
OOP Review

Object-Oriented Programming

Revisited

 Key OOP Concepts
 Object, Class

 Instantiation, Constructors

 Encapsulation

 Inheritance and Subclasses

 Abstraction

 Reuse

 Polymorphism, Dynamic Binding

 Object-Oriented Design and Modeling

Object

Definition: a thing that has identity, state, and

behavior

 identity: a distinguished instance of a class

 state: collection of values for its variables

 behavior: capability to execute methods

* variables and methods are defined in a class

Class

Definition: a collection of data (fields/
variables) and methods that operate on that
data

 define the contents/capabilities of the instances
(objects) of the class

 a class can be viewed as a factory for objects

 a class defines a recipe for its objects

Instantiation

 Object creation

 Memory is allocated for the object’s fields as

defined in the class

 Initialization is specified through a

constructor

 a special method invoked when objects are

created

Encapsulation

 A key OO concept: “Information Hiding”

 Key points
 The user of an object should have access only to

those methods (or data) that are essential

 Unnecessary implementation details should be
hidden from the user

 In Java/C++, use classes and access modifiers
(public, private, protected)

Inheritance

 Inheritance:

 programming language feature that allows for the

implicit definition of variables/methods for a class

through an existing class

 Subclass relationship

 B is a subclass of A

 B inherits all definitions (variables/methods) in A

Abstraction

 OOP is about abstraction

 Encapsulation and Inheritance are examples

of abstraction

 What does the verb “abstract” mean?

Reuse

 Inheritance encourages software reuse

 Existing code need not be rewritten

 Successful reuse occurs only through careful

planning and design

 when defining classes, anticipate future

modifications and extensions

Polymorphism

 “Many forms”

 allow several definitions under a single method name

 Example:

 “move” means something for a person object but means

something else for a car object

 Dynamic binding:

 capability of an implementation to distinguish between the

different forms during run-time

Building Complex Systems

 From Software Engineering:

complex systems are difficult to manage

 Proper use of OOP aids in managing this

complexity

 The analysis and design of OO systems

require corresponding modeling techniques

Object-Oriented Modeling

 UML: Unified Modeling Language
 OO Modeling Standard

 Booch, Jacobson, Rumbaugh

 What is depicted?
 Class details and static relationships

 System functionality

 Object interaction

 State transition within an object

Some UML Modeling

Techniques

 Class Diagrams

 Use Cases/Use Case Diagrams

 Interaction Diagrams

 State Diagrams

Example:

Class Diagram

Borrower Book
currBorr bk[]

0..30..1

public class Borrower {

Book bk[];

…

public Borrower() {

bk = new Book[3];

}

}

public class Book {

Borrower currBorr;

…

}

Example:

Use Case Diagram

Facilitate Checkout

Facilitate Return

Search for Book

LIBRARY SYSTEM

BorrowerLibrarian

Example:

Interaction Diagram

Checkout

Screen

:Borrower

:Book

1: borrowAllowed()

3: borrowBook()

2: isAvailable()

4: setBorrower()

Example:

State Diagram (Book)

New

Available

Reserved

Borrowed

start

Librarian activates

book as available

Borrower returns book

Object-Oriented Design

Models

 Static Model

 Class Diagrams

 Dynamic Model

 Use Cases, Interaction Diagrams, State

Diagrams, others

OO Static Model

 Classes and Class Diagrams

 Relationships

 Association

 Aggregation/Composition

 Inheritance

 Dependencies

 Attribute and Method names

OO Dynamic Model

 Goal: Represent

 Object behavior

 Object interaction

 Traditional/Procedural Dynamic Modeling

 Data Flow Diagrams (DFDs)

 Problem: Processes separate from data

 Need modeling notation that highlight tight

relationship between data & processes

DFD Example

(Inventory Management)

Accept and Post

Delivery

Item Master

Transaction

Delivery info

OO Counterpart:

Object Interaction

Encoder

:Item Master

:Transaction

new (delivery info)

post (item count)

Building an

OO Dynamic Model

 Identify use cases

 Describe each use case through an

interaction diagram

 For more complex objects, provide a state

diagram per class

 Derive implied methods (and attributes)

What’s Next?

 Need to understand the notation

 Make sure it helps the software development

process

 When to use the UML techniques

 Primarily when specifying OO design

 Formal means of communication across the

different software development stages

