

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

:

MKC

2021-2022

CHEMISTRY

21BSS11 - ENGINEERING CHEMISTRY

Course Code & Course Name : Year/Sem/Sec

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I : W	Vater Technology	
1.	Hard water	-	Presence of Salts Mg and Ca in water	-
2.	Soft water	-	Absence of Salts Mg and Ca in water	-
3.	Alkalinity		Due to presence of OH^2 , CO_3^2 & HCO_3^2 ions	-
4.	PPM	-	Parts Per Million(1 PPM= 1 Mg/Lit)	-
5.	Hardness		Characteristic of water due to presence of Salts Mg and Ca in water	PPM
6.	EDTA		Ethylene Diamine Tetra Acetic Acid	-
7.	Zeolite	Ze	Green Sand, Molecular formula Na ₂ O.Al ₂ O ₃ .xSiO ₂ .yH ₂ O	-
8.	Calgon		Sodium Hexa Meta Phosphate – Na ₂ [Na ₄ (PO ₃) ₆]	-
9.	Caustic Embrittlement		Formation of irregular, intergranular cracks on the boiler metal. It is caused by high concentration of NaOH in boiler	-
10.	Carbonate Hardness		Hardness of water due to presence of Ca(HCO ₃) and Mg(HCO ₃) (Temporary hardness)	-
11.	Non-Carbonate Hardness	std	Hardness of water due to presence of sulphate and chloride Ca and Mg (Permanent hardness)	-
12.	Scale	-	Hard and strong Coating on the surface of walls due to the presence of high concentrated salts in boiler	-
13.	Sludge	-	Formation of loose and slimy precipitate due to the presence of high concentrated salts in boiler	-
14.	Priming	-	Production of wet stream in boiler	-
15.	Wet Stream	-	Stream containing droplets of water	-
16.	Foaming	-	Production of persistent foam or bubbles on the surface of the water in boiler	-

17.	Erichrome Black T	EBT	It is an indicator used for estimation of hardness by EDTA Method. It is form wine red coloured week colmplex with Ca ²⁺ Mg ²⁺	-
18.	Buffer solution	-	During the Chemical reaction pH should be maintained at particular range so that add buffer solution to reaction mixture	-
19.	Blow down operation	-	It is process of removal of concentrated water by fresh water frequently from the boiler during steam production	-
20.	Carry over	-	The droplets of liquid water carry with some dissolved salts and suspended impurities.	-
21.	Aeration	-	The process of mixing water with air	-
22.	Disinfection	-	The process of removal of bacteria from drinking water	
23.	Break point chlorination	-	It indicates the amount of chlorine to kill bacteria and to remove organic matter present in water	-
24.	Boiler corrosion		The corrosion in boiler due to chemical or electrochemical attack of its environment	-
25.	Exchange resins	RH & ROH	The resins containing may be basic or acidic functional group are capable exchanging anion and cations in hard water	-
	U	nit-II :Corr	osion and its Control	
26.	Corrosion		Destruction or deterioration of metals or alloys	-
27.	Chemical or dry corrosion		Corrosion due the direct attack or reaction of chemicals at dry condition	-
28.	Wet or electrochemical corrosion		Corrosion due the electrochemical reaction on the metal surface at wet condition	-
29.	Anodic reaction	-	Oxidation reaction which involves loss of electron	-
30.	Cathodic reaction		Reduction reaction which involves gain of electrons	-
31.	Decarburization	_	Removal of Carbon content from the steel	-
32.	Hydrogen embrittlement	std	Crack and blister of metal surface due to the reduction of hydrogen	-
33.	Sacrificial anodic protection	_	Metallic structure can be protected by connecting with more active metal	-
34.	Impressed current cathodic protection	-	Metallic structure can be protected by passing direct current to nullify the corrosion current	-
35.	Paint	-	Mechanical dispersion of pigment along with other ingredients	-
36.	Pigment	-	Color producing substance in paint	-
37.	Electroplating	-	One metal can be coated on other metal surface by passing direct current	-

