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Introduction

* Energy methods are used widely to obtain solutions to elasticity

problems and determine deflections of structures.

* The deflection of joints on a truss or points on a beam or shaft can be
determined using energy methods. we will first define the work
caused by an external force and couple moment and show how to

express this work in terms of a body’s strain energy.

* In mechanics, a force does work when it undergoes a displacement

dx that 1s in the same direction as the force.



External Force and Strain Energ

* A uniform rod is subjected to a slowly increasing
load

» The elementary work done by the load P as the rod
clongates by a small dA 1s

dU, = P dA = elementary work

which is equal to the area of width dA under the load-
deformation diagram.

f..rL" = Area

« The total work done by the load for a deformation A,

A
= U,= J.P dA =total work = strain energy
0

which results in an increase of strain energy in the rod.

* In the case of a linear elastic deformation,

A
U, = [kAdA =1 k&, =1 PA
0

— U=4P, A

A



* Aload Pis already applied to the bar and that another force P’
is now applied, so that the end of the bar is displaced firtherby
an amount A’

U,=1PA+PAN+1PA

The work done by P’ i1s equal to the gray shaded triangular area
and the work done by P represents the dark-blue shaded
rectangular area




* A couple moment M does work when it undergoes an angular
displacement @@ along its line of action. If the total angular
displacement 1s & rad, the work becomes

Q}
U, =|Mdo=iM,Q
0

* For a shaft subjected to a torsional load,

@
U, = |Tdop=%T¢
0




Internal Force and Strain Energ

A body 1s subjected only to a uniaxial normal stress o,,
then the force created on the element’s top and bottom
faces 1s

dF = 0,dA = o,dxdy
while the element undergoes an elongation dA,= €,dz, The
work done by dF is

1 1
dU; = 5 dFdA,= = (0,dxdy)(e,dz)
therefore the strain energy in the body is then

1
U; = f dU; = Ef 0, €,dxdydz



* When a body is subjected to shear stress,

dF = tdA = tdxdy = shear force

dA= ydz = displacement
1 1
du; = 5 dFdA= > (tdxdy)(ydz)

1
U; = J- dU; = Efrydxdydz

_1J‘ TdV—lfrde
—a | e 51 e



* For a beam subjected to a bending load,

¥ 2 2 2
U, = [Zeav = [ 22 av
2F 2El
* Setting dV = dA dx,
R E 2 )
M M
U, = [ [Z=5dddx = [ =] [ y*da |dx
Yo ) 2Er |
/
L 2
M
=J dx
) 2]




* For a shaft subjected to a torsional load,
2 2 .2

;
U, =[-2av = " Py
© 126 2GJ*

* Setting dV = dA dx,

_L szz -L 72 (

0| [t [ | pw]d.
L Tg d
Jﬁ ;

* In the case of a uniform shaft,

2
v =T'L
2GJ
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(T, . ‘ -
o * The strain energy stored in members subjected to
4\;‘ i several types of loads, the normal and shear

Tr"‘--
4 o /ti stress components, can be obtained from
L]
)\ a,
T

¥
. . Tey 1 1
\/ dU; =>cedV ,  dU; =>tydV
/\‘“““x
z i

B * The total strain energy in the body is therefore

1
U; = f > (Ox€xt0y€yt0,€,Toy VieyT TazVuzt TyzVyz)AV

* The strains can be eliminated by using the generalized

form of Hooke’s law given by
€y = % [::rx = v(.::ry + crz)]

1
€y =% lo, — v(ay + a,)|

1
€, = E [crz — ‘L’(ﬂ'x + ::r},)]



* After substituting and combining terms, we have

1

U; —f — e Ey2+ﬂ'32]——(ﬂ'xﬂ'y + Jxﬂ'z-l-ﬂ'zﬂ'y) + — ( rxy2+ szz-l—ryzz)] dV

» If only the principal stresses gy, 05, 03 act on the element

y.

1 \%
U; =J‘[2E (01%+0,%+03%) _E(ﬂ1ﬂz+ﬂlﬂ3+ﬂzﬂ3)] dv

L |



Energy Methods in Elastici

The work performed on a mechanical system by external forces plus
the heat that flaws into the system from the outside equals the
increase in internal energy plus the increase in kinetic energy

Eriaty s and Oults * For adiabatic conditions (no heat flow) and static equilibrium

o iﬁ'mm (kinetic energy=0), the variation in work of the external force
infernal en of the o s . : .
ayetom change? is equal to the variation of internal energy
... given off
to system by system
Wk o * The external force SW 1s equal to

oW = f (040€x10y0€)10,0€,12T 5y, 0VyT 20Ty7 Yz 2Ty,0Vyz) AV

 the variation of the internal energy 6U 1n terms of
internal-energy density U,

SU = f&Uﬂ dv



* Since OW = 48U, the internal energy density becomes

O0Uy = 0,,0€,10y,0€y1T0,0€;2T,1) Y5yt 20TxzVxz127520Vy 2

* For elastic material behaviour, strain-energy density
function U, generally depends on the strain
components and the coordinates.

Up = Upy(€x, €y €20 Vxyr Vxzo Vzy, X0 Vs z)

* For small displacement (u,v,w), the variation of the

(er, O)

. oo 7 function U, becomes
olU, = %Se +%6e +6UU de,+ i OVt oUs Vit 9o Sy
de, & Oey, 7 &g ° WMy 7 Oz Oy
* From above two equation, we obtain
szﬁ ; - U, gzzaUn
afx Y aEy afz
100U, 10U, _ 10U,

-y E 6]"xy - E 0Vxz - E ayyz



- Y - »

If we apply a normal stress o, the square
i D’ undergoes an elongation dA, = €, dx, the work
done by the stress on CD and AB 1is:

b S —s 0

B c B v
_h
- - X

I = dlUs = [oadGi + dx)dydz -| o, dudydz
=/ a'x dxdydz

ou o :
* Since o= — €x = 7> We can integrate the

expression to get

0,2

Y =2F



nlementary Energ

* Therectangular area (0,0), (0,€), (0,€), (g.0) 1s
represented by the product o, this area 1s given by

UE=CU+UU

(e, O)

Where C, is called the complementary internal energy
density

(0, 0) (0, & o

Co =fedcr

- aC,

E_Bﬂ'



Casti

liano’s Theorem

This method, which 1is referred to as
Castigliano’s theorem, applies only to bodies
that have constant temperature and material with
linear-elastic behaviour

Strain energy for a body subjected to to a series
OF B iorces, Pyibyywwniby

U =U,=f(P,P,....P)

[f any one of the external forces, say P, , is
increased by a differential amount dP, , the

internal work will also be increased, such that

the strain energy b%(i}:gmes

U[' -4 dUl'z UE + BP; dﬂ

application of the loads Py, P,, ... ...., P, causes
dP; to move through the displacement A; so that
now the strain energy becomes

Ui + dUi: Ui o dﬂtﬂj



y The displacement A; n the direction of P; 1s equal to the first
partial derivative of the stramn energy with respect to P
(Castigliano’s second theorem)

[
(er, O) @, &

A= 2Ui
¥ :
(0, O) (D, &) . aP}
4 atl; * Castigliano’s first theorem relates the load P; to the partial
€ = —a;n =" derivative of the strain energy with respect to the
corresponding displacement, that 1s
p dU;
V.Y

* Castiglano’s second theorem: For an elastic structure subjected
to n2loads, the deflection A; of the point of application of 2, can
be expressed as

ol al/ ol
W T (R R TR il
T YV, ) ) T



Deflections By Castigliano’s Second Theorem

. Fnra truss,
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Principle of Virtual Work

The principle of virtual work was developed by John
Bernoulliin 1717,

We will use it to obtain the displacement and slope at a
point on a deformable body

Consider the body to be of arbitrary shape and to be
subjected to the “real loads” P, P,, and P,

[t 1s assumed that these loads cause no movement of the
supports

To determine the displacement A of point 4 on the body,
place an imaginary or “virtual” force P on the body at
point A4, such that P” acts in the same direction as A

P’ to have a “unit” magnitude; that is, P" = 1 and create an

internal virtual load u in a representative element or fiber
of the body



* The external virtual work is then equal to the internal virtual
work done on all the elements of the body.

virtual loadings
1

I |
l-.lﬁ = Eu*d;.'_,

|
real displacements

Deformation Strain Internal
caused by energy virtual work
Axial load N N? nN
2EA dx EA &
2
Bending moment M _*"‘_L ﬂﬂi
8 2E] e El i

E‘! - d)‘“ Torsional moment T [% dx E:_T_;dx




* Virtual wok can be applied to elasticity problem. We can
represent a small virtual change in quantity Q equal to 6Q with
the virtual displacement du, dv and ow

* These virtual displacement rise a virtual strain de with the
virtual displacement éu, 6v and éw

0
o€ = o o(u, v,w)
*  We can express strain energy density as
0Updxdydz = 0, 0€,10,,0€,10,0€,1Ty;,0Vxyt 0TxzVazTTyz0Vy 2
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INTRODUCTION

A beam is a structural element that primarily
resists loads applied laterally to the beam’s axis.

Its mode of deflection is primarily by bending. The
loads applied to the beam result In reaction
forces at the beam’s support points.

The total effect of all the forces acting on the beam
is to produce shear forces and bending
moments within the beam, that in turn induce
Internal stresses, strains and deflections of the
beam.

Beams are characterized by their manner of
support, profile (shape of cross-section), length,
and their material.



