

 MUST KNOW CONCEPTS MKC

MCA 2021-2022

Course Code & Course Name :21CAB10 & Software Engineering

Year/Sem/Sec : I / II / -

S.No. Term

Notation

(Symbol)

Concept / Definition / Meaning /

Units / Equation / Expression

Units

Unit-I : Introduction

1. Software Engineering --

The application of a systematic,

disciplined, quantifiable approach to the

development, operation, and maintenance

of software.

I

2. Quality --

Software quality measures how well

the software is designed (quality of

design), and how well

the software conforms to that design

(quality of conformance).

I

3. Process --

A software process is the set of activities

and associated outcome that produce

a software product. Software

engineers mostly carry out these activities.

I

4. Methods --
Software development methodology is a

process or series of processes used

in software development.

I

5. Waterfall life cycle model --
The waterfall Model illustrates

the software development process in a

linear sequential flow.

I

6. Feasibility Study --

Feasibility Study in Software

Engineering is a study to

evaluate feasibility of proposed project or

system.

I

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

7. Design --

Software design is

the software requirements analysis (SRA).

SRA is a part of the software

development process that lists

specifications used in software

engineering.

I

8. Coding --
The coding is the process of transforming

the design of a system into a computer

language format.

I

9. Unit Testing --

Unit Testing of software product is carried

out during the development of an

application.In SDLC or V Model, Unit

testing is first level of testing done before

integration testing.

I

10. Maintenance --

Software maintenance is a part

of Software Development Life Cycle. Its

main purpose is to modify and

update software application after delivery

to correct faults and to improve

performance.

I

11. Analysis --

Requirement Analysis, also known as

Requirement Engineering, is the process of

defining user expectations for a

new software being built or modified.

In software engineering.

I

12. Prototyping Model --

Prototyping Model is a software

development model in which prototype is

built, tested, and reworked until an

acceptable prototype is achieved.

I

13. Incremental Model --

A process of software development where

requirements are broken down into

multiple standalone modules

of software development cycle.

I

14. Spiral Model --

The spiral model is similar to the

incremental development for a system,

with more emphasis placed on risk

analysis.

I

15. RAD Model --

RAD model is based on prototyping and

iterative model with no (or less) specific

planning. In general, RAD approach

to software development means putting

lesser emphasis on planning tasks and

more emphasis on development and

coming up with a prototype.

I

16. Win-Win Spiral Model --

The Win-Win spiral software

engineering methodology expands the

Boehm-Spiral methodology by

adding a priority setting step, the Win-Win

process, at the beginning of

each spiral cycle.

I

17. 4GT --

The term fourth generation techniques

(4GT) encompasses a broad array

of software tools that have one thing in

common: each enables the software

engineer to specify some characteristic

of software at a high level.

I

18. software process --

Software process is defined as the

structured set of activities that are required

to develop the software system.

I

19. System Engineering --

System Engineering means designing,

implementing, deploying and operating

systems which include hardware,software

and people

I

20. Scheduling Techniques --

Techniques such as PERT (Program

Evaluation and Review Technique), CPM

(Critical Path Method) and GANTT are the

most used to plan into details a project,

prevent uncertainties and avoid risk.

I

21. PERT --

Project Evaluation and Review Technique

(PERT) is a procedure through which

activities of a project are represented in its

appropriate sequence and timing.

I

22. CPM --
Critical Path Method (CPM) is an

algorithm for planning, managing and

analyzing the timing of a project.

I

23. .Software Risk --

Software risk encompasses the probability

of occurrence for uncertain events and

their potential for loss within an

organization.

I

24. Requirements. --

In product development

and process optimization, a requirement is

a singular documented physical or

functional need that a particular design,

product or process aims to satisfy

I

25. System Requirements. --

System requirements are all of

the requirements at the system level that

describe the functions which the system as

a whole should fulfill to satisfy the

I

stakeholder needs and requirements

stakeholder needs and requirements.

