

MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna

University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Subject 16ITD08/Principles of Compiler Design

S.

No.
Term

Notation

(Symbol)

Concept/Definition/Meaning/Units/Equation/

Expression
Units

UNIT-I INTRODUCTION TO AUTOMATA AND COMPILER

1 Translator It converts source language into target language

2 Compiler
System software which translates source

program into target program

3 Interpreter
System software which accepts source program

line by line and produces target program

4 Assembler converts assembly language into machine code

5 Loader
A loader is a program that places machine code

of the programs into memory for execution

6 Link-editor

The linker links the code in one file which may

refer to a location in another file

7
Two Parts of

Compilation
 Analysis and Synthesis

8
Analysis (Front

end of Compiler)

Analysis part breaks the source program into

constituent pieces and creates an intermediate

representation

9

Synthesis

(Back end of

Compiler)

 Synthesis part takes the intermediate

representation as input and transforms it to the

target program.

10
 6 Phases of

Compiler

1.Lexical analysis 2. Syntax analysis 3.

Semantic analysis 4. Intermediate code

generation 5. Code optimization 6. Code

generation

11
Lexical analysis

(Scanner)

It accepts lexemes which produces token as

output

12 Token

Sequence of characters that can be treated as a

single logical entity. Eg: Number, Identifiers

,keywords , etc

13 Lexeme Sequence of characters in the source program

14 Pattern
Set of strings is described by a rule called a

pattern associated with the token.

15 Symbol Table
Data structure that contains a record for each

symbol

16
Syntax analysis

(Parser)

accepts sequence tokens as input and produces

parse tree as output

2020-2021

MUST KNOW CONCEPTS

IT

MKC

17

Two properties

Intermediate

representation

 It should be easy to produce

 Easy to translate into the target machine

18

Properties of

Three address

code

 Three address code have atmost 3

operand

 Atmost 1 operator additional to =

 Temporary variable used to store

intermediate result

19
Use of Code

Optimization

Produces Faster ,Shorter code,target code that

consumes less power

20

Goals of Error

Handler

Report the presence of errors clearly and

accurately.

Recover from each error quickly enough to

detect subsequent errors.

Add minimal overhead to the processing of

correcting programs

21

four common

error-recovery

strategies in

parser

 Panic mode.

 Statement level.

 Error productions.

 Global correction

22 Panic mode
discard tokens one at a time until a

synchronizing token is found

23
Issues in Lexical

analysis

 Simplicity of design

 Compiler efficiency is improved

 Compiler portability is enhanced

24

Deterministic

Finite Automata

(DFA)

 It consists of 5 tuples {Q, ∑, q, F, δ}.

for a particular input character, the machine goes

to one state only and null (or ε) move is not

allowed

25

Nondeterministic

Finite

Automata(NFA)

i. ε transition

ii.move any number of states for a input.

UNIT-II LEXICAL ANALYSIS

26 LEX Lexical Analyzer Tool

27
Alias name for

Lexical Analysis
 Linear analysis or scanner

28
Primary task of

LA
 Token generation

29
Secondary task of

LA
 Eliminating white spaces,Comments

30
Context-free

Grammars
 G= {V,P,S,T}

31 Derivation
Process of replacing the non-terminal by its

right side of production

32
Types of

derivation
 Left derivation and Right derivation

33 Left derivation
Process of replacing left most non-terminal by its

right side of production

34 Right derivation
Process of replacing right most non-terminal by

its right side of production

35 Reduction
Process of replacing a string by an Non terminal

according to a grammar production

36 Alias of reduction reverse of derivation

37 Yield

Leaf nodes of parse tree are concatenated from

left to right to form the input string derived from

a grammar

38 Alias of yield frontier

39 Role of LEX

LEX translates a set of regular expression

specifications into a C implementation of a

corresponding finite state machine

40
No. of sections in

Lex program
 three

41 3 Sections Declarations, Rules and Auxiliary functions

42 Parser

 parser takes input in the form of sequence of

tokens and produces output in the form

of parse tree

43
Alias name for

Syntax analysis
 Hierarchical analysis or parsing

44
No. of types of

Parser
 2

45 Types of Parser
Top-down parser

Bottom-up parser

46
2 subtypes of

topdown parser

Recursive descent parser

Predictive parser

47
Top-down parser

 Parser builds parse tree from Root to Leaves

48 Bottom-up parser Parser builds parse tree from Leaves to Root

49
Alias for

predictive parser
 Table driven parser or LL(1) Parser

50
Conditions for

Top down

Eliminating Left recursion & ambiguity

Left factoring out

Requires Backtacking

UNIT-III SYNTAX ANALYSIS

51 Parse tree
A parse tree is a graphical representation of a

derivation

52

Properties of parse

tree

root is labeled with Start symbol

leaf is labeled with a token

interior node is labeled by a non-terminal

53 Ambiguous
A Grammar that produces more than one parse tree

for some sentence using left most derivation / right

most derivation

54
Universal parsers

Cocke-Younger-Kasami algorithm and Earley's

algorithm can parse any grammar

55
Eliminating Left-

Recursion

A context free grammar is said to be left recursive

if it has a non terminal A with two productions in

the following form

 