TYPES OF BEAMS:
ACCORDING TO END SUPPORT

Simply supported beam

» Simply supported beam is supported at both end. One
end of the beam is supported by hinge support and
other one by roller support.

This support allow to horizontal movement of beam. It
beam type undergoes both shear stress and bending
moment.




Continuous beam

o This beam is similar to simply supported beam
except more than two support are used on it.

o One end of it is supported by hinged support and
other one is roller support.

o One or more supports are use between these
beams.
It is used in long concrete bridges where length of
bridge Is too large.

Figure P-829



Over hanging beam

o Overhanging beam is combination of simply
supported beam and cantilever beam.

o One or both of end overhang of this beam.

o This beam is supported by roller support between
two ends.

o This type of beam has heritage properties of
cantilever and simply supported beam.

Overhanging
portion

\
f | \

A Y

Simply supporlted portion




Cantilever beam

- Cantilever beams a structure member of which one
end is fixed and other is free.

This is one of the famous type of beam use In
trusses, bridges and other structure member.

This beam carry load over the span which
undergoes both shear stress and bending moment.

Fixed
end

A Free end % ;‘

% .’Ii.




Fixed beam
- This beam is fixed from both ends.

5 It does not allow vertical movement and rotation of the
beam.

It is only under shear stress and no moment produces
In this beams.

o ltis used In trusses, and other structure.




Trussed beam

o A beam strengthened by adding a cable or rod to
form a Truss




ACCORDING TO SHAPE OF CROSS SECTION

I-beam

o This beam types have | cross section as shown in
figure.

o It has high resistance of bending.




T-beam
o Beam with " T "cross section




C-beam
5> Beam with " C " cross section

___————




ACCORDING TO EQUILIBRIUM CONDITION

Statically determinate beam

- A beam is called determinate beam if it can be
analyze by the basic equilibrium condition.

The support reaction can be found by using basic
equilibrium condition.

These conditions are Summation of all horizontal
forces is zero.

- Summation of all vertical forces is zero.
5 Summation of all moments is zero.

Example: Simply supported beam, Cantilever beam
etc.




Statically indeterminate beam

If the beam cannot be analysis by using basic
equilibrium condition, known as statically
indeterminate beam.

The end reaction find out by using basic equilibrium
condition with combination of other conditions like
strain energy method, virtual work method etc.

Example: Continuous beam, fixed beam.



ACCORDING TO GEOMETRY

> Straight beam: Beam with straight profile
- Curved beam: Beam with curved profile
> Tapered beam: Beam with tapered cross section



THANK YOU
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Introduction

» The vessel such as boilers, compressed air
receivers etc. are of cylindrical and spherical
forms. These vessels are generally used for
storing fluids (liquid or gas) under pressure.




/ /




Stresses in thin cylinders

1. Circumferential stress (or hoop stress)
hoop stress=P*d/2t

2.Longitudinal stress (axial stress)
axial stress=P*d/4t




Maximum shear stress
max. shear stress=P*d /8t

Q-1) a cylindrical pipe of dia. 1.5m & t=1.5cm
is subjected to an internal fluid stress of
1.2N/mmA2. Determine 1.longotudinal stress

2.circumferential

stress

3.max. shear stress
|= [1dA4 /64




Euler’s theory of columns

» Assumptions

1. Perfectly straight column and the axial load
applied.

2. Uniform cross sectional of the column
throughout its length.

3. Perfectly elastic, homogenous & isotropic
material

4. The length of column is large as compared
to its cross sectional dimension.




Euler’s Crippling Load
Pe = T12El /le?




Q-2) A solid round bar 3m long & 5cm in dia.
Is used as a strut with both ends hinged
determining the crippling or collapsing load
takes E=2*T0OASN/mmA2

determining crippling load with the
following condition 1.)one end is fixed and
another is free

2.) both end are fixed
3.) one fixed and other is hinged




Slenderness ratio

» The ratio of actual length of column to the
east radius of gyration of the column is
known as slenderness ratio

SR= actual length(L)
least radius of gyration(K)
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Academic Calendar 2015

Classes Start 27t July, 2015,

Classes End 13t November, 2015

Examinations Start 16t November, 2015

Examinations End 5t December, 2015*

Announcement of Results Latest by 24t December, 2015

Winter Vacations 7th to 27t December, 2015



Time Table for Section-A

_?l’;!- *7'.'3_
TIME TABLE FOR BACHELORS DEGREE PROGRAMMES e~

DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE FOR: T.E. (Civil) BATCH: 2012-2013 Fall 2015
EFFECTIVE DATE: 27" July 2015 (Version 1.0)

SECTION -Al Room No:

DAYS/ PERIODS Tuesday Wednesday Thursday Fnday* Sat/ Spare day
(R8) (R2) (R8)

08:30 =00:20 CE-301-B MT-443 s CE-302

09:20 - 10:10 CE-301-A CE-316-B -- (PR)

10:10-11:00 CE-305-B CE-302-A -- CE-302-B

11:00-11:30* Recess

11:30-12:20 CE-301-A MT-443

12:20-13:10 CE-316-A CE-302-B (-A160X)

13:10 - 14:00* Interval for Lunch / Pra

14:00 - 14:50 = = =

STTIT CE-301 (DC) | CE-305 (PR) - -

15:40-16:30




Time Table for Section-B

f*"‘"“‘-b

F t.nl‘._

TIME TABLE FOR BACHELORS DEGREE PROGRAMMES fg
F/QSP 11/04/05

DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE FOR: T.E. (Civil) BATCH: 2012-2013 Fall 2015
EFFECTIVE DATE: 27" July 2015 (Version 1.0)

SECTION -Bl Room No- R4
DAYS/ PERIODS Wednesday  Thursday Fnday*  Sat/Spare day
08:30 -00:20 CE-302-B ‘E-3053-A CE-302-B
00:20-10:10 CE-316-A ‘E-305-, CE-302-A
10:10-11:00 CE-301-A ‘E-301-. CE-316-B
1100-11:30%

11:30-122 CE-301-B
Sy 3 o
12201310 e T 17 i e
13:10 — 14:00* Interval for Lunch / Pravy
14:00 - 14:50 MT-443 ’
=305 | )
14:50 — 1540 el e

15:40 -16:30




Time Table for Section-C

DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE FOR: T.E. (Civil) BATCH: 2012-2013 Fall 2015
EFFECTIVE DATE: 27" July 2015 (Version 1.0)

TIME TABLE FOR BACHELORS DEGREE PROGRAMMES

f*"‘"“‘-b

F t.nl‘._
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nw

F/QSP 11/04/05

SECTION -C1 Room No: N1
DAYS/ PERIODS Monday Tuesday Wednesday Thursday Fnday™ Sat/ Spare day
08:30-09:20 -- CE-301-B :
00:20-10:10 CE-301-A CE-301-A
10:10-11:00 CE-302-B M55
1100-11:30* S
11:30-12:20 CE-302-B CE-305-B
1220 13.10 CEREFR) | EEAX) [ cEsiea CE316A
13:10 — 14:00* Interval for Lunch / Praver
14:00 - 14:50 , ) , )

1350 — 15-40 CE-305 (PR) CE-316 (DC)
15:40-16:30

Note:

* For Friday only: Recess: 11:00 hours to 11:20 hours Lunch/ Praver Time: 13:00 hours to 14:30 hours




Mechanics of Solids
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CE-301-Mechanics of Solids-I|

Tentative Course Outlines

INTRODUCTION (Basic Concepts and Terminologies)
. Overview
Il.  Types of stresses
IIl.  Determinate/Indeterminate Structures

ANALYSIS OF STRESSES AND STRAINS DUE TO

. Axial/Bending/Twisting and Shear Forces
Il.  Combine effect of axial, bending and twisting forces

STRUTS AND COLUMNS

|.  Euler, Rankine and other formulae for buckling loads
Il Stability analysis of column under eccentric loading

ELEMENTARY THEORY OF ELASTICITY
. Equilibrium and compatibility equations
Il.  Biaxial Stresses
IIl.  Stress and deformation relationship
V. Stress transformation

THEORIES OF FAILURES

. Tresca’s Yield Criterion
. W.Rankine's Criterion
lll.  Von Mises Yield Criterion

COMPUTER BASED ANALYSIS
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Course Learning Outcomes (CLO’s)

1. To get an exposure of biaxial bending and its application

2. To understand the problem of stability of column and
design of steel column

3. To get the knowledge of different types of failure
theories and its applications in mechanics of solids



Terminologies

Stress: Stress is the intensity of the internal force on a specific plane passing through
a point. Mathematically, stress can be expressed as

Free Body Diagram

Cross sechion: A

 AF
G = lim
A40 AA %

(a) (b}
Fig. 2.1 External and mternal forces m a structural member

10



— Types of Stresses

T

&z

STRESS

Direct stresJ Simple Stress Indirect [tress tnmbheL Stress

Shear Stress Normal stress Torsional Stress Bending Stress

| T
I g d ®

Tensile stress Compressive stress

i

11



Strain

Types of Strains

v

,

Linear strain Volume or Bulk strain
|

i I
Linear strain is the ratio of the Volume strain is the ratio of the
change in length to the original change in volume to the
length original volume

Change in length Change in volume
Linear strain = Volume strain =

Original length

.

Shearing strain

Y

Shearing strain is equal to the
angle of shear @

Original volume

v

Shearing strain = Angle of shear §

12



Terminologies

Normal Stress: The intensity of the force or force per unit area acting normally to
section A is called Normal Stress, o (sigma), and it is expressed as:

AF.
o= lim —%
Ad4—-0 AA

If this stress “pulls” on the area it is referred as Tensile Stress and defined as Positive.
If it “pushes” on the area it is called Compressive Stress and defined as Negative.

r == I F
(+) —Dl I‘-—
il

. Deformation
)—7 Ongmal length —47-—1 (mntﬂctmn"h
Deforniation Ongnal lf'ﬂE'l]l

(elongation)



Terminologies

Shear Stress: The intensity or force per unit area acting tangentially to A is called
Shear Stress, t (tau), and it is expressed as:

AF
r= lim d
A4—-0 AA

Deformation: Whenever a force is applied to a body, its shape and size will change.
These changes are referred as deformations. These deformations can be thought of
being either positive (elongation) or negative (contraction) in sign as shown in Fig.

F vy ¥ F
)

. Deformation
)-— Onginal length —i—;—‘ (cmltr:]-:tmn}
Deformation Onginal lenﬂh

(elongation)

Strain: The elongation (+ve) or contraction (-ve) of a body per unit length is termed
Strain.



Terminologies
THERMAL STRAIN

When the temperature of a body is changed, its overall size will also change. In
other words, temperature change may cause the dimension or shape change in the
material. More specially, if the temperature increases, generally a material
expands. Whereas if the temperature decreases, the material will contract.

A S S S S

&
---------------------------------------

(a) Thermal deformation (b) Thermal and mechanical deformation

Fig. 2.6 Thermal and mechanical deformation

Thermal Strain

_L}T _ AT
& hermal = L =



Terminologies

« Homogenous: material is the same throughout the bar
« Cross-section: section perpendicular to longitudinal axis of bar

~

« Prismatic: cross-section does not change along axis of bar

A, r

F o i B g

plx) o L,

gy Rocrme. s k\il ——

Prismatic Non-Prismatic

16



Ductile Vs Brittle

L
3 €

Notice that for the ductile material, show on the left, larger strains occur before
ultimate failure. In reality this means that (a) the material has a chance to change
its shape in order to redistribute loads, and ( b) if redistributing the loads does not
prevent failure, there is often adequate visual warning (sagging beams, etc.) before
failure occurs. For these reasons, ductile failure is preferable to brittle failure.



Stress-Strain Relationship Hook’s law

giﬂﬂzﬁr fi
-
Standard
Specimen eld stress
P‘:’mld;tremir : _ Fracture
oqﬁ_ 1013 ; ' tre :
: » 5 stress oy E
|.._¢ Plastic behavior -E E
F H i L
—{Elastid™—
behavior

Fig. 2.4 Matenal test and Stress-Strain Diagram

18



Criginal
gage
_y length, |,

Fracture

(a)

Tensile-Test

—

Elastic «—— Plastic

Stress ;
A I
A UTS -~
e = ] |
]
e l Fracture
; I
- |
. |
1
€, e, ¢ Strain (for I, =1)
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|
I
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I
I
I
I
I
L
I
I
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I
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I
1
1
|
|
|
|

|

Ay

(b)

FIGURE: (a) Original and final shape of a standard tensile-test specimen. (b) Outline of
a tensile-test sequence showing different stages in the elongation of the specimen.



Types of Analyses

There are two types of analyses (Linear/Nonlinear),

(strese) Elasliclﬂe?iuné Plastic Region
. Linear static analysis (without inertial forces) DTS /’,ff e -
’ L
. Linear dynamic analysis (with inertial rorces) Yo o § SR T/
propamionality rs:
. Nonlinear static analysis (without inertial forces) |
. Nonlinear dynamic analysis (with inertial forces) | —
o . L} | |
(stress) Elastic Region j|Plastic Region
Unice stress & removed t rmanendy deformead by the
refums o ongingl sizé'shape ElF@ss
F A fracture
! point
i ‘; = =
| T e e e T
limit '}
proportionality

20
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Types of Loads according to Member Behavior

W

P -
L
par™ Iicure 3.1 (@
(@) Axially loaded w
members 1[ 1 { I l # l
A \ '
—J —p TS f'..-?f.-’:;f’:zf %ﬁ
(b) () (®) FiGure 3.2  Shear
loads ﬂ'mp]ii-fl Lo
beams
Z >
% J
Z y
(a)
P
G1—
: h
) .
/ v )
/A - sk omm ()
Z e M= Ph
(®) Ficure 3. Icure 3.4

Moments .‘.I|J'|J|iL‘ll
Loy I‘H—‘ﬂl]lt—i

‘['nrr[m*ﬁ apy ied
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Types of Loads

Gravity Loads (Dead/Live Loads)

My Wy

Vy I Beam BI i Yy L l Beam B2 | Vs I | Beam BJ ll’_‘;

umiformly distributed load point loads triangular load
Vs
e, mellﬂlll
Vy Beam B4 Vy Vs Beam BS Vy Ve Beam B6 Vs
trapczoadal load combincd loads combined loads

Lateral Loads

(1) Wind Load
(2) Fluid/Water Load
(3) Earthquake/Seismic Load

22



% = 700 ft
(213.5 m)

b‘m}_'m”‘

Exposure
D
Flat, unobstructed

areas and water

surfaces outside
hurricane-prone

regions

Z, =900 f
(274.5 m)

o T105
/V 2

Exposure

Oopen
terrain

S S

L3 B W

r(z

o =1200 f
(366 m)

Vf'lel?

s
o

Exposure
B

Urban and
suburban

terrain

W T EEE BN B W NN RS TN S —— O T

Z, Height aboveground, ft

Types of Loads

Figure 1.1. Influence of exposure terrain on variation of wind velocity with height. 93



Types of Loads
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Accaleration
Accelaration of gravity
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Types of Loads

Onginal static position
before earthquake

11
11 ]
A\

AW
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Deflected shope of
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F Wy
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o
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Time T, secs

Behavior of a building during earthqual

Figure 2.1.

-Wo {nm incl.

A v= F,'_+F!+.F;+F|
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Types of Supports

roller supports: providing o] i J e
one restraint perpendicular $ —E[I »
to the roller.

pinned suppbi’ls: providing &
two mutually perpendicular
restraints - 3 N
fixed supports: providing !
) ..\% \ﬁ‘

two mutually perpendicular
restramnts and one moment
restramit,

26



Application of different Supports

N .
/ Ficune 1.11
Idealization of a
# ]riIIHHI support

(] {1
wa

i T ' "'_] Icure 1,12
> ldealization of a
., sliding or roller
T "~ Steal ' ' support

{m) i)

=) '/B“m icure 1,13

ldealization of a
? bult-in support

N

(b}
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Biaxial Bending

Columns are usually subjected to two bending moments about two perpendicular
axes (X and Y) as well as an axial force in the vertical Z direction (see Figure)

M, Y
1;% ~
C

» X

(a)

AY
+Y
I MM,
M,
C = ,e""’ff (’QLX

(b) (c) (d)

Figure 1: Biaxial bending of columns

(a): 3D view (b): Bending about .X-axis

(c): Bending about Y-axis  (d): Inclined neutral axis in biaxial bending



(a) plane stress in sheet stretching; there

are no stresses acting on the surfaces of
the sheet (studied in MOS-I).

(b) plane stress in compression; there are
no stresses acting on the sides of the
specimen being compressed.

(c) plane strain in tension; the width of
the sheet remains constant while being
stretched.

(d) plane strain in compression; the width
of the specimen remains constant due to
the restraint by the groove.

(e) Triaxial tensile stresses acting on an
element.

(f) Hydrostatic compression of an
element.

State of Stresses

(a) (b)

o, 1 - B
778
=5
Gy

(c) (d)

0, p
o, g

p
, p
l.‘.l1 p
0, p



State of Stresses

Plane Stress-state of stress in which two faces of the cubic element are free of
stress. For the illustrated example, the state of stress is defined bv

UII" {J-J_'-'I rx‘}r H-Ild G-:' -_— T:l- — I-!'_-T = D..

« Mohr’s circle for centric axial loading:

30



Stress Transformation Equations

v
& o
Ty |
o 05 e |
Oy = — + — €020 + 14, 51n26
2 2 :
(ﬂ-x - G-v) -
Ixlvli= — —smn22f + 71 _,00329
xl) ) X)

If we vary 6 from 0° to 360°, we will get all possible values of o,, and 1, ,
for a given stress state. It would be useful to represent o,, and T, as
functions of 8 in graphical form.



Mohr’s Circle for Plane Stress

B T“?‘T“
¥y

L {_‘




Sign Convention

Before the transformation equations are derived, it is necessary for us to review the
sign convention for the normal and shear stress components. As shown in Fig. below,
the sign convention can be remembered by simply noting that positive normal stress

acts outwards from all faces and positive shear stress acts upward on the right-hand

face of the element.

-+ I o -0, _, Compressive or
G.. d 4 +T L.P”md n the T -t f inward direction
aT r:r;;}rr hand face 1 |
-+ e ) |
Gy . TO O "0,y
; - \ » _Dowmvard in the
-} ="y
T.'n'.*r J - \ kil i -1 i_rgﬁ:r hand face
X : ounward direction b J-

Sign convention of stress components



Sign Convention for Mohr’s Circle

y R2
Y
ﬁﬂ tﬂ“ Tl‘!r‘l X
’
nn'l
(8]
H ” } it
L 0
% Tyixt
TA‘Iy"‘I o
1

Notice that shear stress is plotted as positive downward. The reason for doing
this is that 26 is then positive counterclockwise, which agrees with the direction
of 28 used in the derivation of the tranformation equations and the direction of

B on the stress element.

