipment.	
110	C 4			A conductor, due to sag between	
113.	Catenary		-	two supports, takes the form of	-
				catenary	
114.	Neutral grou			Connecting the neutral or star point	

			C	
			of any electrical	
			equipment(generator ,transformer	
			etc) to earth.	
	Coefficient of		(highest rms voltage of healthy line	
115.	earthing	-	to earth)/(line to line rms voltage)	-
	earthing		*100 to the power frequency	
			Dampers are used to damp or	
			reduce the frequency of oscillation	
116.	Vibration Damping	-	of the vibrating components of the	-
	ľÖ		machine by absorbing a part of	
			energy evolved during vibration.	
			For use in the field work of	
			stringing the conductors,	
			temperature-sag and temperature	
117.	Stringing chart		tension charts are plotted for the	_
117.	Stringing chart		given conductor and loading	
			conditions. Such curves are called	
			stringing charts	
			As per I.E. Rules, required to be	
			maintained between the line	
			conductor to ground, telephone	
118.	Sag tomplate		-	
110.	Sag template		lines, buildings, streets, navigable	-
			canals, power lines, or any other	
			object coming under or near the	
		$ \land \land$	line.	
119.	Span		Span is the distance between two	-
	_		intermediate supports for a structure Used to scale the distance from the	
			conductor to the ground and to	
120.	Tower spotting		adjust structure locations and	-
			heights to (1) provide proper	
	DES	IGNING YOU	clearance to the ground; (2) equalize	
			spans; and (3) grade the line.	
121.	AIS	Estd. 20	Air Insulated Switchgear substation	-
100	CIC.		Gas insulated substation	
122.	GIS	-		-
			It serves the dual purpose of	
122	Forthing		protecting the power conductors	
123.	Earthing	-	from lightening strokes and of	-
			conducting fault currents away	
			to ground	
10.4			Neutral is a circuit conductor that	
124.	Neutral	-	normally completes the circuit back	-
			to the source.	
			(i) Solid or effective grounding	
125.	Methods of Neutral	_	(ii) Resistance grounding	-
· - J ·	Grounding		(iii) Reactance grounding	
	0100000		(iv) Peterson-coil grounding	

Placement Questions	
126.	Tell me a little about yourself.
127.	What are your biggest weaknesses?
128.	What are your biggest strengths?
129.	Where do you see yourself in five years?
130.	Out of all the other candidates, why should we hire you?
131.	How did you learn about the opening?
132.	Why do you want <i>this</i> job?
133.	What do you consider to be your biggest professional achievement?
134.	Describe your dream job
135.	Why do you want to leave your current job?
136.	What kind of work environment do you like best?
137.	Tell me the toughest decision you had to make in the last 6 months
138.	What is your leadership style?
139.	Tell me about a time you disagreed with a decision. What did you do?
140.	Tell me how you think other people would describe you.
141.	What can we expect from you in your first three months?
142.	What do you like to do outside of work?
143.	What was your salary in your last job?
144.	What questions do you have for me?
145.	What is your greatest professional achievement?
146.	Can you explain why you changed career paths?
147.	How do you deal with pressure or stressful situations?
148.	What do you like to do outside of work?
149.	Are you willing to relocate?
150.	What is your biggest regret and why?

Faculty Team Prepared

Estd. 2000 Signatures

- 1. Ms.V.Deepika AP/EEE
- 2. Mrs.M.Selvakumari, AP/EEE

HoD