Unit-II : SOFTWARE DESIGN

26. Software Design --

Software design is a process to transform

user requirements into some suitable form,

which helps the programmer

in software coding and implementation.

II

27. Problem Partitioning --

small problem, we can handle the

entire problem at once but for the

significant problem, divide

the problems and conquer the problem it

means to divide the problem into smaller

pieces

II

28. Abstraction --

Abstraction is one of the fundamental

concepts of software engineering. It is all

about hiding complexity in building

various parts of your application.

II

29. Modularity. --

Software modularity is the decomposition

of a program into smaller programs with

standardized interfaces.

II

30. Information Hiding --

Information hiding is the principle of

segregation of the design decisions in a

computer program that are most likely to

change, thus protecting other parts of the

program from extensive modification

II

31. Cohesion --

Cohesion measures the extent to which all

elements of a module belong together.

cohesion examines how the activities

within a module are related to one another.

II

32. Coupling --

Coupling is the degree of interdependence

between software modules; a measure of

how closely connected two routines or

modules are; the strength of the

relationships between modules.

II

33. Data Flow --

Data flow is the movement of data through

a system comprised of software, hardware

or a combination of both.

II

34. Data Dictionary --

A Data Dictionary is a collection of names,

definitions, and attributes about data

elements that are being used or captured in

a database, information system, or part of a

research project.

II

35. Data Structures -- Data Structures are a specialized means of II

organizing and storing data in computers

in such a way that we can perform

operations on the stored data more

efficiently.

36. Data Design --

Data design is the first design activity,

which results in less complex, modular and

efficient program structure.

II

37. Pseudo-Code --

Pseudocode is an informal way of

programming description that does not

require any strict programming language

syntax or underlying technology

considerations.

II

38.
Distributed System

Design
--

A distributed system is "a collection of

independent computers that appears to the

user as a single coherent system."

II

39. Documentation --

Documentation in software engineering is

the umbrella term that encompasses all

written documents and materials dealing

with a software product's development and

use.

II

40. JSD --

Jackson System Development (JSD) is a

method of system development that covers

the software life cycle either directly or by

providing a framework into which more

specialized techniques can fit.

II

41. Software Reuse --
Software reuse is the process of

implementing or updating software

systems using existing software assets.

II

42. Design For Reuse --
Design reuse is the process of building

new software applications and tools by

reusing previously developed designs.

II

43. COTS --

Commercial-off-the-shelf (COTS)

software is a term for software products

that are ready-made and available for

purchase in the commercial market.

II

44. Phases of JSD --

 Entity/action step

 Initial model step

 Interactive function step

 Information function step

 System timing step

 System implementation step

II

45. Object Oriented Design --
Object-oriented design (OOD) is the

process of using an object-oriented

methodology to design a computing

II

system or application.

46. Classification of Modules --
 Incremental Module.

 Sequential Module.

 Parallel Modules

II

47. Stepwise Refinement --

Stepwise refinement is the idea that

software is developed by moving through

the levels of abstraction, beginning at

higher levels and, incrementally refining

the software.

II

48. Control Hierarchy --

Control hierarchy, also called program

structure, represents the organization of

program components (modules) and

implies a hierarchy of control.

II

49. Fan-in and Fan-out --

Fan-in refers to the maximum number of

input signals that feed the input equations

of a logic cell.

Fan-out refers to the maximum number of

output signals that are fed by the output

equations of a logic cell.

II

50. Archetype --

An archetype is a generic model of some

important component in a system. an

archetype is a generic model of some

important component in a system.

II

Unit-III : SOFTWARE TESTING AND MAINTENANCE

51. Software Testing --

Software testing is the process of

evaluating and verifying that a software

product. The benefits of testing include

preventing bugs, reducing development

costs and improving performance.

III

52. Fault --

It is an incorrect step in any process and

data definition in computer program which

is responsible of the unintended behavior

of any program in the computer.