Notice that although 28 appears in Mohr’s circle, 8 appears on the stress

element.

L



Principal Stresses

Tx1y1



Maximum Shear Stress

_________ y h
B (6=90) x Lx |

Note carefully the
directions of the

shear forces.




Application of Principle Stresses/Failure Theories/Yield Criterion

(8] 03
8 Tension
. . . ()
Maximum-shear-stress criterion: o ‘[:}4’: 2 i -|:1:|—~U1
- O == '8
Omax “Omin = iy 3 3
T Maximum-shear
y stress criterion
Compression - ¢ » O, Tension
Distortion-energy
criterion
Distortion-energy criterion: . _
5y e O, Compression 1 = £14
(01 -02) 2 +(02 -03) 2 +(03 -01) 2 = 2Y? Oq Og

Plane-stress diagrams for maximum -shear-
stress and distortion-energy criteria. Note that
c2=0.



3D Stress Transformation

38



3D Stress Transformation

’ - O
The stress element shown is in plane stress. B 1 .
What is the maximum shear stress”? —= .
1 Y B
ﬂx - —x!h —1— ,n'k
Ny A

511
O1—0
Tmax(1.2) = I 5 _
g9 —0 o
Tmax(2.3) = 2 5 3 = 22

O1—e3. 9]

overall maximum | Tmax(13) = 5 >

359



3D Stress Transformation

Introduction to the Stress Tensor
/‘rw_#

yXx
1.
: T,wc O yy Z'y:
ﬂ e,
| — XK
TJIZ Lz Ty Yz
Normal stresses on the diagonal

Shear stresses off diagaonal

= T ™ T ™ G Tha™ Ty

i 3\
Oxx *xy Txz

The normal and shear stresses on a stress element in 3D can be
assembled into a 3x3 matrix known as the stress tensor.



3D Stress Transformation

From our analyses so far, we know that for a given stress system,
it is possible to find a set of three principal stresses. We also know
that if the principal stresses are acting, the shear stresses must be

zero. In terms of the stress tensor,

[ 3\ /O.l 0 0\

Oxx txy Uxz

—
Tyx Oy Tyz 0 o 0
b T O L0 0 o3,




Example.#.01

*0-23, The wood beam is subjected to a load of 12 kN. If a

grain of wood in the beam at point A makes an angle of 25°
with the horizontal as shown, determine the normal and

shear stress that act perpendicular and parallel to the graimn

due to the loading,
1 [
I == (02)(03)" = 045(107%) m iﬁﬂnun
75 mm 200 mm

Q4 = yA' = 0.1125(0.2)(0.075) = 1.6875(10 %) n
My,  13.714(10°)(0.075)

A= a0, - 22857 MPa ()
VQ, 6.875(10°)(1.6875)(107)
AT T oo oz o izmoMPa

o, =228MPa  o0,=0 17, =-01286MPa 0 =115°

42



9-22. The T-beam is subjected to the distributed loading
that is applied along its centerline. Determine the principal

stress at point A and show the results on an element located
at this point,

The location of the centroid ¢ of the T cross-section, Fig, a, is

SVA  0.1(0.2)(0.02) + 0.21(0.02)(02)

ETR— — — ].. 5
PR A 0.2(0.02) + 0.02(0.2) teisim

i's é{ﬂ.[ﬂ]{lhzf‘} + 0.02(0.2)(0.155 — 0.1)°

3 %m.ﬂl{u.u:!v"} + 0.2(0.02)(0.21 — 0.155)

— 37.6667(10 %) m*
Referring to Fig. b,

Qa4 = YA = 0.1175(0.075)(0.02) = 0.17625(10 %) m®

Example.#.02

100 kN /m |

NN NERERENNY

L]
| | m | 05 m—
200 mm
:: 20 mm
4All 200 mm
75 mm ]
i
20 mm

43



Example.#.02

Using the method of sections and considering the FBD of the left cut segment of the
beam, Fig. c,

+12F, = 0; V —100(1) =0 V =100 kN

C+IMq=0; 100(1)(0.5) — M =0 M =50kN-m

The normal stress developed is contributed by bending stress only. For point A,
y = 0.155 — 0.075 = 0.08 m. Thus
My  50(10°) (0.08)

= == 106 MPa
I 37.6667(10°°)

o =

The shear stress is contributed by the transverse shear stress only. Thus,

V 100(10°)[0.17625(10 3
;= Y2a _10000) 107 _ 23.40(10°)Pa = 23.40 MPa
It 37.6667(107%) (0.02)

The state of stress of point A can be represented by the element shown in Fig. c.

Here,o, = —106.19 MPa,o, = 0 and 7., = 23.40 MPa.
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Example.#.03

9-95. Determine the pnncpal stress and absolute

maximum shear stress developed at point B on the cross
section of the bracket at section a—a.

12 1n.

Internal Loadings: Considering the equilibrium of the free - body diagram of the gy
bracket’s upper cut segment, Fig. a,

3
+1=F, =0; N—S{m(;{)=u N = 3001b 0.3
D Sin.15in.
: 4 Section a - a
SM,=0: M - 5uu(';){121 - mu(;)[ﬁ] =0 M = 6000 Ib-in

Section Properties: The cross - sectional area and the moment of inertia about the
centroidal axis of the bracket’s cross section are

A = 05(3) = 0.25(2.5) = 0.875in”

I= li{u.::}(JP] - é (0.25)(2.5°) = 0.79948 in* Gin .
Referring to Fig. b, 5‘?9 ;b
Q=10 i
Normal and Shear Stress: The normal stress is a combination of axial and bending N "



Example.#.04

Example 10.2 Find G). G2, Tux and their orientations for the following stress system: Gy, =
40 MPa, G,, =-20 MPa, 1, = 30 MPa.

Step 1: Draw the state of stresses

5_1}'

Tm.=30MPa

c,.,=40MPa

| T_'I.'I
L g,,= -20MPa

Step 2: Draw the Mohr Circle It 1s necessary to first establish ¢ and T axis. Since Oy, Gy, .

and T, are known. the center of the circle can then be plotted at C(10.0). To obtain the radius.
one can either plot point A (40,30) as shown above or compute the value as follows.

46



Example.#.04

2 )

Radius of Mohr Circle: - J[ O —Op ] o J[ 0-C2001 (30 = 4243020
N, 2 ’

a,,=-32. 43MP2

\.

Center of Mohr Circle:

= G ﬁ I i
¢ = 10MPa E=( II; JJ)=40+( 2ﬂ]=104‘fpﬂ

o =5243MP2 - gten 3- Determine the orientation of the

9 prnciple stress:

_ 2T 7

| R=4243MPs 50 o __2x30 _1.0

5 (64 —0,,) 40-(-20)

_ arctan(1.0) Ep—

ﬁpi >
8, =90°+8, =112.5°

47



Example.#.04

Step 4: Compute the principle stresses and the maximum shear stress

32.43MPa
—-3243MPa

' )
c (G +G 4y (O =Ty |
- ”):J = -‘"] +15 =C2R=10£4243=

G2 2

I". —_

'r-ﬁn'ﬂ:t:r.: 2 40-(-20)Y’
T"‘”‘:R:\h 2 )7 =‘j[ 2

\

Step 3: Draw mfimitesimal elements mndicating magmtude and onentations of both the Pnincipal
Stresses (the left hand of the figure) and the Maximum Shear Stress (the nght hand of the figure).
From the Mohr circle. O1; rotates from the bold line by 26, anticlockwise. So we rotate the oniented

element showmg the principal stress by 6=08,; m the same durection as given on the left below.
Similarly, mn the Mohr circle. 1, rotates by 20 clockwise; hence the onented element showing the

maxamum shear stress should be rotated by © clockwise as given on the nght figure below
Onentation of Principal Stresses _ , ’ : see

\E: =-3243MPa

1, =42 43MPa
G, =52.43MPa
/Z\ 10MPa

= 2) 50 o=225

+(30)° =42.43MPa
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Example.#.05

Example 10.3 When the torque of 7=10kN/m 1s applied to a torsional shaft as shown. 1t produces
a state of pure shear stress in the matenial. Determune the detailed stress status at element A4 for: a)
the maximum shear stress and the principal stresses; b) the onentation of principal stresses.

: Distmbution of
T=10kNm s “ l shear stress

\

Step 1: Compute the shear stress in the cross section
D*  7(0.075)"

J = = =3.106x10"%m*
32 32
3
o TR _ T(D/2) _ 10x10° x 0.0j?ﬁ —120.7MPa
i J 3.106 <10
T, =—1=-120.7MPa: No normal stress at 4, so we have 6, =0, =0

49



Example.#.05

Step 2: Compute the maximum shear stress

& ~5. Y . 0-0)° -
: =J{ . *"“] +r;=\/[¥] +(~120.7) =120.7MPa

" 2

As expected, the maximum shear stress comresponds to a pure shear status. Through
experiment. 1t has been found that ductile will fail due to shear stress.

Step 3: Compute the principal stresses and their onientation

' 2 : 3
on _(0u+0,), [(0a-0,) > _(0+0), (u-o] r (1207 o 1207MPa
G 2 ) 2 ¥ 2 T\ 2 ' ~120.7MPa

[ ]

—_—

5 B 5. 2x(-120.7 tanl— o
Onentation of principle stress: 7an 26 = ((} 0) ) =—0 "0, = ik H:( ) = —45°
R S Orientation of Principal Stresses

/ Gy =-120.7MPa

3yy=-120.7MPa a,,=120.7
8]
- o
on = 120.7MPa

50



Example.#.05

Thus the furst pnincipal stress O] = Ty, acts at 6,)=—45° and the second principal stress G)=—|T,,| acts
at 6,,=90°+8,;=45°. Brttle material fails due to normal stress. That 1s why when a brttle matenial
such as cast won and chalk. 1s subjected to torsion (because usually 1ts allowable tensile stress 1s

much smaller than its allowable compressive stress) 1t will fail 1n tension at a 45°mclmation.



