

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MECH

2020-21

MKC

Course Code & Course Name	:16MEE1
Year/Sem/Sec	: IV/VII

1EE14 Industrial Robotics

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I : Fund	amentals of Robot	
1.	Industrial Robot		Reprogrammable, multifunctional mechanical device performing tasks.	
2.	Manipulator	2	Machine having same function as of human being	
3.	Work envelope	$\mathbf{\times}$	Space within the robot manipulates its wrist	
4.	Pitch	\sim	Up and down movement of wrist	
5.	Roll	X	Rotation of wrist	
6.	Yaw	\sim	Right and Left movement of wrist	
7.	Actuator	\sim	Devices used to convert hydraulic energy to Mechanical Energy	
8.	Automation		Automation is a technology that is concerned with the use of mechanical electronic and computer based system in the operation and control of production.	
9.	Types of Automation	std. 2	Fixed automation, programmable automation, flexible automation	
10.	Rule of robot		 do not harm human being obey human being protects itself from harm 	
11.	Robot anatomy		It means study of structure of Robots	
12.	Types of robot anatomy		 polar cylindrical cartesian jointed arm 	
13.	Robot joints		 linear rotational twisting revolving 	
14.	Wrist		It is the set of rotary joints to which a robots end effector is attached.	

15.	Major components of robots	Manipulator, end effector, power source, controller, censors, actuator
16.	General areas of robotics	Industrial, hobbyist, promotional, personal, military, educational, medical.
17.	Work performed by the robot	 loading unloading palletizing depalletizing
18.	Advantages of robots	 greater flexibility reprogram ability adjustable kinematics greater response time improved product quality
19.	Disadvantages of robots	 replacement of human labour more unemployment significant retraining costs
20.	Processing application of Robot	 welding painting assembly inspection
21.	Offset	point of action for the tool mounted to the Robot tool plate
22.	Types of Robot movements	arm and body motionwrist motion
23.	4D jobs	 Dirty Dangerous Difficult Dull
24.	RIA definition of robot	Reprogrammable, multifunction manipulator designed to move materials, parts, tools or special devices through variable programmed motions for the performance of the variety of tasks.
25.	Robot control techniques	 non servo control servo control
		obot Drive Systems and End Effectors
26.	End-effector	Attachments at the wrist arm perform a task.
27.	Grippers	Device to grasp objects
28.	Stripping Device	Used to remove work piece from magnetic gripper
29.	Compliance of a Robot	Displacement of the wrist in response to force
30.	Feedback Devices	Potentiometer, Resolver, Encoder
31.	Types of Drive Systems	Electric: Servo motors, Stepper motors Hydraulic actuators Pneumatic actuators

32.	RCC	Remote Center Compliance
33.	Linear hydraulic actuator	 single acting cylinder double acting cylinder double acting doublerod cylinder
34.	Hydraulic rotary actuator	Geared motorVane motorPiston motor
35.	Advantages of hydraulic actuator	robustself-lubricatinghigh efficiency
36.	Disadvantages of hydraulic actuator	expensivenoisyhigh maintenance
37.	Advantages of pneumatic actuator	 compact cheapest compressed air can be stored and conveyed easily over long distance
38.	Disadvantages of pneumatic actuator	 more noise and vibration not suitable for heavy load if mechanical stops are used resetting the system can be slow
39.	Advantages of electrical actuator	 widespread availability of power supply no pollution of working environment high power conversion efficiency
40.	Disadvantages of electrical actuator DESI	poor dynamic response larger and heavier motors must be used which is costly UR•F conventional gear driven create backlash
41.	Advantages of magnetic gripper	 bick up times are very fast to handle metal parts with holes require only one surface gripping
42.	Disadvantages of magnetic gripper	 residual magnetism side slippage more than one sheet will be lifted by the magnet from a stack
43.	Types of magnetic grippers	 electromagnetic grippers permanent magnet grippers
44.	Adhesive grippers	Which an adhesive substance performs the grasping action for handling fabrics and other lightweight material.
45.	Limitations of adhesive grippers	 Adhesive substance losses is tackiness on repeated usage Reliability is diminished with successive operations