-	I	1		
		_	One metal can be coated on other metal or	_
38.	Electroless plating	_	non -metal surface by using reducing agent	_
			without current	
			Arrangement of various metallic electrodes	_
39.	Electrochemical Series	-	based on their reduction electrode potential	
			on hydrogen scale	
			The direct reaction of oxygen on metal	
40.	Oxidation Corrosion	-	surface at low or high temperature in the	-
			absence of air	
41.	Pilling bed worth rule	_	The radio of the volume of the oxide film	_
TI ,	T ming bed worth fule	_	formed to the volume of metal consumed	
42.	Stable oxide layer		It is fine structured and gets adsorbed tightly	
42.	Stable Oxfue Tayer	-	to the metal surfave	-
			It is produced on metal surface of nobel	
43.	Unstable oxide layer	-	metals which easily decompose back in to	-
			metal and oxgen	
			The oxide layer volatilize as soon as it is	
44.	Volatile oxide layer	-	formed, leaving the metal surface for further	
			corrosion	
	Inter-granular corrosion		corrosion that occurs in the grain	
45.	Inter Standiar Corrosion	- >	boundaries in a metal/alloy	-
			It is a localized attack, resulting in the	
	Pitting corrosion		formation of a hole around which the metal is	
46.	r itting corrosion	-	relatively unattacked.	-
			Telatively unattacked.	
	Crevice corrosion		Crevice between metal and non-metallic	
47.	Crevice corrosion	-		-
			material is in contact with liquids	
			when two different kinds of metals of the	
48.	Galvanic Corrosion		electrochemical series (more active metal and	-
			less active metal) are in contact with each	
			other in the presence of solution or moisture	
10			when added in a small concentration to an	
49.	Corrosion Inhibitors		environment reduces the corrosion rate of a	-
			metal exposed to that environment	
50.	Mixed inhibitors		The substances, which reduce both the	_
			cathodic and anodic reactions	
		Unit-III :P	olymer Chemistry	
	DECLO		Macromolecules with high molecular weight	
51.	Polymer DESIC		formed by repeating linking of monomers	-
			Torned by repeating mixing of monomers	
			Micromolecule which combines with each	
52.	Monomer	STA	other to form polymer	-
		JUU		
	Polymorization		Process large no of small molecules combine	
53.	Polymerization	-	to form a polymer	-
	Addition		Polymerization follow addition reaction	
54.	polymerization	-	(Single type of monomer having minimum	-
	porymenzation		one double bond)	
	Condensation	-	Polymerization follow Condensation reaction	_
55.	polymerization		(monomer having two polar groups)	
	Co. on igint			
56.	Co or joint	-	Polymerization follow addition reaction	-
50.	polymerization		(more than one type of monomer involve in	
L		I		

		polymerization)	
57.	Homopolymer	Polymer containing same type of monomer (Polyethene)	_
58.	Heteropolymer	- Polymer containing more than one type of monomers (Nylon 6,6)	_
59.	Degree of polymerization	- No of repeating units in a polymer chain	-
60.	Functionality	- No of reactive sites (Functional Group) in a monomer	-
61.	Isotactic	- Functional groups are projected at same side with respect to main chain	-
62.	Syndiotactic	- Functional groups are projected at alternate side with respect to main chain	-
63.	Atactici	Functional groups are projected at randomly with respect to main chain	-
64.	Plastics	- High molecular weight organic materials which can moulded into any desired shape by the application of heat and pressure	-
65.	Thermoplastics	- Soften on heating	-
66.	PVC	- Polyvinylchloride	-
67.	Polydispersive index	PDI Ratio of weight average molecular weight and number average molecular weight	-
68.	Natural polymer	- Polymer exist as natural resources	-
69.	Synthetic Polymer	Polymers made by artificially using chemicals	-
70.	Random polymer	- Monomers are arranged in randomly	-
71.	Block polymer	Monomers are arranged block wise	
72.	Degree of DESIC polymerization	The number of repeating units in the polymer chain	_
73.	Graft polymer	- Different monomers as its backbone	-
74.	Sterospecific polymer	The orientation of monomeric units in a polymer molecule can takes place an orderly or disorderly fashion with respect to main chain	-
75.	Functionality	The number of bonding sites or reactive sites or functional present in monomer	
	Unit-IV	:Energy Resources & Storage Devices	
76.	Nuclear energy	- The enormous amount of energy released during nuclear reaction	-
77.	Nuclear fission	- Process of heavier nuclei splits into two or more smaller nuclei with liberation of large	-

			amount of energy	
78.	Nuclear fusion	-	Process of two small nuclei combine to form single nuclei with liberation of large amount of energy	-
79.	Critical Mass	-	The minimum amount of fissionable material required to continue nuclear chain reaction	-
80.	Super Critical Mass	-	More than the Critical Mass	-
81.	Sub- Critical Mass	-	Smaller than the Critical Mass	-
82.	Solar cell	-	It is a device which convert solar energy in to electricity	-
83.	Control rod		Control the speed of nuclear reaction in reactor by absorbing neutrons formed during nuclear reaction (Cd & B)	-
84.	Moderators		Slow down the speed of neutron in nuclear reactor (water, Heavy water & Graphite)	-
85.	Breeder reactor	\times	Convert non-fissionable material in to fissionable material	-
86.	Battery		The arrangements of several electrochemical cells connected in a series	-
87.	Primary battery		Not rechargeable battery due to irreversible cell reaction	-
88.	Fuel cell		Convert energy of fuel into electrical energy	-
89.	Solid state battery		Electrolyte also used in solid state (Lithium battery)	-
90.	Lithium Battery	-	battery of Future	-
91.	Fuel Cells	-	Which convert chemical energy in to electricity without combustion	-
92.	NICAD Battery S	NINC	Nickel-Cadmium Battery	-
93.	Multiplication factor	std	The number of neutrons resulting from single fission reactions	-
94.	Wind energy		Energy recovered from the force of wind	-
95.	Wind mills	-	The wind energy harnessed by making use of wind mills	-
96.	Spallation	-	Heavy nucleus in to several fragments	-
97.	Fuel battery	-	Large number of fuel cell is connected in series	-
98.	Electrolyte	-	Dissociate of ions	
99.	Lead acid Battery	-	Electrical energy converted in to chemical energy	-