Example.#.06

Example 10.4 A single honzontal force P=900N 1s applied to end D of lever ABD. Knowing
that portion AB of lever has a diameter of 36mm. Determine a) the normal and shear stress
status at element at point A b) the principal planes and principal stresses at H.

FBD at Section H ﬁ” =58'Lf T:qr=53-]
H GII=0
L 4

Step 1: Internal loads at the section H
Shear force: V=P=900N
Torque: T'=900x0.540 =486Nm
Bending moment: M,=900x0.300 = 270Nm
Step 2: Compute normal bending stress at A

.
o=-MR__L210)x0018 _ 50 9rpa, -0, =G=58.9MPa

I wx(0.018)* /4

52



Step 3: Compute combined shear stress at A E | 4 0 6
Shear stress consists of torsional shear component I' and transverse shear component due to V. Xample.#.

However. transverse shear Ty 1s zero at H from Table 7.1 and Example 7.2. We have

R2__BOXUYE L o-s3amMPa -1, =1=53.1MPo
J It 7x(0.018)" /2

Step 4: Deternmune stress status  as shuwu 1 the nght hand side of the top figure.

T=TT +TF -

o, lo,.+0 6.0} 0-589) L, 90.2MP
n_ | ,-,,]i lf ,,,1] ) =(0+5s.9)i (0 53.9] (5311 = G
Oy, 2 \ 2 2 2 —32.3MPa
_ . o 2x53.1
Onentation of pninciple stress: fan 26 = =-1.8
0-58.9
©8,,=0= arctan1.8)_ 44 50 -8, =90+(~30.5°)=59.5°
Step 6: Draw Mohr Circle
C=2945
Rotate to Gy, Qrientation of Principal Stresses
26=28,, -‘
J :. o] _=g'[:'2
Oyy=-32.3 : &y, ~90.2
.- . 8 =6 ~00° =30 5°
6,0 | E | a,,~58.9 o e
' pl ~
2" 6,,=6=-30.5°
f R=60.7 Gyy=-323
1 =53] |
¢ =60.7 -

T 53






Principal Stresses by
Stress Tensor Approach

Principal stresses and Stress Transformation

Example: The state of plane stress at a point is represented by the
stress element below. Find the principal stresses.

50 MPa

_t

80 MPa |

»

50 MPa

1 — 25MPa

/ \
Ox Ty
M = .

T o
80 MPa P2 Y )

this matrix.

=£

—-25 50

- 80 —25]

We must find the eigenvalues of



3D State of Stress

we can use the rotation matrix approach to find the stresses
on an inclined element with 6 = -30°.

o [©05(-30°) —sin(-30°)) _(0.866 0.5
[ sin(=30°)  cos(=30°) 0.@5 0.866

M=R'MR
M,_[o.sa& —&5}[—30 —25}(0.866 &5}
05 0.866){-25 50 )l -0.5 0.866
M,_[—zs.s —68.8]:(511 rlyJ
-68.8 —4.15 Tyx Oyl 25.8 MPa

Again, the transformation equations,
Mohr’s circle, and the stress tensor

approach all give the same result.
4.15 MPa

68.8 MPa



3D State of Stress

3D Stress Campanents The most general state of stress at a point may
be represented by 6 components

From equilibrium principles: Normal Stresses O, O, O,
Ty ™ T . By T Y

yx ' "XZ X ' "Zy ¥z

Normal stress (o) : the subscript identifies the face on which the
stress acts. Tension is positive and compression is negative.

y Shear stress (7) : 1t has two subscripts. The first subscript
denotes the face on which the stress acts. The second subscript
denotes the direction on that face. A shear stress is positive if it

O, acts on a positive face and positive direction or 1f 1t acts in a
negative face and negative direction.

TI!F

o, X / \— Direction

Face

57



3D State of Stress

For static equilibrum 7, =7, , 7,, =7, , 7, = 7, resulting n 1x independent
scalar quantities. These six scalars can be arranged 1n a 3x3 matrix. giving us a sfress

fensor. T -
5. ¥ &, 4.:\- Direction

The sign convention for the stress elements is that a

iy xy y =1 = - -
positive force on a positive face or a negative force
(- r;-:- O, | onanegartive face is positive. All others are negative.

The stress state is a second order tensor since it is a quantity associated with two
directions (two subscripts direction of the surface normal and direction of the stress).

Same state of stress 1s represented by a different set of components if axes are rotated.
There 1s a special set of components (when axes are rotated) where all the shear
components are zero (principal stresses). \yl ¥

.




3D State of Stress

A property of a symmetric tensor 1s that there exists an orthogonal set of axes 7, 2 and
3 (called principal axes) with respect to which the tensor elements are all zero except

tor those in the diagonal.

o, T, T, o 0 0
b=l
G:(}'jj: rxy g'y r:y ﬂ'—CF!-j— 0 O, 0
e B o, Eigen values (0 0 o]

[n matrix notation the transformation is known as the Eigen-values.
The principal stresses are the “new-axes” coordinate system. The angles between the
“old-axes” and the “new-axes” are known as the Eigen-vectors.

“old” axes
x1 x2 x3
Xx'1 all al2 al3
“new” X2 a2l a22 a23
X3 a3l a32 a33
Cosine of angle Cosine of angle Cosine of angle
between X and the between Y and the between Z and the
principal stress principal stress principal stress principal stress
o, K1 11 m1
o, k2 |2 m2

O, K3 13 ma3
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3D State of Stress

Plane Stress

State of stress in which two faces of the cubic element are free of stress. For the
illustrated example, the state of stress is defined by

0,,0,7, and o =7 =7 =0

Y& » The Shear Stress will be considered
—T—' S positive when a pair of shear stress
xy acting on opposite sides of the
'1—'{, element produce a counterclockwise
(ccw) torque (couple).
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3D State of Stress

Oy =0 Ty Ee
Tyw Oy=0 T, |=0
t. t. O.-0 How to calculate
principal stresses in 3D
|crx-a Ty Tox
r.t}' ﬂ'r-ﬂ' T}: =0 e ements
Tex Ty- 0-=0C
Expanding the determinant:

(o —J]{ﬂ'}‘ -oNo--0) +2r1}.rj,_.r:x -(o, -r.r}rz._. -{a‘}. -a'}ri. -(o- —ﬂ'}ff:,‘. ={)

"
(0,0,-00,—-06,6+6"K0.—-0)+21,,T,.T,

.
it ' 2 Jrf,_. - ::I‘J.rf..Jr + n-rfx - ::r:r_f,‘. + ﬂ'!":l:..‘. =0

2 2 2 3
0-=00,0.~0,00.+0G 0.~0,0,0+0 0y +0,0 =0 +2TT )Ty

)
2 2 2 2 2 - 3
=OxT)- + 0Ty, = Oy Iy + 0Ty =0Ty, + 0Ty, =0

2 2 2 3
Ox0y0.=0,0.0=0.0,0+0.0" =0,0,0+0,0 +0,0 =0 +20yT-Toy
2 2 2 2 2 T
=0Ty + 130 =0y I + 1,0 =0Ty, + T30 =0
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o 3D State of Stress
How to calculate principal

stresses in 3D elements

Rearranging terms we can write:

]

—

3 2 2 2
=0 +(0x+0,+0.)0" =(030), +0,0. +0.0x =Ty =T, =Tx)0 +
0,0,0-+2 R i 3)*0
(600 + 2Ty Ty Ty =0Ty =0, T, =0Ty, ) =

Multiplying both sides by =1 we get:

,
o> -(o,+0, +ﬂ‘__)ﬂ‘2 +(0,0,+0,06-+0-0, -rf.,. - T3z -r; Jo -

2 2 ¢ 5 -,

The above equation 1s known as the characteristic equation of the stress tensor and 1t can be
written as:

‘53 -Iio? + lyo-1I4 =0|
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How to calculate principal 3D State of Stress
stresses in 3D elements

where:

h=0,+0,+0-

t
3 a g g g g..
Ih=0,0,+0,0-+0-0 -rz,—rz_-r: fjm] ™ "] "8 g K
g ya e R S T o. © 0. © c.. ©
Ay yy Az Iz v 22

2 2 2

I3=040,0. +2T T Ty =0Ty, =0Ty =0Ty,

2 2
= 0,,0,,+0,,0,, % .n’wn':z 2 ﬂiv =0y —0,;

Notice that:

Oy Ty Tx

I3= tyy Oy gy =dﬂ([5'])

Iy,I,,1I; = Principal scalar invariants of the stress tensor
I =>  First scalar invariant of the stress tensor

1> =>  Second scalar invariant of the stress tensor

I3 =>  Thurd scalar invariant of the stress tensor
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How to calculate principal 3D State of Stress
stresses in 3D elements

2 y. 2

Iy =0,0,+0,0.+0-0, =Ty, =Ty =1
g Ty T
xr " *»
gy ) 2 2 2 :
30500, TelyyTy Ty =OxTy =0Ty =0Ty, or I=fr,, © y Ty=
Ty Ty O-

Since the equation
o’ - J]‘\::r:1 +lho-1;=0
1s cubic in o, 1t has three possible roots. It can be shown that always the three roots are real.