III

53. Unit Testing --

Unit Testing is defined as a type of

software testing where individual

components of a software are tested. Unit

Testing of software product is carried out

during the development of an application.

III

54. Verification Testing --

Verification is the process of checking that

a software achieves its goal without any

bugs.

III

55. Validation Testing -- Validation testing in software engineering III

is in place to determine if the existing

system complies with the system

requirements and performs the dedicated

functions for which it is designed along

with meeting the goals and needs of the

organisation.

56. Test Cases --

A test case is exactly what it sounds like: a

test scenario measuring functionality

across a set of actions or conditions to

verify the expected result.

III

57. Integration Testing --

Integration testing (sometimes called

integration and testing, abbreviated I&T) is

the phase in software testing in which

individual software modules are combined

and tested as a group.

III

58. System Testing --
System Testing is the level of software

testing performed before Acceptance

Testing and after Integration Testing.

III

59. Alpha Testing --

Alpha Testing is a type of software testing

performed to identify bugs before

releasing the software product to the real

users or public.

III

60. Beta Testing --

Beta testing is a type of user acceptance

testing where the product team gives a

nearly finished product to a group of target

users to evaluate product performance in

the real world.

III

61. White Box Testing --

White box testing is an approach

that allows testers to inspect and verify the

inner workings of a software system—its

code, infrastructure, and integrations with

external systems.

III

62. Black Box Testing --

Black box testing refers to any type of

software test that examines an application

without knowledge of the internal design,

structure, or implementation of the

software project.

III

63. Functional Testing --

Functional Testing is a type of Software

Testing in which the system is tested

against the functional requirements and

specifications.

III

64. System Testing --

System Testing is the level of software

testing performed before Acceptance

Testing and after Integration Testing.

III

65. Reliability Testing --

Reliability Testing is a software testing

process that checks whether the software

can perform a failure-free operation for a

specified time period in a particular

environment.

III

66. Acceptance Testing --

Acceptance Testing is a method of

software testing where a system is tested

for acceptability.

III

67. Testing Tools --

Tools from a software testing context can

be defined as a product that supports one

or more test activities right from planning,

requirements, creating a build, test

execution, defect logging and test analysis.

III

68. Smoke Testing --

Smoke Testing is a software testing

process that determines whether the

deployed software build is stable. Smoke

testing is also known as “Build

Verification Testing” or “Confidence

Testing.”

III

69. Maintenance --

Software maintenance in software

engineering is the modification of a

software product after delivery to correct

faults, to improve performance or other

attributes.

III

70. Types of Maintenance --

 Corrective Software Maintenance.

 Adaptive Software Maintenance.

 Perfective Software Maintenance.

 Preventive Software Maintenance.

III

71. Security Testing --

Security Testing is a type of Software

Testing that uncovers vulnerabilities of the

system and determines that the data and

resources of the system are protected from

possible intruders.

III

72. Performance Testing --

Performance Testing is a type of software

testing that ensures software applications

to perform properly under their expected

workload.

III

73. Recovery Testing --

In software testing, recovery testing is the

activity of testing how well an application

is able to recover from crashes, hardware

failures and other similar problems.

III

74. Thread Testing --
Thread testing, a software testing

technique used during early integration
III

testing phase to verify the key functional

capabilities that carry out specific task.

75. Equivalence Partitioning --

Equivalence Class Partitioning are the

most common technique in Black-box

Testing Techniques for test case design.

III

Unit-IV : SOFTWARE METRICS

76. Software Measurement --

Software measurement is a quantified

attribute (see also: measurement) of a

characteristic of a software product or the

software process. It is a discipline within

software engineering.

IV

77. Direct Measures --

Direct measures of software engineering

process include cost and effort. Direct

measures of the product include lines of

code (LOC), execution speed, memory

size, defects per reporting time period.

IV

78. Indirect Measures --

Indirect measures include functionality,

quality, complexity, efficiency, reliability,

and maintainability. indirect measures.

measures of software engineering output

and quality.

