

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MKC

2019-20

MUST KNOW CONCEPTS

MECH

16MED13 & Heat and Mass Transfer

Year/Sem/Sec

Course Code & Course Name :

:

III / V/ A

S.No.	Term	Notation (Symbol)	Concept/Definition/Meaning/ Units/Equation/Expression	Units			
	Unit-I Conduction						
1.	Conduction.		Transfer of heat in solid objects				
2.	Thermal Conductivity	K	Thermal conductivity is defined as the ability of a substance to conduct heat.	w/mK			
3.	Newton's law	\otimes	Heat transfer by convection is given by Newton's law of cooling $Q = hA (T_s - T_{\infty})$				
4.	Fins		Heat transfer by extended surface				
5.	Applications of fins.	IGNING	 Cooling of electronic components Cooling of motor cycle engines. Cooling of transformers Cooling of small capacity Compressors 				
6.	Biot number	Estd.	It gives a simple index of the ratio of the heat transfer resistances inside of a body and at the surface of a body. Bi= hl/k				
7.	Types of Fins		1. Longitudinal fin 2. Radial fin 3. Pin fin				
8.	Fin Efficiency		The ratio of actual heat transfer rate taking place through the fin and the maximum possible heat transfer rate that could occur through the fin.				
9.	Fin Effectiveness		The ratio between heat transfer rate with fin and the heat transfer rate without fin.				
10.	Heat		Heat is a form of energy that can be transferred from one system to another as a result of temperature difference.				
11.	Heat transfer		The science that deals with the determination of the rates of such energy transfer				

12.	Mechanism of heat transfer	Conduction, Convection, Thermal Radiation	
13.	Fourier's law of heat conduction Q _{con}	It indicates that the rate of heat conduction in a direction is proportional to the <i>temperature gradient</i> in that direction. $\dot{Q}_{cond} = -k_t A \frac{dT}{dx} (W)$	W
14.	Thermal diffusivity α	The thermal diffusivity is a measure of how quickly a material can carry heat away from a hot source. $\alpha = \frac{k}{\rho C_p} = \frac{Heat \ conducted}{Heat \ stored}$	$\frac{m^2}{s}$
15.	Steady-State Heat Conduction	If the temperature of the body does not varies with time	
16.	Transient or Unsteady state heat conduction	If the temperature of the body varies with time	
17.	Periodic Heat flow	The temperature varies on regular basis.Examples:1. Cylinder of IC engines2. Surface of the earth during a period of 24hours.	
18.	Non – Periodic Heat flow	The temperature at any point within the system varies non linearly with time. Examples: 1. Heating of an ingot in a furnace 2. Cooling of bars	
19.	Newtonian heating or cooling process	The process in which the internal resistance is assumed as negligible in comparison with its surface resistance	
20.	Lumped Heat DESIGNI Analysis	In a Newtonian heating or cooling process the temperature throughout the solid is considered to be uniform at a given time	
21.	Semi- infinite solids	At any instant of time, there is always a point where the effect of heating or cooling at one of its boundaries is not felt at all. At this point the temperature remains unchanged	
22.	Infinite solids	A solid which extends itself infinitely in all directions of space	
23.	Fourier Number	The ratio of characteristic body dimension to temperature wave penetration depth of time	
24.	Factors affecting Thermal conductivity	 Moisture Density of material Pressure Temperature Structure of material 	
25.	Heisler charts	The solutions for temperature distributions	

			and heat flow of plane walls, long cylinders and spheres with finite internal and surface	
			resistance presented. It is nothing but a analytical solutions in the form of graphs.	
		Unit -	– II Convection	
26.	Convection.		Transfer of heat in liquids	
27.	Laminar flow		The fluid particles in each layer remain in an orderly without mixing with each other.	
28.	Turbulent flow		The path of any individual particle is zig – zag and irregular.	
29.	Natural convection		If the fluid motion is produced due to change in density	
30.	Forced convection	_	If the fluid motion is artificially created by means of an external force like a blower or fan	
31.	Dimensional Analysis		It is a mathematical method which makes use of the study of dimensions for solving several engineering problems like heat flow problems in fluid mechanics and thermodynamics	
32.	Buckingham π theorem	\otimes	If there are n variables in a dimensionally homogeneous equation and if these contain m fundamental dimensions, then the variables are arranged into $(n - m)$ dimensionless terms.	
33.	Reynolds Number	Re	The ratio of inertia force to viscous force	
34.	Prandtl Number	Pr	The ration of momentum diffusivity to thermal diffusivity	
35.	Nusselt Number DES	IGNNANG	The ratio of heat convection to heat conduction	
36.	Grashof Number	Escid.	The ratio of product of inertia force and buoyancy force to the square of viscous force	
37.	Stanton Number	St	The ratio of Nusselt number to the product of Reynolds number and Prandtl number	
38.	Newtonian Fluid		The Fluid which obey the newton's law of viscosity	
39.	Non-Newtonian Fluid		The Fluid which does not obey the newton's law of viscosity	
40.	Hydrodynamic Boundary Layer		The velocity of fluid is less than 99% of free stream velocity	
41.	Thermal Boundary Layer		The temperature of fluid is less than 99% of free stream temperature	
42.	Boundary Layer Thickness		The distance from the surface at which the local velocity or temperature reaches 99% of external velocity or temperature	
43.	Displacement		It is the distance, measured perpendicular to	

	thickness	the boundary by which the stream is
	thickness	the boundary, by which the stream is displayed on account of formation of
		boundary layer.
		It is the distance through which the total
4.4	Momentum thickness	
44.	Momentum thickness	loss of momentum per second be equal to if
		it were passing a stationary plate
		It is the distance, measured perpendicular to
		the boundary of the solid body, by which
45.	Energy Thickness	the boundary should be displaced to
101		compensate for the reduction in kinetic
		energy of the flowing fluid on account of
		boundary layer formation.
		1. Boundary layer region near the
46.	Flow over cylinder	surface
40.	field regions	2. An inviscid region away from the
		surface
	Dimensionless	1. Reynolds Number (Re)
47.	parameters used in	2. Nusselt Number (NU)
	forced convection	3. Prandtl Number (Pr)
		1. It express the functional relationship
		between the variables in
10	Advantages of	dimensionless terms
48.	Dimensional Analysis	2. It enables getting up a theoretical
		solution in a simplified
		dimensionless form
		1. No information is given about the
		internal mechanism of physical
	Dis advantages of	phenomenon
49.	Dimensional Analysis	2. Dimensional analysis does not give
		any clue regarding the selection of
		variables
		Heat transfer by convection is given by
	Newton's law of	Newton's law of cooling
50.		$\int G \text{ YOUR } Q = hA (T_s - T_\infty)$
		$\frac{100}{100} = \frac{100}{100} = \frac{100}{100}$
	Unit-III · PHASE CHANCE F	IEAT TRANSFER AND HEAT EXCHANGERS
	Chit-in . Thase chartoe i	
= 4		The change of phase from liquid to vapour
51.	Boiling	state is known as boiling.
		The change of phase from vapour to liquid
	Condensation	
52.	Condensation	state is known as condensation.
52.	Condensation	state is known as condensation.
52.		state is known as condensation. 1. Thermal and nuclear power plant.
	Applications of	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems
52. 53.	Applications of boiling and	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems 3. Process of heating and cooling
	Applications of	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems
	Applications of boiling and	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems 3. Process of heating and cooling
53.	Applications of boiling and	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems 3. Process of heating and cooling
	Applications of boiling and condensation.	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems 3. Process of heating and cooling 4. Air conditioning systems
53.	Applications of boiling and condensation.	state is known as condensation. 1. Thermal and nuclear power plant. 2. Refrigerating systems 3. Process of heating and cooling 4. Air conditioning systems If heat is added to a liquid from a

		film
56.	Drop wise condensation	a large portion of the area of the plate is directly exposed to vapour.
57.	Heat exchanger	A heat exchanger is defined as an equipment which transfers the heat from a hot fluid to a cold fluid.
58.	Direct heat exchanger	In direct contact heat exchanger, the heat exchange takes place by direct mixing of hot and cold fluids.
59.	Indirect contact heat exchanger	In this type of heat exchangers, the transfer of heat between two fluids and separated by wall
60.	Regenerator	In this type of heat exchangers, hot and cold fluids flow alternately through the same space.
61.	Recuperater	the hot and cold fluid do not come into direct contact with each other but are separated by a tube wall or a surface.
62.	parallel flow	In this type of heat exchanger, hot and cold fluids move in the same direction.
63.	counter flow	In this type of heat exchanger hot and cold fluids move in parallel but opposite directions.
64.	shell and tube heat exchanger	In this type of heat exchanger, one of the fluids move through a bundle of tubes enclosed by a shell
65.	compact heat exchangers	heat exchangers are small in size
66.	LMTD DESIGNIN	Log mean temperature difference
67.	cross flow heat exchanger Esto	hot and cold fluid moves at right angle to each other
68.	NTU	Number of transfer units
69.	Fouling factor	Deposits present in the tube reduces the heat transfer rate
70.	Effectiveness of heat exchanger	ratio between actual heat transfer to maximum possible heat transfer
71.	Compact heat exchanger	small in size .Radiator is a type of compact heat exchanger
72.	Flow Boiling	It may occur when a fluid is forced through a pipe or over a surface which is maintained at a temperature higher than the saturation temperature of the fluid.
73.	Modes of condensation process	1. Flimwise condensation2. Dropwise condensation
74.	Assumption of Nusselt's theory for	1. The fluid properties are constant2. The shear stress at the liquid vapour

	Flim condensatio	n	interface is negligible	
75.	Types of Heat exchangers		It may be classified on the basis of 1. Nature of heat exchange process 2. Relative direction of fluid motion 3. Design and constructional features 4. Physical state of fluids	
		Unit-	IV : RADIATION	
76.	Emissivity		It is defined as the ability of the surface of a body to radiate heat.	
77.	Kirchhoff's law		This law states that the ratio of total emissive power to the absorptivity	
78.	Stefan Boltzmann law	n	Emissive power of a black body is proportional to the fourth power of absolute temperature	
79.	Shape factor		Actual participation of part in transmission of electricity	
80.	Eddy diffusion		When one of the diffusion fluids is in turbulent motion, eddy diffusion takes place.	
81.	Radiation shield		Reduces heat by keeping the shield	
82.	Heat flux		Saturation of heat per unit area is called heat flux.	
83.	Stefan–Boltzman constant	in σ	$\sigma = 5.67 * 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$	$W/m^2 \cdot K^4$
84.	Black body		The idealized surface that emits radiation at this maximum rate is called black body	
85.	Absorptivity	α	The fraction of the radiation energy incident on a surface that is absorbed by the surface. Its value is in the range $0 \le \alpha \le 1$.	
86.	Radiation	DESIGNING	The heat is transferred from one body to another body without any transmitting medium. It is a electromagnetic wave phenomenon.	
87.	Emissive power	Estd.	The total amount of radiation energy emitted by the body per unit time and unit area.	W/m ²
88.	Monochromatic Emissive power	E _{bλ}	The energy emitted by the surface at a given length per unit time and per unit area in all directions	
89.	Reflectivity	Р	The ratio of radiation reflected to the incident radiation	
90.	Transmissivity	Т	The ratio of radiation transmitted to the incident radiation	
91.	Wein's Displacer Law	nt	The relationship between the temperature and wave length corresponding to the maximum spectral emissive power of the black body at that temperature $\lambda_{max} T = 2.9 \times 10^{-3} \text{ mk}$	
92.	Gray Body		If a body absorbs a definite percentage of incident radiation irrespective of their wave	