We will denote by o,05,03 the roots of the cubic equation and we will always use the

following convention:

ﬂ'lz_"ﬂ'z :35'3

01,072,037 =2 Principal stresses
o) =  Maximum principal stress (maximum algebraic value)
o3 = Minimum principal stress (minimum algebraic value)
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For Direction Cosmes

Q. Slx companenfs of stress are measured at a point:

o = 14.0 MPa 1, = -0.6 MPa
= 34.8 MPa 1, = 6.0 MPa
= 16.1 MPa T, = -2.1 MPa

:Dcfer'mine_the principal stresses and their direction cosines.



For Direction Cosines

F— ~ - = IEEEEE— S B I B S . I I [ P (IS Iy S

Stress Invariants - Step 1

th,n the stress tensor is expressed with reference to sets of

axes oriented in different directions, the components of the tensor |
change. However, certain functions of the components do not |
change. These are known as stress invariants, expressed as I;, I,,

I,, where:

) =0y + Tyy + Oy,
= 2 2 2
I}E - ﬂ'.t,tﬂ'_}'_v ™ I’T}-,_-I'T:: T Op20xx — T.t_-u- o Tx.: o r:.r

- 2 2 2
3= Ugx0yy0; + 21'.1‘1.* Cye Ty — Oxx Ty: = Oyy Cog = Oz 7oy

The expression for the first invariant, I;, indicates that for a
given stress state, whatever its orientation, the values of the
three normal stresses will add up to the same value I;.
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For Direction Cosines

i
Stress Invariants - Step 2

Whln the principal stresses have to be calculated from the
components of the stress tensor, a cubic equation can be used for
finding the three values oy, o;, o3:

0" = (Oxx + Oy + 05 )0" + (00, + 04,0, + 0,0, _T;}_T -2
.
(0 0yy Oz + 205y Ty Tox — “r,_: Oyy T — uur“}—f}
or

ol ~ Lo* 4+ Lo -1, =0

Because the values of the principal stresses must be independent of
the choice of axes, the coefficients I,, I,, I, must be invariant
with respect to the orientation of the axes. It can also be mﬂ:d
from the first invariant that: |

1;=ﬁxx+ﬁﬁ+ﬂ'zz =.Jl+.ﬂ'2+ﬂ..?...
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For Direction Cosines

Stress Invariants - Step 3

Each principal stress is related to a principal stress axis, whose
direction cosines can be obtained, for example for o,, througha |
set of simultaneous, homogeneous equations in A,,, 4, , 4,;, based |
on the dot product theorem of vector analysis:

Ayi -.l';‘

;I'h,:l
—_— = ~—] K ’ s ﬂj}' = It-'l-l Gjr:' = U” U-p-_-
A B C Where: 2 O G::— G, - Ox OO
- Oxry Oy —0
Oz Oy

. " e z 2 Eylr
Sl.lb.."-"'lh.l"'lﬂg for ‘) ;"yi ' Aﬂ L An=A[A"+B +C")
i i xTAyT A= ! 3 e Tr.
in the dot product relation ) Ay = A + B* + C1)"7

for any unit vector gives: |
An =ClA* + B* + CH)"”?
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Stress Invariants - Step 4

Pm:edmg in a similar way, the vectors of direction cosines for the
mt:nncdmu and minor principal stresses axes, i.e. (4., 4., ., 4,,)

A.3) are obtained by repeating the cn!:ulnflons but

and .(’L:S A3 .
substituting o, and o;.

I
;"IJ . }'Z'J lz:

P E  Where:

111 l] l:
G H, f— =X Whﬂu

For Direction Cosines

D= - u-“' Ozx 'F- _ Cxx — U: O:a
Oy OCu- ﬂ} i Czx O — G:
f"‘ B Cxx = ﬁ:r “J.l.'_'li
G-, Oy
G= Oy Oy He— On— 03 On
I = O — ﬁ_‘l ﬁ.l:}'
Oy Oy — O3




For Direction Cosines

Stress Invariants - Step 5

The procedure for calculating the principal stresses and the
orientations of the principal stress axes is simply the determination
of the eigenvalues of the stress matrix, and the eigenvector for
each eigenvalue. Thus, some simple checks can be performed to
assﬁss the correctness of the solution:

Invariance of the sum of the O) + O3 + O3 = Orx + Gyy + Oz
al stresses requires that:

i
The condition of orthogonality requires that
each of the three dot products of the vectors Aet Acz+ Ayt A2+ Azt A =0
of the direction cosines must vanish:

/0



. |Six components of stress are measured at a point:

|
|
|
.

For Principal Stresses

o, = 14.0 MPa T = -0.6 MPa
o,y = 34.8 MPa .= 6.0 MPa
c,, = 16.1 MPa T, = -2.1 MPa

Determine the principal stresses and their direction cosines.

f 51‘:9  § Er;_}h*iﬂg the stress invariants we get

|

Lo 0 $8 g tam —1 i~ g5t

= (14.0)(34.8) + (34.8)(16.1) + (16.1)(14.0) = (-0.6) = (6.0 = (-2.1)2
=1232.1 MPa

Jl!’3 511%15_ 2!'111'.‘,..1" —ﬂ'ﬁﬁ_“—ﬂ;.’lf_x“—ﬂ' Ty ’

= (14.0)(34.8)(16.1) + 2(-0.6)(6.0)(-2.1) — (14.0)(6.0)> — (34.8)(-2.1)* = (16.1)(-0.6)°
=T7195.8 MPa
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For Principal Stresses

Six components of stress are measured at a point:

Gyx = 140 MPa 1, =-0.6 MPa
G, = 34.8 MPa t, = 6.0 MPa
6, =161 MPa 1T, =-2.1 MPa

Determine the principal stresses and Theiﬁ direction cosines.

Step 2: Substituting these: values iinfo the cubic equation We

| ger: _
' #?-I,¢+Lo-1,=0
P -6490°+1232.10 -71958=0
e e e ;2 -
"Step 3: Solvirig the ¢cubic equation gives: | o= |160| MPa
_ s = dap e & 5 _

Thus: o, =36.6 MPa o, =160 MPa o; =12.3 MPa
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EXAMPLE 2.1
Principal
Stresses and
Principal
Directions

Solution

Principal Stresses and DCs

The state of stress at a point in a machine part is given by o, =- 10, g,, = 30, 0,, = 15, and 0, = O,
a,, = 0; see Figure E2.1a. Determine the principal suemafdmentanmufﬂwpnmlpa]msatﬂlepomt

1A

l/ T 71.6°
Tyz Ty \

(@) (B)

FGURE E2.1

By Eq. 2.21 the three stress invariants are
I, =20, I,=-525, and I; =0

Substituting the invariants into Eq. 2.20 and solving for the three roots of this equation, we obtain the
principal stresses

ﬂ-l = 35, ﬂ"z = ﬂ. and 51' = —15



Principal Stresses and DCs

J A

: 1"Il
l(0,,—0)+mo,,+no,, =0 y &
35
- 0 f
0

h’,r}r+m(gy_v_a)+nayz = \
fd_rz+m0'yz+n(o'n—-ﬂ') = 15 : i
‘-'""-
15 ™

/ )
35

Note: In above equation |, m, and n are direction cosines (DCs).

For 61 these |, m and n becomes |1, m1 and nl1 and DCs for direction vector N1 which
is normal to the principal plane 1.

Similarly,

12, m2 and n2 are DCs for direction vector N2 which is normal to the principal plane 2.
13, m3 and n3 are DCs for direction vector N3 which is normal to the principal plane 3.



Relationship b/w DCs and Principal plane angles

jT N~ €os ayi + €cos [3,) + cos v,k = ;i + myj + n k
y K Here ol =71.6degree
35 While B1=18.4 degree
f 71.6° v1=190.0
-~ &
15 =~
N, = €OS 041 + €OS [35) + €OS YK
/35 Here o3 =18.4 degree

While 33 =71.6 degree
¥3 =90.0



Also,

3113+m1m3+ﬂ1n3 = 0

.’2}'3 + MyMy + Nyny = 0

fl"l +32n2+1‘3n3 =0

M Ny + Myny + Many = 0

[l ele 1,

2

5 - 3
my+nm,+my = 1

S S S

2 2 2
[y +m; +n,

|

Properties of DCs
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How to calculate of DCs

l(,,—0)+mo,,+no,, =0
hr:\\jw+r.-1(4:::r},y—-::':)+‘|>u::ryz =0

IUH +mao.

}z+n(ﬂ.:z_o.) =0

In above equations replace value of s by s1 and |, m, and n by |11, m1 and nl.