46.	Advantages of suction Cup grippers	 Requires only one surface of the part for grasping Applies uniform pressure distribution
		Lightweight gripper
47.	Drive system used in the robot	 gears pulley drive rack and pinion recirculating ball and screw rotary drives
48.	Advantages of open loop system	 simple economical easier to construct
49.	Advantages of closed loop system	 the systems are accurate even in the presence of nonlinearities less affected by noise
50.	Uses of stepper motor	 Used for measured rotation Can be held at a particular position of shaft
	Unit-III : Sense	ors and Machine Vision
51.	Sensors	Device that detects information about the surroundings
52.	Accuracy	Defined target point within work volume.
53.	Precision	Closeness to the true value
54.	Repeatability	Ability of the robot to position itself again and again
55.	Spatial Resolution	Control resolution combined with mechanical inaccuracy
56.	Control Resolution DESIGNING	capability of the robot's positioning system to divide the range of the joint into closed spaced points
57.	Palletizing Fstd	Arranging materials on a pallet as per rules
58.	Tactile Sensor	Indicates contact between themselves and some other solid objects
59.	Proximity Sensor	Senses the presence or absence of the object without physical contact
60.	Range sensor	Senses the distance of the object
61.	Piezoelectric Materials	When stretched or compressed generates electric charges
62.	Machine Vision	Image processing and Image analysis techniques
63.	Frame Grabber	Device to store the digital image
64.	Segmentation	Grouping areas of an image having similar characteristics
65.	Region growing	Pixels are grouped in regions called grid elements

66.	Thresholding		Binary conversion technique – each pixels are converted to binary values
67.	Edge detection		Change of intensity in the pixels at the boundary or edges
68.	Region Growing		It is a collection of segmentation techniques in which pixels are grouped in regions called grid elements based on attribute similarities.
69.	Feature Extraction		In vision applications distinguishing one object from another is accomplished by means of features that uniquely characterize the object. A feature is a single parameter that permits ease of comparison and identification.
70.	Types of Rotary encoders		Incremental encodersAbsolute encoders
71.	Transducer	\sim	A transducer is an electronic device that converts energy from one form to another.
72.	Preprocessing		It deals with techniques such as noise reduction and enhancement of details.
73.	Vision Applications		Object location, Object Properties, Spatial Relations, Action Monitoring
74.	Capacitive technique advantages	\otimes	 Wide Dynamic Range Linear Response Robust
75.	Ultrasonic Sensors Applications	\sim	Distance Measurement Mapping
	Unit-IV : F	Robot Kinema	tics and Robot Programming
76.	Robot Program	<X	List of instruction to support the robot work cycle
77.	Continuous path control		Entire route is specified by interpolation
78.	Point to point control	atd 2	Finite points are specified along the route
79.	Kinematics	3tu. 2	Study of relative motion between parts
80.	Forward Kinematics		Determination of position and orientation knowing the joint angles
81.	Reverse Kinematics		Determination of joint knowing the angles position and orientation
82.	Teach Pendant		A small hand held control box to regulate robot movements
83.	Versatile Algorithmic Language	VAL	Robotic language developed by Unimation. Inc. for PUMA series.
84.	Servo Control Robot		Programmed by lead through and textual language methods
85.	Straight line Interpolation		Computes the straight line path by sequence of addressable points
86.	Circular Interpolation		Used to define a circle in the robot's workspace

87.	Irregular smooth motion		Combination of straight, curved and back & forth motions
88.	Manual Lead through programming		The programmer moves the manipulated wrist to teach
89.	Degrees of Freedom		Freedom to move in space
90.	RAIL		Robotic Automatix Incorp. Language
91.	AML		A Manufacturing Language
92.	MCL		Machine Control Language
93.	AI		Artificial Intelligence
94.	VML		Virtual Machine Language
95.	SRL		Structured Robot Language
96.	Teach Pendant mode of operations		Teach mode, test mode, repeat mode.
97.	Transformation	$\overline{}$	 Pure translation Pure Rotation Combination of rotation and translation
98.	Pure traslation	X	Frame moves without any change in its orientation
99.	Articulated arm	\sim	3 DOF with RRR arm configuration
100.	Joints driven modes	\times	 Position control mode Force control mode
	Unit-V	: Implementat	tion and Robot Economics
101.	Payback period	\sim	Length of time required for net
		$\sim \times$	accumulated cash flow Servicing the equipment at periodic
102.	Preventive Maintenance		intervals to reduce breakdown
103.	Return on Investment	GN ROI	Determines the rate of return for the proposed project
104.	Equivalent Uniform Annual Cost	EUAC	It converts investments and cash flows into equivalent uniform cash flows over life of project
105.	Automated Guided Vehicle	AGV	Computer controlled driverless vehicles used for transporting materials
106.	Vehicle Guidance Technology		Keeping AGV on a predefined path
107.	Vehicle Management		Coordinating the unmanned vehicles
108.	Vehicle Traffic Control		Minimizing interference between vehicles to prevent collusions.
109.	Gantry Robot		Cartesian coordinate robots with the horizontal member supported at both ends are sometime called Gantry robots.
110.	Rail Guided Vehicles	RGV	Motorised vehicles that are guided by a fixed rail system constitute a third category of material transport systems.

	1		
111.	Robot purchase cost		The basic price of the robot equipped from the manufacturer with the proper
111.	Robot purchase cost		options (excluding end effector) to
			perform the application.The costs of planning and design by the
112.	Engineering costs		user company's engineering staff to
			install the robot.
			This includes the labor and materials
113.	Installation costs		needed to prepare the installation site
			(provision for utilities, floor preparation, etc.).
			This includes the cost of end effector,
114.	Special tooling		parts position and other fixtures and
	- I		tools required to operate the work cell.
			This covers the additional investment
115.	Miscellaneous costs		costs not included by any of the above
			categories (e.g. other equipment needed)
			The direct labor cost associated with the
11(Direct labor cost		operation of the robot cell. Fringe benefits are usually included in the
116.	Direct labor cost		calculation of direct labor rate, but other
			overhead costs are excluded.
			The indirect labor costs that can be
117.	Indirect labor cost		directly allocated to the operation of the
117.	mullect labor cost		robot cell. These costs include
			supervision, setup, programming
110		\sim	This covers the anticipated costs of
118.	Maintenance cost	\sim	maintenance and repair for the robot cell.
			Driverless train operations
		\sim	Storage distribution system
119.	Applications of AGV	\sim	Assembly line operation
			• FMS
	DEST	GNING Y	Towing vehicles
		and a	• Unit load vehicles
120.	Types of AGV vehicles.	std. 2	Pallet trucks
120.	Types of AG v venicles.		Fork trucks
			Light load Vehicles
			Assembly line vehicles.
121.	Types of maintenance		Preventive maintenance
			Emergency maintenance It involves the planned servicing at
122.	Preventive maintenance		It involves the planned servicing at periodic intervals
			It is the case when the maintenance
100	Emergency		crew is called in to repair a robot that
123.	maintenance		malfunctions or breaks down during
			regular operation.
124.	Mean Time To Repair	MTTR	measure the average time of repairing
	-		the robot for each breakdown
125.	Mean Time Between Failures	MTBF	average time of machinery will operate between breakdowns.

	Plac	cement Questions
126.	How many times are the hands of a clock at right angle in a day?	 A. 22 B. 24 C. 44 D. 48 Explanation: In 12 hours, they are at right angles 22 times. ∴ In 24 hours, they are at right angles 44 times.
127.	A train moves with a speed of 108 kmph. Its speed in metres per second is :	A.10.8 B.18 C.30 D.38.8 Explanation:108 kmph = 108*[5/18] m/sec = 30 m/s.
128.	Determine the probability that a digit chosen at random from the digits 1, 2, 3,12 will be odd.	Total no. of Digits = 12. Equally likely cases = 12. There are six odd digits. Probability = 6 /12 = 1/2
129.	In covering a distance of 40 km, Kamlesh takes 2 hours more than Pankaj. If Kamlesh doubles his speed, then he would take 1 hour less than Pankaj. Then what is Kamlesh's speed?	A. 11 kmph B. 5 kmph C. 9 kmph D. 6 kmph Answer:B Explanation: Let Kamlesh's speed be x km/hr. Then, $40/x - 40/(2x) = 4$ 8x = 40 x = 5 km/hr
130.	Solve the equation $ESIGNING$ x+34=82	A. 58 B. 48 C. 55 UTURE D. 60 Explanation: x=82-34=48
131.	An accurate clock shows 8 o'clock in the morning. Through how may degrees will the hour hand rotate when the clock shows 2 o'clock in the afternoon?	A.360. B.180 C.90 D.60 Answer: B) 180 Explanation: Angle traced by the hour hand in 6 hours=(360/12)*6
132.	Excluding stoppages, the speed of a bus is 54 kmph and including stoppages, it is 45 kmph. For how many minutes does the bus stop per hour?	A. 9 B. 10 C. 12 D. 20