56 Left factoring

 process of factoring out the common prefixes of

two or more production alternates for the same

non-terminal

57 Handle
A substring that matches the right side of a

production called handle

58 Handle pruning
Applying the production to the substring results

in a right-sentential form.

59
Alias of Bottomup

parser
 rightmost derivations in reverse

60 SR parser Shift Reduce parser

61 4 operations in SR Shift,Reduce, Accept and Error

62 Shift
moving of symbols from input buffer onto the

stack

63 Reduce
RHS of production rule is popped out of stack and

LHS of production rule is pushed onto the stack

64 accept successful parsing is done

65 error
parser can neither perform shift action nor reduce

action and not even accept action.

66 Operator grammar
No Epsilon production and consecutive Non

terminals

67
Operator

precedence parser

Bottom-up parser that interprets on operator

grammar

68
Precedence

relations

a ⋗ b "a" has the higher precedence than

terminal "b".

a ⋖ b "a" has the lower precedence than

terminal "b".

a ≐ b "a" and "b" both have same precedence.

69 LR(K) parser

"L" stands for left-to-right scanning of the input.

"R" stands for constructing a right most derivation

in reverse.

"K" is the number look ahead symbols

70 SLR parser Simple LR parser

71 CLR parser Canonical LR parser

72 LALR parser Lookahead LR parser

73
Most powerful

parser
 Canonical LR parser

74
Advantages of

OPP

 simplicity.

 easy to construct.

 Powerful that can be used for the

programming language expressions

75
Disadvantages of

OPP

 grammar of small class

 difficult to identify or decide that grammar

recognized which language.

 not capable of handling the unary minus.

UNIT-IV INTERMEDIATE CODE GENERATION

76

Advantages of

Machine

independent

intermediate form

Retargeting is facilitated.

A machine independent code optimizer can be

applied.

77

Types of

Intermediate

languages

 Syntax Tree.

 Postfix Notation.

 Three Address code.

78 Syntax tree condensed form of parse tree.

79 DAG Directed Acyclic Graph

80 Postfix notation Traverse left child,right child,and root

81

General form of

Three address

code

X:=Y op Z

82

Implementation of

Three address

code

 Quadruple.

 Triples

 Indirect Triples

83 Quadruples
Quadruples has four fields: op,arg1, arg2 and

result.

84 Triples Triples has Three fields: op, arg1 and arg2

85
Indirect triples

In addition to triples use a list of pointers.

86 Pros of quadruples Easy to rearrange code for global optimization

87
Cons of

quadruples
 Lots of temporaries

88
Use of Boolean

expression

Alter the flow of control.

Compute logical values

89 Back patching

activityof filling up unspecified

information of labels using appropriate

semantic actions in during the code generation

process.

90
Functions of back

patching

makelist(i)

Merge(p1,p2)

Backpatch(p,i)

91 M.quad
M.quad records the number of the first statement of

E2.code.

92 Declaration

The process of declaring keywords, procedures,

functions, variables, and statements with proper

syntax

93
Intermediate code

generation

 interface between front end and back end in

a compiler

94 DAG definition

 tool that depicts the structure of basic blocks,

helps to see the flow of values flowing among

the basic blocks

95 Use of DAG
DAG provides a good way to determine the

common sub-expression.

96 Procedure
A procedure returns the control but not any value

to calling function or code.

97 Function
A function returns a value and control to calling

function or code.

98 Calling function
Calling function contains the input (the actual

parameters) which is given to the called function

99 Called function

called function which then works on them

because it contains the definition, performs the

procedure specified and returns if anything is to

be returned.

100
Assignment

statement

Assignment statements enable the programmer

to define or redefine a symbol by assigning it a

value

UNIT-V CODE OPTIMIZATION AND CODE GENERATION

101
Directed Acyclic

Graph

DAG is similar to syntax tree but identify the

common sub expression

102 Basic block

sequence of consecutive statements in which

flow of control enters at the beginning and leaves

at the end without halt

103 Dead code
Dead (or useless) code statements that compute

values that never get used.