—-451, + 15m; = 0
~35n, = 0

2 2 2
Iiy+my+n, =1

I



How to calculate of DCs

Only two of the first three of these equations are independent. Equation (c) gives
ng=20

Simultaneous solution of Egs. (b) and (d) yields the result

I = 0.10
or
l, = £0.3162
Substituting into Eq. (b) for {,, we obtain
m; = +0,9487

where the order of the + and — signs corresponds to those of /,. Note also that Eq. (a) is satisfied with
these values of /|, m, and n,. Thus, the first principal axis i1s directed along umt vector N,, where

N, = 03162i+0.9487) ; 6,=71.6 (€)

or

N, = -0.3162i - 0.9487j (f)

/8



How to calculate of DCs

The orientation of the second Eaincipal axis is found by substitution of & = & = (0 into Eq. 2.18,
which yields

Proceeding as for 0,, we then obtain
n, = xl

from which

where Kk is a unit vector along the z axis.
The orientation of the third principal axis is found in a similar manner:

f3 = +(.9487
my = F0.3162
Hy = 0

To establish a definite sign convention for the principal axes, we require them to form a nght-handed triad.
If N, and N, are unit vectors that define the directions of the first two principal axes, then the unit vector Ny
for the third principal axis is determined by the right-hand rule of vector multiplication. Thus, we have



How to calculate of DCs

N, = N, xN,
or
Ny = (myny—myn))i+ (lLhng=1iny)j+ (1 my~1lym )k (g)
In our example, if we arbitrarily select N, from Eq. (e) and N, = +k, we obtain N; from Eq. (g) as
N, = 0.9487i~0.3162j
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For Direction Cosines

Alternate way to calculate DCs (Imn)

Q. Six components of stress are measured at a point:

6, = 14.0 MPa t,, = -0.6 MPa
5,, = 34.8 MPa 1, = 6.0 MPa
6, = 16.1 MPa t,, = -2.1 MPa

Determine the principal stresses and their direction cosines.

A_|Step 4:

Oy: 34.8-36.6 6.0
. — =) A4=0.90
Op—0) 6.0 16.1-36.6
Oy: ~0.6 6.0

2 " i
i ~2.1 16.1-36.6 '::;’ B=-24.90
Oy — O _0.6 34.8-36. ) | . |
Oy: o d | I C=-7.38
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For Direction Cosines

Q. Six components: of stress are measured at a point:

O, = 14.0 MPa = -0.6 MPa
aﬁ=34BMPa "'T.f'z=60MPa
o, = 16.1 MPa e 5 -2.1 MPa

Determine the principal stresses and their direction cosines.

A | Step 5i Substituting the determinates anfo the E‘QUUTW”S 11’-'3'”5
| the durec’nan ¢osines fr::ur* 0, gives: | | |

e ' A -t _0.90 = 0.035

ISR 2 L N O ey (Y SRS -738) [ |

ms= A, =B,{A2+BE+CI)IH - ; . =_24_9y 1 ‘ 0.958
i (0.90)" +(~24.90)" +(~7.38)'

Ny=  An=CHA*+B*+C")"

y - —738 i |
__A“ /({0.90}‘ (~24.90) +(- ?33}1]” l 0284
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For Direction Cosines

.\ Six components of stress are measured at a point:

6., = 14.0 MPa "1, = -0.6 MPa
c,, = 34.8 MPa 1, = 6.0 MPa
G, = 16.1 MPa Tz = -2.1 MPa

| Determine the principal stresses and their direction cosines.
..|.Step 6: Repeating for. o. and o,... gives the direction.cosi
1., =-0.668 A, =0.741

.,
|
|
Ae =D2A6 ~p=td,=-0154 + »
A, =0702 A, =0.653 e

E

|
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For Direction Cosines

Q. !Six components of stress are measured at.a point: .

G = 14.0 MPa t,, = -0.6 MPa
o, = 34.8 MPa 1, = 6.0 MPa
6y = 16.1 MPa T, = -2.1 MPa
l

iDetermine the principal stresses and their direction cosines.

A | Thus
<06 i : ,. _ ::' .-"I*".’H'-_%."' ~ 1 ~ 3 J;,;JQ_E ¥ r
' | |
Aq = 0.035 Ay, =-0.668 Az =0.741 ;
A.Yl = -(.958 , =-0.246 }“}*3 —i 558 |
A,y =-0.284 Ay =0.702 A, =0.653



Lecture.#.06

2.3.3 Normal Stress and Shear Stress on an Oblique
Plane |

The normal stress Opy on the plane P is the projection of the vector op in the direction of
N; that is, opy = @ * N. Hence, by Egs. 2.7, 2.9, and 2.10

Opy = 170, +m’° 0, +nC,, +2mna,, +2InG,, +2Imo,, (2.11)

Often, the maximum value of Opy at a point is of importance in design (see Section 4.1).
Of the infinite number of planes through point 0, Opy attains a maximum value called the
maximum principal stress on one of these planes. The method of determining this stress
and the orientation of the plane on which it acts is developed in Section 2.4,

To compute the magnitude of the shear stress 0pg On plane P, we note by geometry
(Figure 2.7) that |

Op, = Inn+ mao,, +no,,

X

7 2 3 2 2 2 B |
Ops = JUF"UFN = J”P:"' Op,*+ Op, = Opn Opy = 10,,+ma, +nao,,
Op, = Ian+mn'}rz+nn'”

S

TN lrp

'r.Tr.llE_:I
Plane P

FIGURE 2.7 Normal and shear stress components of stress vector on an arbitrary plane.
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Lecture.#.06

Once the state of stress at a point 1s expressed in terms of the principal stresses, three
Mohr’s circles of stress can be constructed as indicated in Figure 2.13. Consider plane P
whose normal relative to the principal axes has direction cosines /, m, and n. The normal

stress Oy on plane P is, by Eq. 2.11,
Ouy = L0, +m 0, +n°0, (2.40)
Similarly, the square of the shear stress oy on plane P is, by Egs. 2.10 and 2.12,

2 + R i I - 2 2
Oys = [ Oy +m O, +n ag—crNN (241)

86



Lecture.#.06 Octahedral Stress

2.4.4 Octahedral Stress

Let (X, ¥, Z) be principal axes. Consider the family of planes whose unit normals satisfy the rela-
tion /2 =m?=n% =} with respect to the principal axes (X, ¥, Z). There are eight such planes (the
octahedral planes, Figure 2.9) that make equal angles with respect to the (X, ¥, Z) directions.
Therefore, the normal and shear stress components associated with these planes are called the
octahedral normal stress O, and octahedral shear stress T_,. By Eqgs. 2.10-2.12, we obtain

Ooct %II = ?”t""’n*”ﬂ

(2.22)

2 2 3 2
Toct = J%ﬂ'%fz = -;-J(“l‘ﬂz) +(0y-03) +(0,-03)

X

7
FIGURE 2.9 Octahedral planefor/=m=n= 1fﬁ , relative to principal axes (X, Y, Z).
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Lecture.#.06 Octahedral Stress

Figure 6. Octahedral stress planes 6]
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Lecture.#.06 Mean and Deviator Stresses

2.4.5 Mean and Deviator Stresses

Experiments indicate that yielding and plastic deformation of ductile metals are essen-
tially independent of the mean normal stress o,,,, where

—_ = Tt 0,,+0,, O0,70,%10;
=21, = =
3 3 3

c, (2.24)

Comparing Eqs. 2.22-2.24, we note that the mean normal stress g, 1s equal to 0.
Most plasticity theories postulate that plastic behavior of materials is related primarily to
that part of the stress tensor that is independent of o,,,. Therefore, the stress array (Eq. 2.5)
is rewritten in the following form:

TE T 4T, (2.25)

where T symbolically represents the stress array, Eq. 2.5, and

g 0 0
T,=|0 o, 0 Tm = Mean Stress Tensor
0 0 O
and
O, -0y Oy o,,
T, = 0, 0y~ O o,. Td = Deviatic Stress Tensor
i_ Oy: Oy, 0, - gm_k
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Lecture.#.06 Example-#-02

EXAMPLE 2.5 | At a certain point in a drive shaft coupling, the stress components relative to axes (x, y, z) are 0, =
Three- | 80MPa, 0, = 60 MPa, 0. = 20 MPa, 6, = 20 MPa, g, = 40 MPa, and 0,, = 10 MPa.

Dimensional | (a) Determine the stress vector on a plane normal to the vector R =i + 2j + k.
Stress Quantities (b) Determine the principal stresses o,, 05, and ¢, and the maximum shear stress 7, ...

(c) Determine the octahedral shear stress 7., and compare it to the maximum shear stress.

Solution ]| (a) The direction cosines of the normal to the plane are
2 1

[= 1 m=*“ n=_1

76 6

By Eqgs. 2.10, the projections of the stress vector are

Gp, = (ﬁ](ﬂﬂ)+[%}(2ﬂ]+ _’-]{4{1} = 65.320 MPa

\

&

f

Opy = (:;E]ﬂ") +{%](ﬁﬂ) 4 lﬁ]{ 10) = 61.237 MPa

Cp. = [;lrg}("'”)*[%]““)*[%]{m} = 32.660 MPa

op = 65.320i + 61.237j + 32.660k

2

Hence,

LD
=



Lecture.#.06 Example-#-02

(b) For the given stress state, the stress invariants are (by Eq. 2.21)

0. O o, © o, O |
!2 - XXx Ay + XX AL 4 Yy ¥ = 55m
ny ﬁ}' ¥ O,. 9., ﬂ-}*z g..
O s ﬂx_r ':rx:-
ly=|0, 0, 0, =0
O,: ﬂ-_r: 0;.

Hence, by Eq. 2.20,
0’ -1,8" +1,0-1, = 6'-1600" + 55000 = 0

or the principal sitesses are

o, = 110, o,=50, o,=10
By Eq. 2.39, the maximum shear siress is

anr.