-		
133.	Find the no., when 15 is subtracted from 7 times the no., the result is 10 more than twice of the number	Let the number be x. $7x - 15 = 2x + 10 \Longrightarrow 5x = 25 \Longrightarrow x = 5$
134.	If 0.75: x :: 5:8, then x is equal to:	A.1.12 B.1.16 C.1.20 D.1.30 Explanation:(x * 5) = (0.75 *8) X=6/5 = 1.20
135.	Today is Monday. After 61 days, it will be :	A. Tuesday B. Monday C. Sunday D. Saturday Answer: D) Saturday Explanation: Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. After 61 days, it will be Saturday.
136.	Adam can do a job in 15 days; Eve can do the same job in 20 days. If they work together for 4 days, what fraction of job is incomplete?	Adam can do $1/15$ of the job per day Eve can do $1/20$ of the job per day If they work together they can do $7/60$ of the work together Remaining job $1 - 7/60 = 32/60 = 8/15$
137.	Which one of the following is not a prime number?	A.31 B. 61 C. 71 D. 91 Explanation: 91 is divisible by 7. So, it is not a prime number.
138.	Find c, if 5c - 2 = 33	B. 9 C. 11 D. 13 Explanation: We add 2 to both sides and get 5c- 2+2=33+2, or 5c=35. We divide both sides by 5 to get c=7.
139.	A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?	A. 3.6 B. 7.2 C. 8.4 D. 10 Explanation: Speed = $600/5 \ge 60 \text{ m/sec.} = 2 \text{ m/sec.}$ = $2 \ge 18/5 \text{ km/hr} = 7.2 \text{ km/hr}$

140.	A and B can do a piece of work in 4 days, while C and D can do the same work in 12 days. In how many days will A, B, C and D do it together?	A, B, C and D will together take $\frac{1}{4}$ + $\frac{1}{12} = \frac{4}{12} = \frac{1}{3}$. 3 days to complete the work.
141.	The average of five numbers is 27. If one number is excluded, the average becomes 25. The excluded number is?	A.25 B.35 C.45 D.55 Answer:B Explanation: (27*5)-(25*4) 135-100 35
142.	The maximum gap between two successive leap year is?	A.4 B.8 C.2 D.1 Answer: B) 8 Explanation: This can be illustrated with an example. Ex: 1896 is a leap year. The next leap year comes in 1904 (1900 is not a leap year).
143.	A guy bought 10 pencils for Rs. 50 and sold them for Rs. 60.What is his gain in terms of percentage?	A. 10% B. 5% C. 20% D. 12% Answer:C Explanation: `"Gain%"=("Gain"/"C.P")*100=20%`
144.	stations 200 km apart	 NING 7 DUR FUTURE In the same time, they cover 110 km and 90 km respectively. For the same time, speed and distance is inversely proportional. So ratio of their speed = 110:90 = 11: 9
145.	In 100 m race, A covers the distance in 36 seconds and B in 45 seconds. In this race A beats B by:	A. 20m B. 25m C. 22.5m D. 9m Explanation: Distance covered by B in 9 sec. = (100/45)*9m = 20m
146.	Half percent, written as a decimal, is	A.0.2 B.0.02 C.0.005 D.0.05

		Answer: C	
		Explanation: As we know, $1\% = 1/100$ Hence, $(1/2)\% = (1/2 * 1/100) = 1/200 = 0.005$	
147.	A pump can fill a tank with water in 2 hours. Because of a leak, it took 2.5 hours to fill the tank. The leak can drain all the water of the tank in:	A. 4 1/3 Hours B. 7 Hours C. 8 Hours D. 10 Hours Explanation: Work done by the leak in 1 $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 10 \end{pmatrix} = 1$ hour = \therefore Leak will empty the tank in 10 hrs.	
148.	If a number is chosen at random from 1 to 100, then the probability that the chosen number is a perfect cube is	We have 1,8,27 and 64 as perfect cubes from 1 to 100. Thus, the probability of picking a perfect cube is $4/100 = 1/25$	
149.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	A. 9 B. 11 C. 13 D. 15 Explanation: Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer $= x + 4 = 15$.	
150.	Find the number, when 15 is subtracted from 7 times the number, the result is 10 more than twice of the number = 51	A. 5 B. 15 C. 7.5 D. 4 Explanation: Let the number be x. 7x - 15 = 2x + 10 => 5x = 25 => x = 5	