IV

79. Software Metrics --

 Software metrics are valuable for many

reasons, including measuring software

performance, planning work items,

measuring productivity, and many other

uses.

IV

80. Scope of Metrics --

Cost – Estimate project cost includes its

maintenance, research, and other typical

expenditure associated with the project.

Quality assurance – Different metrics are

used to measure different aspects of

software quality, especially code quality

(line of code).

Size and Complexity – It demonstrates

the code size and complexity at the macro

level of projects.

Functionality – Software metrics follow a

scheduled procedure of software projects

that focus on functionality, a document

produced, and estimated time utilization.

IV

81. Product Metrics --

Software product metrics are measures of

software products such as source code and

design documents. Software process

metrics are measures of software

development process.

IV

82. Lines of Code --

The phrase “lines of code” (LOC) is a

metric generally used to evaluate a

software program or code base according

to its size.

IV

83. Size Metrics --

Size Oriented Metrics are also used for

measuring and comparing productivity of

programmers. It is a direct measure of a

Software.

IV

84. Cost Estimation --

The cost estimate is the financial spend

that is done on the efforts to develop and

test software in Software Engineering.

IV

85. COCOMO Model --

Cocomo (Constructive Cost Model) is a

regression model based on LOC, i.e

number of Lines of Code. A project such

as size, effort, cost, time and quality.

IV

86. Cyclomatic Complexity --

Cyclomatic complexity is a software

metric used to indicate the complexity of a

program. It is a quantitative measure of the

number of linearly independent paths

through a program's source code.

IV

87.
Software Quality

Assurance
--

Software quality assurance (SQA) is a

means and practice of monitoring the

software engineering processes and

methods used in a project to ensure proper

quality of the software.

IV

88. SQA Activities --

Software Quality Assurance (SQA) is

simply a way to assure quality in the

software. It is the set of activities which

ensure processes, procedures as well as

standards are suitable for the project and

implemented correctly.

IV

89. Complexity Metrics --

The performance of three different

software complexity metrics; McCabe's

cyclomatic complexity, Halstead's

complexity measures and Douce's spatial

complexity, by using data from an Open

Source project Eclipse JDT.

IV

90. Classification of Metrics --
It can be classified into three

categories: product metrics, process
IV

metrics, and project metrics. Product

metrics describe the characteristics of the

product such as size, complexity, design

features, performance, and quality level.

91. Function Point Metrics --

Function points are a unit of measure used

to define the value that the end user

derives, or the functional business

requirements the software is designed to

accomplish.

IV

92.
Halstead Theory of

Software
--

Halstead's metrics are included in a

number of current commercial tools that

count software lines of code. n1* =

Number of potential operators. n2* =

Number of potential operands. Halstead

refers to n1* and n2* as the minimum

possible number of operators and operands

for a module and a program respectively.

IV

93. Product Complexity --

Product complexity can be e.g. the number

of products, the number of components

they consist of or raw materials used.

IV

94. Algorithm Method --

An algorithm (pronounced AL-go-rith-um)

is a procedure or formula for solving a

problem, based on conducting a sequence

of specified actions.

IV

95. Dynamic Metrics --

Dynamic metrics are the class of software

metrics that capture the dynamic behaviour

of the software system and are usually

obtained from the execution traces of the

code or from the executable

IV

96. Static Metrics --

Static metrics that are collected by

measurements made from system

representations such as design, programs,

or documentation.

IV

97. Reliability Metrics --

Reliability metrics are used to

quantitatively expressed the reliability of

the software product.

IV

98. Product Quality --

Software quality is defined as a field of

study and practice that describes the

desirable attributes of software products.

IV

99. Process Quality --

Process quality refers to the degree to

which an acceptable process, including

measurements and criteria for quality, has

been implemented and adhered to in order

to produce the artifacts. Software

development requires a complex web of

IV

sequential and parallel steps.