			length.	
93.	Intensity of radiation	In	As the rate of energy leaving a space in a given direction per unit solid angle per unit area emitting surface normal to the mean direction of space $I_n = E_b/\pi$	
94.	Lambert's Cosine law		The total emissive power E_b from the radiating plane surface in any direction propotional to the cosine of the angle of emission. $E_b \alpha \cos \theta$	
95.	Irradiation	G	The total radiation incident upon a surface per unit time and per unit area	W/m ²
96.	Radiosity	J	It is used to indicate the total radiation leaving a surface per unit time and per unit area	W/m ²
97.	Shape factor	Fij	The fraction of radiative energy that is diffused from one surface element and strikes the other surface directly with no intervening reflections	
98.	Other Names of Shape factors	\mathbf{X}	 View Factor Angle Factor Configuration Factor 	
99.	wavelength range of radiation	\sim	0.1 to 100 μm (micrometer)	
100.	wavelength range of the visible light	\succ	350 to 750 nm (nanometer)	
		Unit-V:	MASS TRANSFER	
101.	Types of mass transfer	$\langle \rangle$	Convection mass transfer, diffusion mass transfer	
102.	Mass transfer	IGNING	The process of transfer of mass as a result of the species concentration	
103.	Examples of mass transfer	Estd.	 Humidification of air in cooling tower Evaporation of petrol in the carburetor of an IC engine. The transfer of water vapour into dry air. 	
104.	Modes of mass transfer		 Diffusion mass transfer Convective mass transfer 	
105.	Convective mass transfer		It occur between surface and a fluid medium when they are at different concentration.	
106.	Free convective mass transfer		If the fluid motion is produced due to change in density resulting from concentration gradients,	

107.	Forced convective mass transfer		If the fluid motion is artificially created	
108.	Eddy diffusion		When one of the diffusion fluid is in turbulent motion, eddy diffusion takes place	
109.	Schmidt Number	Sc	The ratio of molecular diffusivity of the momentum to molecular diffusivity of mass	
110.	Scherwood Number	Sh	It is the ratio of concentration gradients at the boundary	
111.	Examples of Convective mass transfer		 Evaporation of alcohol Evaporation of water from an ocean when air blows over it 	
112.	Mass Concentration (or) Mass Density		Mass of a component per unit volume of mixture	Kg/m ³
113.	Molar Concentration (or) Molar Density		Number of molecules of the component per unit volume of mixture	Kg – mole / m ³
114.	Mass fraction	\langle	The ratio of mass concentration of the species to the total mass density of the mixture	
115.	Mole fraction		The ratio of mole concentration of a species to the total molar concentration	
116.	Molecular diffusion	X	Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero.	
117.	Examples of Molecular diffusion	\sim	Balloons, Food Coloring, Perfume, Soda	
118.	Distillation	\succ	It is the process of separating components of a mixture based on different boiling points.	
119.	Distillation Examples	IGNING	Examples of uses of distillation include purification of alcohol, desalination, crude oil refining, and making liquefied gases from air.	
120.	Wetted wall column	Estd.	The liquid-vapor contacting devices provides maximum contact surface area for a particular duty	
121.	spray chamber		The equipment frequently used for adiabatic humidification-cooling operation with recirculating liquid is called spray chamber	
122.	Physisorption		Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption	
123.	Lewis number	(Le)	It is the dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer	
124.	Relative humidity		The ratio of partial pressure of the vapour to the vapour pressure of the liquid at gas temperature.	

125.	Absorption		The separation of two or more components of a liquid solution cannot be achieved.
	I	Placen	nent Questions
126.	What is the average of first five multiples of 12?		A. 36 B. 38 C. 40 D. 42 Answer : A
127.	A running man crosses a bridge of length 500 meters in 4 minutes. At what speed he is running?		A. 8.5 km/s B. 7.5 km/s C. 9.5 km/s D. 6.5 km/s Answer : B
128.	If Suresh borrows Rs. 36000 from Mahesh at rate of interest 6% S.I, at the end of four years how much interest Suresh has to pay along with principal amount?		A. Rs. 12560 B. Rs. 12960 C. Rs. 13500 D. Rs. 14500 Answer : B
129.	What is the HCF of 1095 and 1168?	\bigotimes	 A. 37 B. 73 C. 43 D. 83 Answer: B
130.	A train moving at speed of 80 km/hr crosses a pole in 7 seconds. Find the length of the train.	Estd.	 A. 150 m B. 165 m C. 175 m D. 170 m Answer: C
131.	How many times the hands of a clock coincide in a day?		A. 24 B. 22 C. 23 D. 21 Answer : B
132.	40 % of 280 =?		A. 112 B. 116 C. 115 D. 120

			Answer: A
133.	A shopkeeper sold an article for Rs. 2500. If the cost price of the article is 2000, find the profit percent.		A. 23% B. 25% C. 27% D. 29% Answer: B
134.	What is the area of a triangle with base 5 meters and height 10 meters?		 A. 20 square meters B. 35 square meters C. 25 square meters D. 40 square meters Answer : C
135.	A: B: C is in the ratio of 3: 2: 5. How much money will C get out of Rs 1260?		A. 252 B. 125 C. 503 D. None of these Answer: D
136.	In a kilometer race, A beats B by 40 meters or by 5 seconds. What is the time taken by A over the course?		A. 1 minute 57 seconds.B. 2 minutes.C. 1.5 minutes.D. None of these.Answer: B
137.	Find the solution of $(935421 \times 625) = ?$	\bigotimes	a. 584638125 b. 524896335 c. 542879412 d. 582365890 ANSWER: 584638125
138.	Find which of the following number is divisible by 11?		a. 246542 b. 415624 c. 146532ANSWER: 415624 d. 426513
139.	Find the unit digit in the product $(365 \times 659 \times 771)$	Estd.	a. 1 b. 4 ANSWER: 4 c. 5 d. 9
140.	The remainder is 3, when a number is divided 5. If the square of this number is divided by 5, then what is the remainder?		a. 5 b. 4 c. 7 d. 1 ANSWER: 4
141.	A man walking at the rate of 6 km/hr crosses a bridge in 15 minutes. The length of the bridge is		a. 1000 m b. 1250 m c. 1500 m d. 1800 m ANSWER: 1500 m

r			<u>гарания на страния на с По страния на страния на</u>
	Two pipes A & B can		a. 4 min
	fill a tank in 5 min &		b. 6 min
	10 min respectively.		c. 14 min
	Both the pipes are		d. 20 min
142.	opened together but		
	after 2 min, pipe A is		ANSWER: 6 min
	turned off. What is		
	the total time required		
	to fill the tank?		
			a. 123
	50 % of a number is		b. 119
	18 less than two-third		c. 115
143.	of that number. Find		
			d. 108
	the number		
			ANSWER:108
	A shopkeeper sells		a. 220
	an article for Rs. 200		b. 250
144.	with a loss of Rs. 20		c. 280
111.	%. Find the cost price		d. 260
	of the article		
			ANSWER: 250
	A merchant sells 30		a. 15 %
			b. 25 %
145	metres of cloth and		c. 50 %
145.	gains selling price of		d. 75%
	10 metres. Find the		
	gain percent		ANSWER: 50%
			a. 28
	The average of four		b. 30
	consecutive even		c. 32
146.	numbers is 27. Find		d. 34
	the largest of these		u. 54
	numbers.		ANSWER: 30
	A batsman makes a $ [] $	IGNING	a. 35R FUTURE
	score of 80 runs in		b. 32
147.	the 16 th inning and	Estd.	c. 29
	increases average by		d. 25
	3. What is his average		ANSWER:35
	after 16 th inning?		
			a. Shaggy
			b. bald
148.	Hirsute		c. erudite
			d. glorious
			ANSWER: bald
			a. Nescient
			b. Awkward
			c. Bankrupt
149.	Ostentatious		d. Reserved
,	C Stollarious		ANSWER: Reserved

	What is the average of first five multiples	E. 36	
		F. 38	
150.		G. 40	
	of 12?	Н. 42	
		Answer : A	

Faculty Team Prepared

Signatures

- 1. Mr.D.Deepa
- 2. Mr.S.Perumal
- 3. Mr.R.Ramesh

HoD