100.	Primary battery	-	Electro chemical cell reaction is irreversible	-
	Ľ	unit-V :Refr	actories & Abrasives	
101.	Abrasives	-	It is a hard substances, used for polishing, shaping, drilling and grinding operations	-
102.	Natural Abrasives	-	Diamond, Corundum, Emery, Quartz, Garnet	-
103.	Hardness	-	It is an ability of an abrasive to grind or scratch away other material	-
104.	Moh's Scale	-	It is an unit of hardness of abrasives	Mohs
105.	Soft Abrasives	-	Hardness in the range of 1-4 in moh's Scale	Mohs
106.	Abrasive power		The strength of an abrasive to grind to another material	-
107.	Refractories	·	It is a material, withstand high temperature and load without softening and melting	-
108.	Pyrometric Cone Equivalent	PCE	It is used to measure refractoriness of a refractories	-
109.	Rerfractorines under load	R.U.L	The load bearing capacity of a refractory can be measured	-
110.	Porosity		The ratio between pores volume and the bulk volume of refractories	-
111.	Thermal Spalling	X	It is the property of breaking, cracking or peeling off a refractory material under high temperature.	-
112.	Carborundam		SiC	-
113.	Bauxite	-	Alumina bricks are manufactured from bauxite, ore of alumina	-
114.	Types of Refractory's	NINC	Acid, Basic and Neutral	-
115.	Toughness		Hard and brittleness of the abrasive	-
116.	Diamond	sta	Pure crystalline of carbon	-
117.	Corundum	-	Pure crystalline of alumina	
118.	Dimensional Stability	-	The volume change of refractory when subjected to higher temperature	-
119.	Quartz	-	Si O ₂	-
120.	Garnet	-	The combination of Trisilicates of alumina, magnesia and ferrous oxide. General formula : $X_3Y_2(SiO_4)_3$	-
121.	Graphite	-	Neutral Refractory's	-
122.	Grinding wheel	-	It is used for removal of scales from iron	-

			surfaces, cutting tool harpening	
123.	loose powder	-	To clean the surface prior to coating abrasive powders are used.	-
124.	Reversible dimensional changes	-	The uniform expansion and contraction of a refractory material	-
125.	Irreversible dimensional changes	-	contraction or expansion of a refractory	-
		Placen	nent Questions	
126.	Chemistry	-	Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances	-
127.	Organic chemistry	-	Organic chemistry is the study of carbon containing compounds	-
128.	Inorganic chemistry	-	Inorganic chemistry deals with other than carbon compounds	_
129.	Physical chemistry	$\langle \rangle$	Physical chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems	-
130.	Normality	N	Normality is a measure of concentration equal to the gram equivalent weight per liter of solution	-
131.	Molarity	М	Molarity indicates the number of moles of solute per liter of solution (moles/Liter)	-
132.	Molality	m	Molality is a measure of the concentration of a solute in a solution in terms of amount of substance in a specified amount of of the solvent	-
133.	Avogadro's number	INING	Avogadro's number, number of units in one mole of any substance equal to 6.02214076 $\times 10^{23}$ atoms, ions, or molecules	-
134.	Atom E	std	It is the smallest particle of a chemical element that can exist	-
135.	Molecules	-	Molecules are made up of atoms that are held together by chemical bonds	-
136.	Chemical bond	-	A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds	-
137.	Types of bonds	-	There are three major types of chemical bonds: ionic, covalent, and metallic bond	-
138.	Ionic bond	-	Ionic bond form due to the transfer of an electron from one atom to another	-

139.	Covalent bond	- Covalent bond involve the sharing of electrons between two atoms	-
140.	Metallic bonding	It is a type of chemical bonding that rises from the electrostatic attractive force between conduction electrons and positively charged metal ions	-
141.	Orbital	- It is a specific path, in which electrons are revolved around the nucleus of an atom	-
142.	Types of orbitals	- There are four types of orbitals namely s, p, d and f	-
143.	Chemical equilibrium	Chemical equilibrium is the state in which both reactants and products are present in same concentrations which have no change with time	-
144.	Acid	An acid is a molecule or ion capable of donating a proton (hydrogen ion H ⁺)	-
145.	Base	Bases are substances that, in aqueous solution, release hydroxide (OH ⁻) ions	-
146.	Stoichiometry or law of conservation of mass	- total mass of the reactants equals the total mass of the products	-
147.	Oxidation	Oxidation is the loss of electrons during a reaction by a molecule, atom or ion	-
148.	Reduction	Reduction is the gaining of electrons during a reaction by a molecule, atom or ion	-
149.	Salt	- Salt is a solid chemical compound consisting of an ionic assembly of cations and anions	-
150.	Hydrolysis	It is a chemical process in which a molecule of water is added to a substance	-

DESIGNING YOUR FUTURE

Estd. 2000