104 Flow graph

A graph representation of three-address

statements in which Nodes are basic block, and

the edges represent the flow of control

105 Copy Propagation

 process of replacing the occurrences of targets

of direct assignments with their values

y=x

z=3+y  z=3+x

106 Constant Folding

Deducing at compile time that the value of an

expression is a constant and using the constant

instead

107 Code Motion
Modification that decreases the amount of code

in a loop

108
Reduction In

Strength

replacing an expensive operation by a cheaper

one

109
Absolute machine

language

program can be placed in a location in memory

and immediately executed

110
Relocatable

machine language

program allows subprograms to be compiled

separately. A set of relocatable object modules

can be linked together and loaded for execution

by a linking loader

111
Loop unrolling

(loop unwinding)

 Loop unrolling increases the program’s speed

by eliminating loop control instruction and loop

test instructions.

112
Classes of local

transformations

 structure-preserving transformations

 algebraic transformations.

113

Structure-

preserving

transformations

 common sub-expression elimination

 dead-code elimination

 renaming of temporary variables

 interchange of two independent adjacent

statements

114 Inner Loop
A loop that contains no other loops is called an

inner loop

115
Local common

sub-expression.

An occurrence of an common sub-expression

within a block

116
Global common

sub-expression

An occurrence of an common sub-expression

between the blocks

117 Addressing mode
Way in which location of the operand may be

specified

118
Immediate

addressing

Operand value should be specified as part of

instruction. (#)

119 Indirect addressing
address specified in the instruction are themselves

an address (@)

120 Register descriptor
register descriptor containing the list of variables

currently stored in this register

121 Address descriptor
address descriptor containing the list of locations

where this variable is currently stored

122 Getreg function
determine the location L where the result of the

computation y op z should be stored

123
Types of Jump

statement

Conditional jump

UnConditional jump

124 Code optimization

Optimization is a program transformation

technique, which tries to improve the code by

making it consume less resources and deliver

high speed.

125 Code generation
Last phase is used to produce the target code for

three-address statements

TECHNICAL QUESTIONS

126 Cross Compiler
compiler run on one machine and produce target

code for another machine

127 Viable prefixes

The set of prefixes of right sentential forms
that can appear on the stack of a shift- reduce
parser viable prefixes.

128 Kernel items

The set of items which include the initial item,

S′→.S, and all items whose dots are not at the

left end

129 Non kernel items
The set of items, which have their dots at the left

end

130 Type checking

It is a process of Compiler which should

report an error if an operator applied to an

incompatible operand.

131 Static checking the type of variable is known at compile time

132 Dynamic checking the type of variable is known at runtime

133 Input buffering
Technique used to store input string for increasing

Compiler speed

134
Buffer pair

Two buffers are used to store the input string. The

first buffer and second buffer are scanned

alternately.

135 Sentinels
Special character that is not part of the source

program

136
Annotated parse

tree

The parse tree containing the values of attributes at

each node for given input string is called annotated

parse tree.

137 predictive parser

A form of recursive-descent parsing that does not

require any back-tracking is known as

predictive parser

138 Control flow

A control flow graph depicts how the

program control is being passed among the blocks.

It is a useful tool that helps in optimization by help

locating any unwanted loops in the program.

139
Boolean

expression

Expressions which are composed of the Boolean

operators (and, or, and not) applied to elements

140 Short circuit code
We can also translate a Boolean expression into

three-address code without generating

code for any of the Boolean operators

 HoD

141
Three address

code

It contains three addresses, two for operands and

one for the result.

142 LL grammar
L" stands for left-to-right scanning of the input.

"L" stands for constructing a Left most derivation

143 Stack

Stack is a linear data structure which follows Last

in first out (LIFO) order in which the operations

are performed

144
2 pointers in input

buffering

Forward pointer

Lexeme beginning

145
Forward pointer

 scans ahead until a match for a pattern is found.

146 Lexeme beginning
points to the beginning of the current lexeme

which is yet to be found.

147
Grouping of

phases

Front end

Back end

148 Usage of sentinel
reduces the two tests to one by extending each

buffer half to hold a sentinel character at the end.

149 Backtracking
if one derivation of a production fails, the syntax

analyzer restarts the process using different rules of

same production.

150
Recursive Descent

parser

Top-down method of syntax analysis in which a set

recursive procedures to process the input is

executed

Faculty Team Prepared T.Manivel,AP/IT Signature:

