UNIT-I
FLUID PROPERTIES AND STATICS




Introduction

B Any characteristic of a system is called a property.
B Familiar: pressure P, temperature T, volume V, and mass m.

B Less familiar: viscosity, thermal conductivity, modulus of
elasticity, thermal expansion coefficient, vapor pressure, surface
tension.

B /ntensive properties are independent of the mass of the
system. Examples: temperature, pressure, and density.

B Extensive properties are those whose value depends on
the size of the system. Examples: Total mass, total
volume, and total momentum.

B Extensive properties per unit mass are called specific
properties. Examples include specific volume v = V/m
and specific total energy e=E/m.
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Atoms are widely spaced in the
gas phase.

However, we can disregard the
atomic nature of a substance.

View it as a continuous,
homogeneous matter with no
holes, that is, a continuum.

This allows us to treat properties
as smoothly varying quantities.

Continuum is valid as long as size
of the system is large in
comparison to distance between
molecules.
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Density and Specific Gravity

B Density is defined as the mass per unit volume p=m/V.
Density has units of kg/m?

B Specific volume is defined as v = 1/p = V/m.

m For a gas, density depends on temperature and
pressure.

B Specific gravity, or relative density is defined as the
ratio of the density of a substance to the density of some
standard substance at a specified temperature (usually
water at 4°C), i.e., SG=p/p,,,. SG is a dimensionless
quantity.

B The specific weight is defined as the weight per unit
volume, i.e., .= pg where g is the gravitational
acceleration. y, has units of N/m?3.
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Density of ldeal Gases

m Equation of State: equation for the relationship
between pressure, temperature, and density.

B The simplest and best-known equation of state is
the ideal-gas equation.

Pv=RT or P=pRT

m ldeal-gas equation holds for most gases.

m However, dense gases such as water vapor and
refrigerant vapor should not be treated as ideal
gases. Tables should be consulted for their
properties, e.g., Tables A-3E through A-6E in
textbook.
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Vapor Pressure and Cavitation

m Vapor Pressure P, is defined
as the pressure exerted by its
vapor in phase equilibrium
with its liquid at a given
temperature

m If P drops below P, liquid is
locally vaporized, creating
cavities of vapor.

m Vapor cavities collapse when
local P rises above P,

m Collapse of cavities is a
violent process which can
damage machinery.

m Cavitation is noisy, anq can
cause structural vibrations.
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Energy and Specific Heats

m Total energy E is comprised of numerous forms: thermal,
mechanical, kinetic, potential, electrical, magnetic,
chemical, and nuclear.

B Units of energy are joule (J) or British thermal unit (BTU).

m Microscopic energy

B [nternal energy u is for a non-flowing fluid and is due to
molecular activity.

B Enthalpy h=u+Pv is for a flowing fluid and includes flow energy
(Pv).
B Macroscopic energy
B Kinetic energy ke=V?/2
B Potential energy pe=gz

m In the absence of electrical, magnetic, chemical, and
nuclear energy, the total energy is ey,,;,,~h+V%/2+gz.
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Coefficient of Compressibility

How does fluid volume change with P and T7?
Fluids expandas T 1 or P |
Fluids contractas T | or P ¢

Need fluid properties that relate volume changes to changes in P
and T.

B Coefficient of compressibility

(apj oP
K=—v| — :p _
ov ), op ),

B Coefficient of volume expansion

_Ifov) __1(dp
ﬂ‘v(aT)P p[aTl

B Combined effects of P and T can be written as
a’VZ(a—vj a’T+(@] dP
oT ), oP ),
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Viscosity

m Viscosity is a

property that
represents the
Ly internal resistance of
. a fluid to motion.
m The force a flowing
fluid exerts on a body
g in the flow direction is
K (o called the drag force,
. force and the magnitude of
this force depends, in

part, on viscosity.
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Viscosity

To obtain a relation for viscosity,
consider a fluid layer between
two very large parallel plates
separated by a distance ¢

Area A m Definition of shear stress is 7 =

N Nu=V ) Force F F/A.
mity y H Using the no-slip condition,
dp u(0) = 0 and u(f) = V, the velocity
"‘T 6] profile and gradient are u(y)=
- « Vy/t and du/dy=V/¢

M u=0 N\ m Shear stress for Newtonian fluid:
Velocity profile T = udu/dy
u(y)= 2 v B . is the dynamic viscosity and
) ' has units of kg/m-s, Pa-s, or
poise.
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Viscometry

, How is viscosity measured? A rotating
Stationary viscometer.

cylinder B Two concentric cylinders with a fluid in
the small gap 7.

B Inner cylinder is rotating, outer one is

fixed.
Use definition of shear force:
¢ du
F=1tA=uA—

dy
If £/R << 1, then cylinders can be
modeled as flat plates.
Torque T = FR, and tangential velocity
V=R
Wetted surface area A=2zRL.
Measure T and o to compute u

Fluid
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Surface Tension

Liquid droplets behave like small
spherical balloons filled with
liquid, and the surface of the
liquid acts like a stretched elastic
membrane under tension.

m The pulling force that causes this
IS

B due to the attractive forces
A molecule between molecules

inside the B called surface tension o,.

liquid m Attractive force on surface
molecule is not symmetric.

B Repulsive forces from interior
molecules causes the liquid to
minimize its surface area and
attain a spherical shape.

— A molecule
on the surface
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Capillary Effect

Meniscus

m Capillary effect is the rise
| or fall of a liquid in a small-
R diameter tube.

B The curved free surface in
[ h<o the tube is call the
Water Mercury | meniscus.

m \Water meniscus curves up
27Ro, because water is a wetting

\ ?(5/ fluid.

.~ A m Mercury meniscus curves
| 7 down because mercury is a
___l__M nonwetting fluid.

] Force_ balance can desc_:ribe
- op magnitude of capillary rise.

Liquid
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To transmission lines
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Tail water
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Hydrostatic force:

Turbine

Energy conversion Hydrostatic uplift
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Fluid Statics

forces develop on the surface due to the fluid pressure These
forces must be perpendicular to the surface since there is no
shear action present. These forces can be determined by

iIntegrating the static pressure distribution over the area it is
acting on.

Example: What is the force acting on the bottom of the tank
shown?

Fluid with density p

ME33 : Fluid Flow 3 Chapter 2: Properties of Fluids



Dam Design

Design concern: (Hydrostatic Uplift) Hydrostatic pressure above the heel
(upstream edge) of the dam may cause seepage with resultant uplift beneath the
dam base (depends largely on the supporting material of the dam). This reduces
the dams stability to sliding and overturning by effectively reducing the weight of
the dam structure. (Question: What prevents the dam from sliding?)

Determine the minimum compressive stresses in the base of a concrete gravity
dam as given below. It is important that this value should be greater than zero
because (1) concrete has poor tensile strength. Damage might occur near the
heel of the dam. (2) The lifting of the dam structure will accelerate the seeping
rate of the water underneath the dam and further increase hydrostatic uplift and
generate more instability.

Catastrophic breakdown can occur if this factor is not considered: for example, it
is partially responsible for the total collapse of the St. Francis Dam in California,
1928.
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Dam Design

VV-—F)V J— . JUU J ) 4U J.0)— 1 IJ.0OX [U”
The static pressure at a depth of y: P(y)=p, 9y

The total resultant force acting on the dam by the water pressure is:
h=30 2
R= j P(y)dy= j p.gvdy = p. g[%] = (1000)(9.8)(1/2)(30)* = 4.4 x 10°(N)
0

20 m

Free surface

ME33 : Fluid Flcapter 2: Properties of Fluids



Example (cont.)

h=30 3 P8+ oy

Rh=[ Py)ydy=[ (o, @0)ydy =p,g | y'dy=p,g = h=—3="7=20(m)
0

Assume the load distribution under the dam is linear (it might not be linear if the soil

distribution is not uniform)
Therefore, the stress distribution can be written as

O-max _ o-min

20
W

oc(x)=o ., + X

In order to reach equilibrium, both the sum of forces and
Free surface

—+

20 m

the sum of moments have to balance to zero
> F =0, R=F

dam,x

(frictional force and the air drag force)

SF, =0, W= amy—_[a(x)dx—lO(O'

max 1’1’111’1 )

1.96 x10°(N) =0,
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Example (cont.)

Y My =0, —R(10)—W(10)+ G(x)xdx =0

20
(10)(4.4x10° +19.6x10°) = o, [ xex + "maxzoamm [ e
0 0

240x10° =133.30,_ +66.70
Solve: o, =1.64x10°(N), o, =0.32x10°(N)

The minimum compressive stress is significantly lower than the maximum stress

The hydrostatic lift under the dam (as a result of the buoyancy induced by water seeping
under the dam structure) can induce as high as one half of the maximum
hydrostatic head at the heel of the dam and gradually decrease to zero at the other end.

That is o, = %( p..gh) = (0.5)(1000)(9.8)(30) = 0.147 x 10°(N)

Therefore, the effective compressive stress will only be 0.173(=0.32-0.147) x 10°(N).
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Absolute, gage, and vacuum pressures

m Actual pressure at a give point is called the
absolute pressure.

m Most pressure-measuring devices are
calibrated to read zero in the atmosphere,
and therefore indicate gage pressure,

Pgagezpabs - Patm'
m Pressure below atmospheric pressure are

called vacuum pressure, P, .=P_ ., - P
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Absolute, gage, and vacuum pressures

Absolute

abs

atm

vacuum
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atm

Absolute

vacuum
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Pressure at a Point

mPressure at any point in a fluid is the same
In all directions.

m Pressure has a magnitude, but not a
specific direction, and thus it is a scalar
quantity.
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Variation of Pressure with Depth

Il

B In the presence of a gravitational
field, pressure increases with
depth because more fluid rests
on deeper layers.

B To obtain a relation for the
variation of pressure with depth,
consider rectangular element

P B Force balance in z-direction gives
S Y F.=ma,=0

. - P,Ax— PAx - pgAxAz =0
— lw — B Dividing by Ax and rearranging
[[11] gives

I .r AP=P,~ P = pghz=y Az
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Scuba Diving and Hydrostatic Pressure
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Pascal’'s Law

B Pressure applied to a
confined fluid increases
the pressure throughout
by the same amount.

B |n picture, pistons are at
same height:

F, A
B pp B B B_4

A A ' F

1

F,=PA,

B Ratio A,/A, is called ideal
mechanical advantage
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The Manometer

B An elevation change of Az
in a fluid at rest
corresponds to 4P/pqg.

B A device based on this is
S 5 called a manometer.

—) B A manometer consists of
1__

a U-tube containing one
___v__ 45 or more fluids such as
mercury, water, alcohol,

v or oil.
m Heavy fluids such as

mercury are used if large
B=P pressure differences are
anticipated.

P, =F,, +pgh

atm
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Mutlifluild Manometer

‘

B For multi-fluid systems

B Pressure change across a fluid
column of height h is AP = pgh.

B Pressure increases downward, and
decreases upward.

B Two points at the same elevation in a

KOH continuous fluid are at the same
() pressure.

B Pressure can be determined by
adding and subtracting pgh terms.

-

-

Fluid 2

-
ol

T

Fluid 3

=
(95}

.

—
M

b, + pgh + p,gh, + p;ghy = H
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F:/Clips/V4_5.mov
F:/Clips/V4_2.mov

Fluid Flow Concepts and Reynolds

Transport Theorem

m Descriptions of:

B fluid motion
B fluid flows
B temporal and spatial classifications

m Analysis Approaches
B Lagrangian vs. Eulerian

m Moving from a system to a control
volume
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Descriptions of Fluid Motion

B streamline fined instantaneous
¢ has the direction of the velocity vector at each point >
¢ no flow across the streamline
e steady flow streamlines are fixed in space
¢ unsteady flow streamlines move

B pathline Defined as particle moves (over time)

e path of a particle
e same as streamline for steady flow
B streakline

e tracer injected continuously into a flow
e same as pathline and streamline for steady

Draw Streamlines
and Pathlines

Chapter :


F:/Clips/V4_6.mov
F:/Clips/V4_5.mov

Streamlines

\/29 b2

V,, b]
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http://www.aoe.vt.edu/aoe5104/ifm/ifm.html

Descriptors of Fluid Flows

B Laminar flow
¢ fluid moves along smooth paths
¢ viscosity damps any tendency to swirl or

B Turbulent flow
¢ fluid moves in very irregular paths
¢ efficient mixing
e velocity at a point fluctuates

Transition to turbulence movie

i; Deutsches Zentrum 8 | |
ME33 : Fluid DLR fiir Luft- und Raumfahrt e.V. Aerospace Center ies of Fluids

German



http://www.sm.go.dlr.de/
open channel transition to turbulence.mpeg
F:/Clips/V4_3.mov

Temporal/Spatial Classifications

Can turbulent flow
be steady? If

B Steady - unsteady

J Changing in time

averaged over a
5

suitable tum

H Uniform - nonuniform

P Changing in space

— -
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Control Volume Conservation Equation

QOO@O00
OOOO
0000 0000
v @i’%bd%+ @I%bV i d A
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What is fluid kinematics?

B Fluid kinematics is the study on fluid motion in space
and time without considering the force which causes
the fluid motion.

B According to the continuum hypothesis the local
velocity of fluid is the velocity of an infinitesimally
small fluid particle/element at a given instant t. It is
generally a continuous function in space and time.
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* The characteristic length of the fluid system of interest >> The
characteristic length of a fluid particle/element >> The characteristic
spacing between the molecules contained in the volume of the fluid
particle/element :

For air at sea-level conditions,

L >> drﬁ&e&xieé/r(’a?oﬁme(é@”dsen No.)
- (A mean free path) 15 °c ;44 10.133 x 10 Pa

(10°° mm)®

3x10’
The c%n%nuum concept is valid!
A =10"°mm
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m Eulerian Flow Description

m Lagrangian Flow Description
| Streamline
m Pathline

m Streakline
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m The flow quantities, like:, p, p, T, are
described as a function of space and time
without referring to any individual identity of

the fluid particle :
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m A line in the fluid whose tangent is parallel #o
at a given instant t.

B The family of streamlines at time t are
solufions of
X dy dz

w (Fot)  u,(F.t)  u (F,t)

— — —

U, U, and u.
m Where are velocity

components in the respective direction
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B Steady flow : the streamlines are fixed in space for all
time.

B Unsteady flow : the streamlines are changing from
Instant to instant.
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m Most of the real flow are
3-dimensional and unsteady :

m For many situations simplificatiois xcansbe
made

2-dimensional unsteady and steady flow

1-ditmnengionalumsteady and steady flow

u(x, t) ; u(x)
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B The flow quantities are described for each individually
identifiable fluid particle moving through flow field of
interest. The position of the individual fluid particle is a
function of time :

V(7 (1))

FParltrcle A af

Farticle path tirme ¢ oo &1

Farticle A at
torme s

r - -
ale) r, i+ arl

Fluid Flow Chapter 2

. Properties of Fluids




m A line traced by an individual fluid particleri(¢)

m For a steady flow the pathlines are identical
with the streamlines.
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m A streakline consists of all fluid particles in a flow
that have previously passed through a common
point. Such a line can be produced by
continuously injecting marked fluid (smoke in air,
or dye in water) at a given location.

m For steady flow : The streamline, the pathline,
and the streakline are the same.
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B Stream-tube

m Continuity Equation of a Steady Flow
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mis the surface formed instantaneously by
all the streamlines that pass through a
given closed curve in the fluid.

A Fig. 4.4
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m For a steady flow the stream-tube formed by a
closed curved fixed in space is also fixed in
space, and no fluid can penetrate through the
stream-tube surface, like a duct wall.

roperties of Fluids



Fluid Motion

N
and Pascal's Law <
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the fluid moves along a smooth path, and the
paths do not cross.

Streamlines spacing measures velocity and the
flow is always tangential, for steady flow don’t
cross. A set of streamlines act as a pipe for an
incompressible fluid

Non-viscous flow - no internal friction (water
OK, honey not)

Turbulent flow above a critical speed, the paths
become irregular, with whirlpools and paths
crossing. Chaotic and not considered here.

|

J/>)))))))j

X




narrower hose

wider hose, faster speed
slower speed

“The water all has to go somewhere”

The rate a fluid enters a pipe must equal the rate the fluid leaves the pipe.
i.e. There can be no sources or sinks of fluid.




\
I
. . 1 I > ]
fAuid in — —— fluid out —»
\ '

Q. How much fluid flows across each area in a time At: VoAt
Vv, At T
Am=pV, =pA v,At Am=pV, =p A,v,At
Am .
flow rate:— = p Av continuity eqn:  Av, = A,v,

At




through a 3.7-m wide gorge, where the flow rate increases to 6.0

m/s. How deep is the gorge?

v X . @
/ A, = w,d,

A

YYYY

A =wd,

Continuity equation : A,v, = A,v, » w,d,v; = w,d,v,

- widyvyy, 40X 2.2%x45




Yo

Energy per unit D +%pv12+ PEYV= D, +%pv§+ pLgy,=const
volume

Total energy per unit volume is constant
at any point in fluid.

p+ipv +pgy=const




side 1 metre below the water level.

P + %pvz + pgy = constant
Atthetop: P=1atm,v=0,y =1m

At the bottom: P =1atm,v =7,y =0m

P+ pgy =P+ 5pv?

v= /29y = V2x9.8x1=44m/s



out of the water tank ? b

Y
. Raise the tank (T H) i I I
v

. Reduce the hole size 0%
Lower the water level (1 h)
Raise the water level (T h)

“voRwN R

None of the above



Continuity equation: mass is

conserved!
p X v XA =constant

For liquids:

P = constant - v X A = constant

(Density p, velocity v, pipe area A)

Bernoulli's equation: energy is

consepved}

+ Spv? + pgy = constant

2

(Pressure P, density p,velocity v, height y)



[EHErh v
DOUNU VOTLEX

LDserve doWnwash encourage
a view in terms of Newton's 3rd Law
and conservation of momentum.

Shed
vortex

— wma% =) Fiow

e
1 - Fascinating vortex phenomena encourage a view

,_|‘:“|;\ ,_|‘:“|;\ 4L;|_ ,;|’_r ,~_|’_r in terms of the Kutta-Joukowski theorem,
Pressure exerted by slower-moving air

P+ %pvz + pgy = constant

Newton’s 3" law
(air pushed downwards)

Lift on a wing is often explained in textbooks by Bernoulli’s Principle: the air over the
top of the wing moves faster than air over the bottom of the wing because it has
further to move (?) so the pressure upwards on the bottom of the wing is smaller than

the downwards pressure on the top of the wing.

Is that convincini? So Whi can a ilane ﬂi uiside down?



Density and Pressure describe bulk fluid behaviour

Pressure in a fluid is the same for points at the same height
In hydrostatic equilibrium, pressure increases with depth due to gravity

The buoyant force is the weight of the displaced fluid
Fluid flow conserves mass (continuity eq.) and energy (Bernoulli's equation)

A constriction in flow is accompanied by a velocity and pressure change.

Reread, Review and Reinforce concepts and techniques of Chapter 15

Examples 15.1, 15.2 Calculating Pressure and Pascals Law

Examples 15.3, 15.4 Buoyancy Forces: Working Underwater + Tip of Iceberg
Examples 15.5 Continuity Equation: Ausable Chasm

Examples 15.6, 15.7 Bernoulli's Equation - Draining a Tank and Venturi Flow
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Incompressible Flow




Goals

Calculate frictional losses for laminar and
turbulent flow through circular and non-circular
pipes

Define the friction factor in terms of flow
properties

Calculate the friction factor for laminar and
turbulent flow

Define and calculate the Reynolds number for
different flow situations

Derive the Hagen-Poiseuille equation
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Introduction

V.

* Average velocity in a pipe
— Recall - because of the no-slip

condition, the velocity at the walls of

avg a pipe or duct flow 1s zero

We are often interested only in V.,

which we usually call just V' (drop the
subscript for convenience)

Y _

/

e &

Y

— Keep in mind that the no-slip
condition causes shear stress and
friction along the pipe walls

]

Friction force of wall on fluid
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Introduction

m For pipes with variable diameter, m is still the
same due to conservation of mass, but V, # V,

D,

|

N
ya
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LAMINAR AND TURBULENT FLOWS

B Laminar flow: characterized by Dye trace

smooth streamlines and highly .
ordered motion. Vave r
Turbulent flow: characterized by

velocity fluctuations and highly b Dye injection
disordered motion. (a) Laminar flow
The transition from laminar to

turbulent flow does not occur Dye trace
suddenly; rather, it occurs over —

some region in which the flow - r
fluctuates between laminar and

turbulent flows before it becomes m Dye injection
fully turbulent. (b) Turbulent flow
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Reynolds Number

B The transition from laminar to turbulent flow depends on
the geometry, surface roughness, flow velocity, surface
temperature, and type of fluid, among other things.

B British engineer Osborne Reynolds (1842—-1912)
discovered that the flow regime depends mainly on the
ratio of inertial forces to viscous forces in the fluid.

B The ratio is called the Reynolds number and is
expressed for internal flow in a circular pipe as

Inertial forces VD pViuD

Re

Viscous forces 2 i
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Reynolds Number

m At large Reynolds numbers, the inertial forces are large
relative to the viscous forces = Turbulent Flow

B At small or moderate Reynolds numbers, the viscous

forces are large enough to suppress these fluctuations
= Laminar Flow

B The Reynolds number at which the flow becomes
turbulent is called the critical Reynolds number, Re...

B The value of the critical Reynolds number is different for
different geometries and flow conditions. For example,
Re,, = 2300 for internal flow in a circular pipe.
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Reynolds Number

m For flow through noncircular

pipes, the Reynolds number
Is based on the hydraulic Circular tube. @
diameter D, defined as

—HL.. D, = A ,—:‘.;M_} _D
{'}.Ire —_
P
A_= cross-section area
P = wetted perimeter Square duct: a
B The transition from laminar to D, 4@ _ s
h="4q = ¢
turbulent flow also depends
on the degree of disturbance
of the flow by surface Rectangular duct. ||@ "
roughness, pipe vibrations,
and fluctuations in the flow. D, =——ab __ 2ab

a+b) a+b
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Reynolds Number

m Under most practical
conditions, the flow in a

: . . Laminar Turbulent
circular pipe is \
Re = 2300 laminar flow Dye trace
—..

2300 = Re = 4000 transitional flow — Vavg
Re = 4000 turbulent flow

m In transitional flow, the
flow switches between
laminar and turbulent
randomly.

Dye injection

L
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m In this section we consider

LAMINAR FLOW IN PIPES

the steady laminar flow of an

i —
incompressible fluid with P, Py
constant properties in the _"'" \""—

m—-

fully developed region of a
straight circular pipe.

In fully developed laminar
flow, each fluid particle
moves at a constant axial
velocity along a streamline
and no motion in the radial
direction such that no
acceleration (since flow is
steady and fully-developed).
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LAMINAR FLOW IN PIPES

m Now consider a ring-shaped Trtar
differential volume element of P, P,
radius r, thickness dr, and length dx
oriented coaxially with the pipe. A
force balance on the volume
element in the flow direction gives

-
2mrdr P), — 2mrdr P)yyg + o Nu LRI

r
2mrdx7), — 2mrdx7),44 =0 —H— N
— | Umay

m Dividing by 2ndrdx and rearranging,

I P.r+f!_1' o P.T 1 (rT)4ar — (r7), = ()
dx dr
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LAMINAR FLOW IN PIPES

m Taking the limit as dr, dx — 0 gives

}’E N d(rt) — 0
dx dr
B Substituting T = -u(du/dr) gives the desired
equation,
M d

( du) dP
(=) ==
rdr\ dr dx

m The left side of the equation is a function of r, and
the right side is a function of x. The equality must
hold for any value of r and x; therefore, f(r) = g(x)
= constant.
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LAMINAR FLOW IN PIPES

2R dx T,

B Thus we conclude that dP/dx = -
constant and we can verify that

L mR2(P + dP)
|

ap 2T, L

dx R
m Here 7, is constant since the )
viscosity and the velocity profile ) —~
are constants in the fully _L.___j_l .
developed region. Then we .
solve the u(r) eq. by rearranging | ]

and integrating |t tWiCe {o give Force balance:
7R*P—7R*(P + dP)-2wR dx 7,=0

r° (dP G
u(r) = ( 2, + CyInr + C, s
dx a_ 2

4

dx R
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LAMINAR FLOW IN PIPES

m Since culor =0 at r = 0 (because of symmetry about the
centerline) and u =0 at r = R, then we can get u(r)

| ﬁ(ﬁj( H)
uir) = — — ] — —
4\ dx R~

B Therefore, the velocity profile in fully developed laminar flow
in a pipe is parabolic. Since u is positive for any r, and thus
the dP/dx must be negative (i.e., pressure must decrease in
the flow direction because of viscous effects).

B The average velocity is determined from

2 (" -2 ("R (dP r? R* (dP
Ve = 75 | unrdr =— —\—— [\l == |Jrdr=———|—
"~ R R™ J, 4p\dx R S\ dx

.1:} e

Chapter 2: Properties of Fluids
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LAMINAR FLOW IN PIPES

B The velocity profile is rewritten as

,ﬂ"j
) =2V S

B Thus we can get |

Umax = zwawg

m Therefore, the average velocity in fully developed laminar
pipe flow is one half of the maximum velocity.
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B The pressure drop 4P of pipe flow is related to the
power requirements of the fan or pump to maintain
flow. Since dP/dx = constant, and integrating from x =
x, where the pressure is P, to x = x, + L where the
pressure is P, givegp P, — P,

dc L

nnnnnnn Aran fAar larminar flaw: AAan
mThep A zz,u LVT ~ expressed

as flP:P]_P’}_

Chepter 2: Proyerties of Fluids
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Pressure Drop and Head Loss

m In the analysis of piping systems, pressure
losses are commonly expressed in terms
of the equivalent fluid column height,
called the head loss h,.

AP L Vi

h = f—
L pg D 2p

(Frictional losses due to viscosity)
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The resulting pressure (energy and head) losses are
usually computed through the use of modified Fanning’s

friction factors: Ky

2
v
Sp
p2

where Fk is the characteristic force, S is the friction surface

area. This equation is general and it can be used for all flow
processes.

6, -p)>"

F 1R - Ap D

Used for a pipe: f=—Hs= 1 - (péL pzz)D = Lp .
Sp' (DaL)p i Y

_ 2 2

where Fk is the press force, S
is the area of curved surface.

Rearranged, we get a form of L V2p L V2p vop
pressure loss: Ap, =4 ———=A— =

ME33 : Fluid Flow

f =

Chapter 2: Properties of Fluids



Determination of Friction Factor with

Blln 1=
The Funning’s friction factor is a function of Re = vD _vDp
Reynolds number, f = f(Re): V 1L

Many important chemical engineering problems cannot be solved
completely by theoretical methods. For example, the pressure loss from
friction losses in a long, round, straight, smooth pipe depends on all these
variables: the length and diameter of pipe, the flow rate of the liquid, and the
density and viscosity of the liquid.

If any one of these variables is changed, the pressure drop also changes.
The empirical method of obtaining an equation relating these factors to
pressure drop requires that the effect of each separate variable be
determine in turn by systematically varying that variable while keeping all
others constant.

It is possible to group many factors into a smaller number of dimensionless
groups of variables. The groups themselves rather than separate factors
appear in the final equation. These method is called dimensional analysis,
which is an algebric treatment of the symbols for units considered
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Many important chemical engineering problems cannot be solved completely by
theoretical methods. For example, the pressure loss from friction losses (or the
pressure difference between two end& pipe) in a long, round,
straight, smooth pipe a fluid is flowing depends <Pn Il thése variables: pipe
diameter d, pipe length , fluid velocity v, fluid denS|tyl , and fluid viscosity

p i
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Fluid Flow in Pipes

power requirement.

2 .2
The resulting pressure (energy and head) Ap, = (Z1 —Zz)Pg + (p1 _p2)+ (Vl 2"2)3
loss

is usually computed through the use of the modified Fanning friction P
factor: o )Dz Sp—
F, _ P (pl pz)D _Ap D

2 2 - 2
vV 2Lpv? L 2pv
Sp (DnL)p2 P P

Used for a pipe: =

where F« is the press force, S is the area of curved surface. Rearranged, we get a form
of pressure loss:

Lvp_, Ly _ vp

Ap, =4f — =
D 2 D 2 2

The Funning’s friction factor is a function of Reynolds number, f = f(Re):

Re— vD _ vDp
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Fluid Flow in Pipes

power requirement.

2 .2
The resulting pressure (energy and head) Ap, = (Z1 —Zz)Pg + (p1 _p2)+ (Vl 2"2)3
loss

is usually computed through the use of the modified Fanning friction P
factor: o )Dz Sp—
F, _ P (pl pz)D _Ap D

2 2 - 2
vV 2Lpv? L 2pv
Sp (DnL)p2 P P

Used for a pipe: =

where F« is the press force, S is the area of curved surface. Rearranged, we get a form
of pressure loss:

Lvp_, Ly _ vp

Ap, =4f — =
D 2 D 2 2

The Funning’s friction factor is a function of Reynolds number, f = f(Re):

Re— vD _ vDp
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Calculation of Pumping Power Requirement

The friction factors were determined with dimensional analysis for a smooth pipe :

laminar f= Re Re <2100
C
turbulent f=0.0791Re™ 4000 <Re <10’
1 7
turbulent ——=1.7372InQReVF )-0.3946 4000 <Re >10

Jf

The pressure loss is directly calculated from Hagen-Poiseuille’s equation for laminar

flow: _32uLv _ 32plLv (

2
Ap, = D2 ~  D? ;PVJZ416LV P

2pv Re D 2
When the fluid flows in a duct which is not circle in cross-section then we have to
use the hydraU“C diameter, Dn: D A Ac A (CI'OSS —section area)

P (wetted perimeter)
The pumping power requirement (pump power equation):
1. 1. 1 . L+2L, \v?
P= HVAppumlD = ﬁV@pL + Ap, +Appres): HVK1+4f q j 2p 4 (22 —-Z, ))g +p, — P,

Where P is the power (Watt), V is the quantity of flow (m3/s), Leq is the equivalent pipe
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6.2. Motion of Particles in Fluids.

Flow Around Objects

There are many processes that involve the motion of
particles in fluids, or flow around objects:

Sedimentation

yFluid approach velocity ug
* Liquid Mixing - S ///X’:
- 1)
- A /ﬁ
7, 7 |
* Food Industry — 7 \_
- 7]
[} 1 : % /
* Qil Reservoirs g Z, V
Projected area A,

Fluid streamlines

Flow around objects

ME33 : Fluid Flow 85 Chapter 2: Properties of Fluids




7.1. Flow through Porous Media

or Packed Bed

In many engineering systems, beds or packed columns,
fluidization, filtration, are used in various processes.

A typical packed bed is a cylindrical column that is filled with
suitable spheres or other non-spherical packing material.

Fluid flows between the particles in small diameter tortuous,
winding channels.

Fluid Solids
fraction ¢ (I-¢)
volume ¢(AL) (1—-¢)(AL)
mass e(AL)p;  (1-e)(AL)p,

ME33 : Fluid Flow




Friction Coefficient for Packed Bed

Definition of Reynolds number for packed bed:

_V.Dipe Vo Dupr Vo2 €D p, 2 1 v,Dp;

b b e p £30-9)p 3(0-2) p
fo = fo (Rep), the results have been correlated in equations of form:

Re

laminar t = % Re <10 (Blake — Kozeny's eq.)
P
. 150 7 ,
transitional f =——+— 10<Re, <1000 (Ergun's eq.)
Re, 4
turbulent f, = % Re, >1000 (Burke— Plummer's eq.)

The Ergun’s equation predicts the pressure drop (or flow) through porous media or
packed columns quite well.

P drop: —
ressure drop Ap = f Lp, (1 gjvz
E

pr
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UNIT-IV
Boundary Layer and separation

Flow accelerates Flow decelerates

nstan — R =
> Constant flowey, 4 27
— < /
or >0, ddverse
oF < 0, favorable ox
o oP pressurg gradient
pressure gradient a = 0, no gradient

Flow reversal
free shear layer

highly unstable
ME33 : Fluid Flow Chapter 2: Properties of Fluids
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Flow Separation

C el

Inviscid curve
»=1-4sin" 0

NI ol N
P= 2
1/2pU, | | . |

Stagnation point

Turbulent

Laminar

.....................................................................................................................
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Drag Coefficient: Cp

200 Stokes’ Flow, Re<1 | ] - |
| ‘ | Supercritical flow
100 g -
60 | | turbulent B.L.
A0 Relatively constant C
20|
10/ | j
Cp g -
5 b ""'--...L Smooth cylinder B
— f— ——
0.6]-—
0.4 | | |
0.2} Smooth 5phere/
0.06— I TEE BN I 1 |
10-1 100 10! 102 103 104
Re — M
m
(a)

B FIGURE 9.23 (a) Drag coefficient as a function of Reynolds number for a smooth
circular cylinder and a smooth sphere.
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|_ocal Heat Transfer Distribution

| Turbulent B.L.
< [ growth 0

600

Rep=2.19 x 10°

“~1— Turbulent separation

2:‘" 400

300

200
Local Nusselt number

: for airflow normal to a
*l‘“'““ circular cylinder.
S:epara’i[ion| (figure 10-22 from the ITHT text)

100

Laminar|B.L. gé‘owth
0 |

0 40 80 120 160
Angular coordinate, 6
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Averaged Nusselt Number Correlations of

Cylinders in Cross Flows

Note 1: averaged Nusselt number correlations for the circular cylinder flows can
be found in chapter 10-5. Correlations for other noncircular cylinders in cross
flow can also be found in this chapter (see Table 10-3).

Note 2: Heat transfer between a tube bank (tube bundle) and cross flow is given
in many HT textbooks (for example: see chapter 7 of “Introduction to Heat
Transfer” by Incropera & DeWitt. The configuration is important for many
practical applications, for example, the multiple pass heat exchanger in a
condenser unit. The use of tube bank can not only save the operating space but
also can enhance heat transfer. The wake flows behind each row of tubes are
highly turbulent and can greatly enhance the convective heat transfer. In
general, one can find an averaged convection coefficient using empirical
correlation.

Note 3: Because of its compactness, pressure drop across a tube bank can be
also significant and warrants careful design consideration.
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e principle of convective heat transter. Electric current Is passing through a
thin cylindrical wire to heat it up to a high temperature, that is why it is called
“hot-wire”. Heat is dissipated to the fluid flowing the wire by convection heat
transfer such that the wire can be maintained at a constant temperature.
Determine the velocity of the airstream (it is known to be higher than 40 m/s and
has a temperature of 25°C), if a wire of 0.02 mm diameter achieved a constant
temperature of 150°C while dissipating 50 W per meter of electric energy.

25°C, U>40 m/s

N
O

Constant temperature 150°C

Hot-wire, 0.02 mm dia.

Air (87.5°C), Pr=0.707, v=15x10-%
m2/s, k=0.026 W/m.K
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Example (cont.)

50 = h(xDL)(150 — 25)
50

7(0.02 x10)(1)(125)
_ hD  6369(0.00002)
kK 0.026
. VD _ (40)(0.00002) _

1% 15%x10°°
assume 4000 > Re > 40, use equation (10-37)

Nu = (0.683) Re®** Pr'”?

0.466
4.90 = (0.683) (Vl% ) (0.707)"
V =659(m/s), Re=87.9 satisfy the range of validity

h = = 6369(W / m*.K)

Nu =4.90

Re

33,
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EFFECTS OF VISCOUS FORCES ON FLOW REGIMES IN A
CHANNEL

Fully
develaped flow
|#——— Entrance length ——=|

Viscous

l Negligible | Displacement | Shear layer | Fully-developed
U interaction | interaction | interaction

I
©) ©)
|

o

LT

TYTYY

layers z h = 5 : T
| Uy 2 Up S e o i o = el W
- ~ - m:;;‘ : ~ : |
I / |l _ ne
Laminar~ Transition Turbulent Core vanishes, ’ ‘ ’
boundary boundary layers coalesce L I ! i t IV

layer layer

¥
-




FLAT PLATE ANALYSIS

y=Y
Constant U
@ ,] Ei——
pressure e ned -
{ y=H E“jam "'i Cantrol I S
———— E—- e volume | i "
E | vty
y Draqg force 0 |
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LAMINAR VERSUS TURBULENT FLOW

smooth and reglar and a fluid
element moves smoothly along
a streamline

B Turbulent: streamlines break up
and fluid elements move in a
. %i1r, and chaotic

iy
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LAMINAR VERSUS TURBULENT FLOW

Transition
;’m p—
mrrerrereesesmr——gns Turbulent s .. .
All B.L.’s transition from laminar
- . Lauinas to turbulent
i: ,\‘g:[ -—E
. Turbulent velocity
profiles are ‘fuller’
Feo _
1l 0.005
f “Exact”; Eq (6-77) or {6-78)
T“r"‘“'““‘| -—=== Prandtl approximation: £q. (6-72)
l[ 0004 | \‘—"--- Power-law theory: Eq (6-70)
]
T C >C
] 0003 - f,turb f,lam
/ Bty Cf
f 0.002 Typical 7
/ s transition ~.
7 Tam o
L amigar f"f 0001 F Lbaéngﬂig:uw‘%;" ~—
7/ asius T
/f ‘-."--_,_h‘ fﬂej 4-._‘*‘1-\
___....a-*""f r 0 A i : .
e o4 108 108 107 108 10° 10'°
Ugx

Figure 4.37 Velocity profiles for laminar and turbulent boundary
layers. Note that the wrbulent boundary layer thickness is larger

than the laminzr boundary layer thickness




LAMINAR TO TURBULENT TRANSITION

Three-
dimensional
voriex

Turbulent Fully
spots turbulent

TS Spanwise
waveg UUI‘lICIW

flow

breakdown |

Stable
X1 laminar
fiow

P X

(M~

Transition length sl Turbulent
Re,,

Laminar |

(a)

Stable laminar flow near leading
edge

Unstable 2D Tollmien-Schlichting
waves

Development of 3D unstable
waves and ‘hairpin’ eddies

Vortex breakdown at regions of
high localized shear

Cascading vortex breakdown into
fully 3D fluctuations

Formation of turbulent spots at
locally intense fluctuations

Coalescence of spots into fully
turbulent flow
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EXAMPLE: FLOW SEPARATION

separation within boundary layer

B Separation then creates another form of drag
called pressure drag due to separation

1§

ME33 : Fluiu 1 wuw
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RELEVANCE OF FRICTION ON AN AIRFOIL

TTLLITIT T b
/ / H undqry layer

Figure 4.32 Flow in real life, with friction The thickness of the boundary layer is greatly
overemphasized for clarity

Flow very close to surface of airfoil is
Influenced by friction and is viscous
(boundary layer flow)

Stall (separation) is a viscous phenomena

Flow away from airfoil is not influenced
by friction and is wholly inviscid
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EXAMPLE: AIRFOIL STALL

separation within boundary layer

1.B.L. either laminar or turbulent
2.All laminar B.L. — turbulent B.L.
3. Turbulent B.L. fuller’ than laminar B.L., more

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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EXAMPLE: AIRFOIL STALL

Angle of Attack, a
ME33 : Fluid Flow Chapter 2: Properties of Fluids
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YISCOUS (V)
1 Mass Flow |

ffffffffffff J pryvley ey

My = Pelige My = my — Peitpd*
L T
mutss defect
Physical interpretation of displacement thickness, 6* by considering mass flow rate
that would occur in an inviscid flow which has velocity Ug and density pg, and
comparing this to actual, viscous, situation

In figure pcULo* is the defect in mass flow due to flow retardation in boundary layer

Effect on flow outside boundary layer is equivalent to displacing the surface
outwards, in the normal direction, a distance &*

For a given pcUg, effective width of a 2D channel is reduced by sum of 6*
8*

upper and

lower
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ALTERNATE PHYSICAL INTERPRETATIONS OF &7, 6, and 6

Momentum Flow (foree, £): Comparison of F,; and £y, done with same i
momentum extiracior

(barrier)
i

1 u}"E"&(‘j RN o m—— *"i
Ypr——== Aok

«l ¥ -

e : (b)

,,,,,,,,,,, F? h—— o bl B i d
7

Fy = PpUgye

. 7
Fp’ = F} -,{]IE-UE{L}
i et
momenium defect

m Quantity pzUc26 represents defect in
streamwise momentum flux between actual

flow and a uniform flow having density pg and
velocity Ug outside boundary layer

Mz32 . Fluid Flow
106
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ALTERNATE PHYSICAL INTERPRETATIONS OF &7, 6, and 6

B Measures defect between flux of kinetic energy
(mechanical power) in the actual flow and a
uniform flow with Uz and p; the same as
outside the boundary layer

m Defect can be regarded as being produced by
extraction of kinetic energy

B Power extracted is linked to device losses, and
Kinetic energy thickness is a key quantity in
characterizing losses is internal flow devices

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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The sepacation position 5

roves along the will
ek and Ferword

Mo

appreciable A Transitory
stall (N} | s1all (TS)

developed
_ stall (FDS)

0+
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Jet
i [
[ 5
5 R
[ = eaels
NIV, = constant B I
Diffuser aren ratio. AR (or 283

T = e

Boundury layer
blockage = 25

Effe

ctive
hannel

Edge of
boundacy
Liyers

,r"jj

|-

Function of diffuser is to
change a maijor fraction of
flow KE into static pressure
and to decrease velocity
magnitude

AR = W2/W1

Non-dimensional length is
N/WH1

Diffuser opening angle is
tan(0)=(AR-1)(2N/W1)
For ideal flow, C, =1-1/AR?




EXAMPLE:!:

Dilluser area rato, AR
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It iIs a pure mathematical technique to establish a
relationship between physical quantities involved Iin a
fluid phenomenon by considering their dimensions.

In dimensional analysis, from a general understanding of
fluid phenomena, we first predict the physical parameters
that will influence the flow, and then we group these
parameters into dimensionless combinations which
enable a better understanding of the flow phenomena.
Dimensional analysis is particularly helpful in
experimental work because it provides a guide to those
things that significantly influence the phenomena; thus it
iIndicates the direction in which experimental work should

go.

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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Dimensional Analysis

Dimensional Analysis refers to the physical

nature of the quantity (Dimension) and the L

type of unit used to specify it.
Distance has dimension L.
Area has dimension L?.
Volume has dimension L.
Time has dimension T.

Speed has dimension L/T

ME33 : Fluid Flow
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Application of Dimensional Analysis

m Development of an equation for fluid
phenomenon

m Conversion of one system of units to another

B Reducing the number of variables required in
an experimental program

m Develop principles of hydraulic similitude for
model study

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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I;Igmﬁgo%ﬂ%ing{)nal Homogeneity

The fundamental dimensions and their respective
powers should be identical on either side of the sign of
equality.

B Dimensional reasoning is predicated on the proposition
that, for an equation to be true, then both sides of the

equation must be numerically and dimensionally
identical.

B To take a simple example, the expression x + y = z
when x =1,y =2 and z =3 is clearly numerically true but
only if the dimensions of x, y and z are identical. Thus

1 elephant +2 aeroplanes =3 days is clearly nonsense
but

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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undamental bimensions

B We may express physical quantities in either mass-
length-time (MLT) system or force-length-time (FLT)
system.

This Is because these two systems are interrelated
through Newton’s second law, which states that force
equals mass times acceleration,

F =ma 2nd | aw of motion
F = ML/T?
F = MLT?

m Through this relation, we can covert from one system to
the other. Other than convenience, it makes no

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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Dimensions

Quantity Symbol MLT® FLT®
Length L L L
Area A I? L*
Volume v r L
Velocity V LT LT
Acceleration dVidt LT* LT*
Speed of sound a LT LT
Volume flow Q =r-t L*T-1
Mass flow Vi) MT! Fri—!
Pressure, stress p. o ML'T* FL~*F
Strain rate £ r-
Angle [ None None
Angular velocity @ T T
Viscosity " ML'T! FTL-?
Kinematic viscosity v A i rrt
Surface tension Y MT* FL=!
Force F MLT-* F
Moment, torque M MIPT? FL
Power P MI*T FLT™!
Work, energy W E MIZT-2 FL
Density p ML FIEL
Temperature T e e
Specific heat € €, r*r2e-! L*T %1
Specific weight ¥ MILFT* FL3
Thermal conductivity k MLT e~ Fr'e !
Expansion coefficient B a-! a-!