100. Quality Standard --

Quality standards are defined

as documents that provide requirements,

specifications, guidelines, or

characteristics that can be used

consistently to ensure that materials,

products, processes, and services are fit for

their purpose.

IV

Unit-V : SCM

101. SCM --

Software Configuration

Management (SCM or S/W CM) is the

task of tracking and controlling changes in

the software, part of the larger cross-

disciplinary field of configuration

management.

V

102. Baseline --

A baseline is a reference point in the

software development life cycle marked by

the completion and formal approval of a

set of predefined work products.

V

103. Need for SCM --

Software Configuration

Management(SCM) is a process to

systematically manage, organize, and

control the changes in the documents,

codes, and other entities during the

Software Development Life Cycle.

V

104. SCM Process --

It uses the tools which keep that the

necessary change has been implemented

adequately to the appropriate component.

The SCM process defines a number of

tasks:

 Identification of objects in the

software configuration

 Version Control

 Change Control

 Configuration Audit

 Status Reporting

V

105. Software Library --

A software library is a suite of data and

programming code that is used to develop

software programs and applications. It is

designed to assist both the programmer

and the programming language compiler in

building and executing software.

V

106. Configuration Control --

Configuration Control is the activity of

managing the product (or project's

deliverable) and related documents,

throughout the life cycle of the product.

V

107. SCM Repository --

Software configuration management

(SCM) is any kind of practice that tracks

and provides control over changes to

source code. Software developers

sometimes use revision control software to

maintain documentation and configuration

files as well as source code.

V

108. Risk Management --

Risk management is the process of

identifying, assessing and controlling

threats to an organization's capital and

earnings.

V

109. Features of CASE Tools --

 Standard Methodology.

 Flexibility.

 Strong Integration.

 Integration with Testing Software.

 Support for Reserve Engineering.

 Online help.

V

110. CASE Repository --

A CASE Repository should be the

representation, in data, of all relevant

information about the system under

development, in a consistent, complete

form which is independent of its mode of

entry and modification or subsequent use.

V

111. Information Repository --

In software development, a repository is a

central file storage location. It is used by

version control systems to store multiple

versions of files.

V

112. Data Dictionary --

A data dictionary in Software Engineering

means a file or a set of files that includes a

database's metadata, like data ownership,

relationships of the data to another object,

and some other data.

V

113. Web Engineering --

Web Engineering is the application of

systematic, disciplined and quantifiable

approaches to development, operation, and

maintenance of Web-based applications.

V

114.
Need for Web

Engineering
--

Web Engineering is the application

of systematic, disciplined and quantifiable

approaches to development, operation, and

maintenance of Web-based applications.

V

115. HCL --

Human-Computer Interaction (HCI) are

both relatively new disciplines of

computer science.

V

116. HTML --

Hypertext Markup Language, a formatting

system for displaying material retrieved

over the Internet. HTML markup tags

specify document elements such as

headings, paragraphs, and tables.

V

117. Taxonomy --

A taxonomy is a "knowledge organization

system," a set of words that have been

organized to control the use of terms used

in a subject field into a "vocabulary" to

facilitate the storing and retrieving of items

from a repository.

V

118. Advantages of CASE --

 Increased efficiency

 Cost reduction

 Enhanced system and process

reliability

 efficient change management

 Faster restoration of your service if

a process failure occurs

V

119. Version Control --

Version control is the control of

deliverables whereas configuration

management is managing the entire

process leading to produce the

deliverables. Configuration management

involves change management, project

management.

V

120. Layers of SCM Process --

The five tasks of the SCM process

are configuration identification, change

control, version control, configuration

auditing, and reporting.

V

121. CSR --

Configuration Status Reporting the

recording and reporting of information

needed for configuration

management including the status of

configuration items (CIs), proposed

changes and the implementation status of

approved changes.

V

122. Configuration Audit --

Configuration auditing is conducted by

auditors by checking that defined

processes are being followed and ensuring

that the SCM goals are satisfied.