Imensions of some Common
Physical Quantities

x), Length =L Q], Discharge — L3T
m], Mass ~ M 0], Mass Density — ML-3
tl, Time =1 P], Pressure — ML-1T2
v], Velocity — LT £]. Energy — ML2T-2

a], Acceleration — LT

F], Force — MLT?2

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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B All theoretical equations that relate physical quantities must be
dimensionally homogeneous. That is, all the terms in an
equation must have the same dimensions. For example

Q = A.V (homogeneous)
L3T-1 = L3T-1

m We do, however sometimes use no homogeneous equation,
the best known example in fluid mechanics being the Manning

equation. 71 .40

L

Q=VA= ART./S [Us]

"1.00 ), =
Q=VA= ARF.fS [sI]
Lo
Mannings equation is an empirical equation. Generally the use
of such equations is limited to specialized areas.
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ME33 : Fluid Flaw

118

us explore the equation for the speed V with which a pressure
wave travels through a fluid. We must visualize the physical
problem to consider physical factors probably influence the
speed. Certainly the compressibility E, must be factor; also
the density and the kinematic viscosity of the fluid might be
factors. The dimensions of these quantities, written in square
brackets are

V=LT, E,=[FL2=[MLT2], p=[ML?], v=[L2T-]

Here we converted the dimensions of E, into the MLT system
using F=[MLT-4]. Clearly, adding or subtracting such quantities
will not produce dimensionally homogenous equations. We

must therefore multiply them in such a way that their
dimensions balance. So let us write

Chapter 2. Properties of Fluids



To satisfy dimensional homogeneity, the exponents of each
dimension must be identical on both sides of this equation.
Thus

For M: O=a+b
For L: = -a -3b +2d
For T: -1=-2a—-d

Solving these three equations, we get
a=1/2, b=-1/2, d=0

So that V = C(E,/p)
This identifies basic form of the relationship, and it also
determines that the wave speed is not effected by the

fluid's kinematic viscosity, v.
Dimensional analysis along such lines was developed by Lord
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Methods for Dimensional Analysis

m Rayleigh’'s Method
mBuckingham's [ |-method

ME33 : Fluid Flow Chapter 2: Properties of Fluids
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ayleigh’s Metho
Functional relationship between variables

IS expressed in the form of an exponential
relation which must be dimensionally
homogeneous

If “y” Is a function of independent variables

X1, X0, X2, e X N
12273 yﬂ’yisxl,xz,xw ....... X, )

S (P 8 )¢ ()7

ME33 : Fluid Flow Chapter 2: Properties of Fluids
121




P@&Vﬁ'é@fgamental relationship of the given data

| e same equation in exponential form
B Select suitable system of fundamental dimensions
B Substitute dimensions of the physical quantities

B Apply dimensional homogeneity

m Equate the powers and compute the values of the
exponents

B Substitute the values of exponents
B Simplify the expression

m Ideal up to three independent variables, can be used
for four.
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B A more generalized method of dimension analysis
developed by E. Buckingham and others and is most
popular now. This arranges the variables into a lesser
number of dimensionless groups of variables. Because
Buckingham used [] (pi) to represent the product of
variables in each groups, we call this method Buckingham
pi theorem.

m “If 'n’ is the total number of variables in a dimensionally

t { ‘m’  fundamental
Bmmﬁﬁmrg amggﬁ)l@%gd into (n-m) [] terms.
(X, X5, ...... X)=0
then the functional relationship will be written as
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PF@&@(QWE@E‘I variables and note ‘n’ and ‘m’.

n = Total no. of variables

m = No. of fundamental dimensions (That is, [M], [L], [T])
m Compute number of []-terms by (n-m)
m Write the equation in functional form
m Write equation in general form

B Select repeating variables. Must have all of the ‘m’
fundamental dimensions and should not form a [ ] among
themselves

B Solve each []-term for the unknown exponents by
dimensional homogeneity.
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Example:

m Let us apply Buckingham’s [ ] method to an example problem
that of the drag forces F exerted on a submerged sphere as
it moves through a viscous fluid. We need to follow a series of
following steps when applying Buckingham’s [] theorem.

m Step 1: Visualize the physical problem, consider the factors
that are of influence and list and count the n variables.

We must first consider which physical factors influence the
drag force. Certainly, the size of the sphere and the velocity of
the sphere must be important. The fluid properties involved
are the density p and the viscosity g. Thus we can write

f(Fp, D,V,p,M)=0

Here we used D, the sphere diameter, to represent sphere
size, and f stands for “some function”. We see that n = 5. Note
that the procedure cannot work if any relevant variables are
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m Step 2: Choose a dimensional system (MLT or FLT) and list
the dimensions of each variables. Find m, the number of
fundamental dimensions involved in all the variables.

Choosing the MLT system, the dimensions are respectively
MLT2,L,LT", ML3, ML-1T-

We see that M, L and T are involved in this example. So m =
3.

m Step 3: Determine n-m, the number of dimensionless []
groups needed. In our example this is 5 — 3 = 2, so we can

write ®([1,.[],) =0

m Step 4: Form the [] groups by multiplying the product of the
primary (repeating) variables, with unknown exponents, by
each of the remaining variables, one at a time. We choose p,
D, and V as the primary variables. Then the [] terms are
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m Step 5: To satisfy dimensional homogeneity, equate the
exponents of each dimension on both sides on each pi
equation and so solve for the exponents

[, = D2 Vb pc Fy = (L)2 (LT-)b (ML-3)¢ (MLT-2) = MOLOTO
Equate exponents:

L: atbh-3c+1=0
M: c+1=0
T: -b-2=0

We can solve explicitly for
b=-2, c=-1, a=-2
Therefore
[1,=D=V2p'Fy=Fpl(p V2 D?)
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Finally, add viscosity to D, V, and p to find [], . Select any
power you like for viscosity. By hindsight and custom, we
select the power -1 to place it in the denominator

My = D2 VP pe ' = (L) (LT)° (ML3)e (MLT-1 )" = MOLOTO
Equate exponents:

L: atbh-3c+1=0
M: c-1=0
T: -b+1=0

We can solve explicitly for
b=1, c¢c=1, a=1
Therefore,
[1,=D'"V'p!'u'=(DV p)/(u) =R = Reynolds Number
R = Reynolds Number= Ratio of inertia forces to viscous
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Rearrange the p1 groups as desired. The p1 theorem states that
the | |, are related. In this example hence

F5/(p V2 D?)=® (R)
So that F, =p V2 D? @ (R)
We must emphasize that dimensional analysis does not provide
a complete solution to fluid problems. It provides a partial
solution only. The success of dimensional analysis depends
entirely on the ability of the individual using it to define the
parameters that are applicable. If we omit an i1mportant
variable. The results are incomplete, and this may lead to
incorrect conclusions. Thus, to use dimensional analysis
successfully, one must be familiar with the fluid phenomena
involved.
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Goals of Chapter

mApply Pi Theorem

m Develop dimensionless variables for a
given flow situation

m Use dimensional variables in data analysis
m Apply concepts of modeling and similitude
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Basic Principles

m Dimensional Homogeneity

mIn a system with several variables one can
construct a series of numbers that do not
have dimensions. This inherently tells you
something about the scale invariance or
lack thereof of a problem.....
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Units and Dimensions Important in

Fluids

m Primary Dimensions
e Length (L)
e Time (T)
¢ Mass (M)
¢ Temperature (0)

mFor any relationship A=B

¢ Units (A)=Units (B) Dimensional
Homogeneity
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