V

123. Data Integrity --

Data integrity is a fundamental component

of information security. In its broadest use,

“data integrity” refers to the accuracy and

consistency of data stored in a database,

data warehouse, data mart or other

construct.

V

124. Tool Integration --

Software Configuration Management

(SCM) Tools handle the task of tracking

and controlling changes in the software.

V

125. Data Integration --
This function data present in databases is

integrated
V

Placement Questions

126.

Concept Of

Modularization.Concept

Of Modularization.

--

Modularization is used to divide software

into multiple components or modules.

Each module is worked upon by an

independent development and testing

team.

127.
The Various Phases Of

SDLC
--

 Requirement Analysis

 Design

 Coding

 Testing

 Maintenance

128.
Project Management

Tools.
--

 Gantt Chart

 Checklists

 Status Reports

 Histograms

 Microsoft Project

129. Functional Requirements --

Functional requirements are the features

that a developed software product is

expected to perform.

130. Baseline --

A baseline is a milestone on the project

which is usually defined by the project

manager.

131. Coding --

This is the phase where the code for the

system to be developed is written.Unit

Testing and Integration Testing must be

performed by the developers at this stage

before deploying the code for testing.

132. V-Model --

V-Model stands for the verification and

validation model. V-model is an addition

to the waterfall model, in the sense that V-

model is also a sequential model.

https://www.softwaretestinghelp.com/unit-testing/
https://www.softwaretestinghelp.com/unit-testing/
https://www.softwaretestinghelp.com/what-is-integration-testing/
https://www.softwaretestinghelp.com/what-is-stlc-v-model/

133. Software Project Manager --

A software project manager is a person

who undertakes the responsibility of

carrying out the software project.

134. Function Points --

Function points are the various features

provided by the software product. It is

considered as a unit of measurement for

software size.

135.
Measure Project

Execution
--

Measure project execution by means of

Activity Monitoring, Status Reports and

Milestone Checklists.

136. Functional Requirements --

Functional requirements are functional

features and specifications expected by

users from the proposed software product.

137. Cohesion --

Cohesion is a measure that defines the

degree of intra-dependability among the

elements of the module.

138.
Formula To Calculate

Cyclomatic Complexity
--

Cyclomatic complexity uses graph

theory’s formula: V(G) = e – n + 2

139.

Software Analysis &

Design Tools

--

software analysis & design tools are Data

flow Diagrams (DFD), Structured Charts,

Data Dictionary, UML (Unified Modeling

Languages) diagrams, ER (Entity

Relationship) Diagrams etc.

140.
 Data Dictionary

--

A data dictionary is also known as

metadata. Data Dictionary is utilized to

capture the information related to naming

conventions of objects and files utilized in

the software project.

141. Corrective --

This type of maintenance is used to

remove the errors spotted by business

users.

142. Preventive --

This maintenance activity is performed to

avoid any issues in future

implementations.

143. Unit Testing --

A programmatic test that tests the internal

working of a unit of code, such as a

method or a function.

144.
Test Environment

--

A test environment consists of a

server/computer on which a tester runs

their tests.

145.
 Beta Testing

--
The software to the customers after alpha

testing, the software's actual users

perform the beta testing in a real

production environment.

146. Performance Testing --

 It is a type of non-functional software

testing technique that is used to determine

the system parameters like speed,

scalability, and stability under different

workload conditions.

147. Test Stubs --

 Test stubs are used in a top-down testing

approach and allow testing of the upper

levels of the code when the lower levels

of the code are not developed.

148.
Path Testing

--

 In this type of testing, the control flow

graph of a program is specially designed

to identify a set of linearly independent

paths of execution.

149.
Categories Of Debugging

--

 Brute force debugging

 Backtracking

 Cause elimination

 Program slicing

 Fault tree analysis

150.

 Types Of Integration

Testing

--
 Big bang testing

 Bottom-Up Testing

 Top-Down Testing

Mrs. R.Pavithra

Faculty Prepared Signature

 HoD