= Lo, -0y = 1(110-0) = 55
2 il

(¢) By Eq. 2.22

2 2 2
rmi = %J{_ﬂ-'—ﬂ-z} +{ﬂ'l —'I:F-;} +{ﬂ'z—ﬂ'-1] = 44,969

Comparing 7,4 and 7,,,,,. we see that
Tmax = 1.2237

ax oclL



Lecture.#.06 Example-#-03

EXAMPLE 2.4
Mohr’s Circles
in Three
Dimensions

Solution

The state of stress at a point in a machine component is given by o, = 120 MPa, o, = 55 MPa,
o,, =85 MPa, g,, = -55 MPa, g,, = -75 MPa, and 0, = 33 MPa. Construct the Mohr’s circles of
stress for this stress state and locate the coordinates of points A: (Gyyy, Oysy) and B: (Oyy2, Ons2)
for normal and shear stress acting on the cutting planes with outward normal vectors given by

N, :(1//3,1//3,1/3)and N, : (1/./2, 1/./2 , 0) relative to the principal axes of stress.

Substituting the given stress components into Eq. 2.20, we obtain
o’ —900" - 18,0145 + 471,680 = 0
The three principal stresses are the three roots of this equation. They are
o, = 176.80 MPa, o, = 24.06 MPa, 0, =-110.86 MPa

The center and radius of each circle is found directly from the principal stresses as

o,
c, :("2;”3,0) = (4340 MPa,0), R, = -2 =67.46 MPa

g, -0
il T ‘;“3,0] = (297 MPa,0), Ry =~ = 14333 MPs

g, -0
{‘3:(“12“3,1[}) = (100.43 MPa,0), R, = '2 2 = 76.37 MPa

Figure E2.4 illustrates the corresponding circles with the shaded area indicating the region of admis-
sible stress states. The normal and shear stresses acting on the planes with normal vectors N; and N,
are found from Eqgs. 2.40 and 2.41:

Owws = 10043 MPa, Oy, = 7637 MPa  Point B;



Lecture.#.06 Example-#-03

These points are also shown in Figure E2.4. By this method, the correct signs of Oy, and Oy, are inde-
terminate. That is, this method does not determine if 0y, and o), are positive or negative. They are
plotted in Figure E2.4 as positive values. Note that, since N, : (1//2, 1/.J2, 0), the third direction
cosine is zero and point B lies on the circle with center C; and radius R;.

FIGURE E2.4
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Lecture.#.07 Failure Theories

Yield Criteria for Ductile Material P -

An axially loaded member consider to be safe if / 7 \
the applied stress is less than the yield strength 0,7
(oy) of the material. Fig-01 structural element under uniaxial stress.

L

Since this state is different from the state of
uniaxial stress, it is not possible to predict from
such a test whether or not the structural
element under investigation will fail.

Some criterion regarding the actual mechanism | p
of failure of the material must be established

that will make it possible to compare the effects

of both states of stress.

To this effect in upcoming slides to present the

two vyield criteria most frequently used for b

Ductile materia|5_ Flg-ﬂz Structural element in a
state of plane stress. (@) Stress
element referred to coordinate axes.
(b) Stress element referred to principal
dXes,



Lecture.#.07 Failure Theories

Maximum Shear Stress
H. Tresca 1868
o Yielding will occur when the
7 maximum shear stress reaches that
which caused yielding in a simple

tension test.

A simple tension test is
performed on the ductile specimen,
and the yield stress is noted.




Lecture.#.07 Failure Theories

Maximum Shear Stress
H. Tresca 1868

o Yielding will occur when the
” maximum shear stress reaches that

cl:; -0 s .‘ whitfh caused yielding in a simple
tension test.

-
~ ey

.we see Lthat for a simple temsion Lest

T the maximum shear stress is one half of
O the vield stress.
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Lecture.#.07 Failure Theories

Maximum Shear Stress
H. Tresca 1868

G Yielding will occur when the
maximum shear stress reaches that

¥s
rj_‘;: le G which caused yielding in a simple
-~ tension test.

- o 01
Im=_é‘1 02+ ‘

;‘ Oys 040,
o

2 2

ys

between the smallest and largest principal stresses
equals or exceeds the yield stress.

The condition for yield is that the difference | 2



Lecture.#.07 Failure Theories

Maxim h
H. Tresca 1868
01 Given this case of plane strain, will the
material yield according to the Tresca theory?
If we simply plug in the values for G1 and G2
j it would appear that the material is safe.
~0,

- G4
*—0‘2—»| _‘

Q..

No Failure??? A\

0y -0, < O}H
2 2
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Lecture.#.07 Failure Theories

01 But we aren't that simple !!! We know that the
maximum shear stress will occur out of plane if the
sign of the two principal stresses is the same. In this
case the maximum shear stress is actually about
three times as great as we originally estimated.

J -
0]
3\ -
Failure !!

2 &
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Lecture.#.07 Failure Theories

Maximum Shear Stress
H. Tresca 1868

04 Yielding will occur when the

maximum shear stress reaches that
which caused yielding in a simple

— tension test.

0,

) 1 Oys
o
> Oys

Similar to what we did for the maximum 1
normal stress theory, we can plot a yield
envelope representing the maximum shear -1
stress failure criterion. Note how this
envelope deviates from the previous one in
the second and fourth quadrants.

Yield Envelope
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Lecture.#.07 Failure Theories

The yield envelope in three dimensions appears as a
hexagon projected down the hydrostatic axis, 1= Oz =
Os. This means that the theory predicts no change in
material response with the addition of hydrostatic stresses.

You can confirm this by plotting 3-D Mohr's circle and
then increasing each principal stress by a constant value.
You should observe that the maximum shear stress does

View down axis of
the hexagon

3-D Yield EnveluE

9,
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)

Yielding will occur when the
distortional strain energy reaches

that value which causes yielding in
a simple tension test.

¢ Ductile Materials

Like the maximum shear stress or Tresca

failure theory, the maximum distortional
energy failure theory addresses ductile,
isotropic materials.
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)

Yielding will occur when the
distortional strain energy reaches
that value which causes yielding in
a simple tension test.

e Ductile Materials

2
uy =4%[sz+ S:",2 + SZ2 - 21:7(5’2 + ZTXZI + 21:}'2 ]

Recall the expression for the distortional strain energy. Note that
it is a function of the deviatoric portion of the normal stresses, S, and
the shear stresses, T.

We need to express the distortional strain energy in terms of
principal stresses, so lets give ourselves some space...
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)
u=1[52+52+52]

473G "1 7 72 3

Deviatoric Normal Stress e

= _ components of the deviatoric

- 1 01 1/3 (01 % 02 x 03 ) stress tensor are calculated as
S. = . each normal stress minus the

2 02 /3 (01 " 02 " 03 ) average value of all three
53 - 03 - 1/3(01 + 02 + 0-3) normal stresses.
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)

I i 2 2
Ui=gcis, + 8, +84]

At this point we are going to narrow the
scope of our theory to the case of plane stress.

Assume Plane Stress

Again, we are remaining fairly general,

because plane stress problems, such as 04 #0 02 70 03 =0
pressure vessels, beams, shafts, plates, etc.

Sy = Oy - 1/3(0y + Gy + G§)
S, = 0y - 1/3(0y + Gy + G§)
53 =%‘ 1/3(014‘ 02*‘ 3)
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)
'8} Yielding will occur when the
(l: ys distortional strain energy reaches
that value which causes yielding in

a simple tension test.

| 2 2 1 2
Ua =z5l0y -010, + 0y | =gl 0y ]

2 2 2
; o, 040, +0, =0

Multiplying both sides of the equation by 6G we arrive at
the condition for yield under combined stress.
Let's save this result, and then interpret what it means.
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Maximum Distortional Energy
(R. von Mises, 1913)

Yielding will occur when the
distortional strain energy reaches

glz - 0,40, + 022 = 0]; that value which causes yielding in
a simple tension test.

Recall, for the previous two failure theories we plotted a "yield

envelope” in the O1, Oz space. Assuming that Oys is constant, do
you recognize how the equation above will plot?
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)

Yielding will occur when the

distortional strain energy reaches
that value which causes yielding in
a simple tension test.

The yield envelope for the maximum
distortional energy plots as an ellipse for

plane stress.

G How does this compare to the yield
1 envelope for the maximum shear stress

G; theory?

1

-1

Yield Envelope
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Lecture.#.07 Failure Theories

Maximum Distortional Energy
(R. von Mises, 1913)

Looking at the 3-D case of stress, we see
that the addition of a hydrostatic stress (01 =
Gz = G3) does not contribute to the yield of a
material. The 3-D yield envelope plots as a
cylinder centered along the “hydrostatic axis"
(O1=Oz=O3). Note that where the

cylinder intersects the O1, Oz plane, the failure
surface becomes an ellipse as previously shown.
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Lecture.#.07 Failure Theories

Maximum-Shear ys Maximum Distortional Energy
for Plane Stress
O
G; How does the maximum shear
stress yield theory compare to the
maximum distortional energy yield
theory?

The first relies strictly on the
maximum shear stress in an
element. The distortional energy
criterion is more comprehensive,
by considering the energy caused
by shear deformations in three
dimensions. Since shear stresses
are the major parameters in both
approaches, the differences are not
great.

5
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Lecture.#.07 Failure Theories

Maximum-Shear ys Maximum Distorsional Energy
for Plane Stress

O,

In general, the maximum shear
stress theory is more conservative
than the distortion energy theory.

At the point where two of the
principal stresses are equal but of
opposite sign (pure shear) the
maximum shear stress theory
predicts yield when the principal
stresses equal Oys/2. The
maximum distortion energy
increases the limit to ~0.557C0ys.

Experiments with many ductile
materials tend to plot closer to the

111



Lecture.#.07 Failure Theories

W. Rankine ~1850

..we see that the torsion bar will fail when
the maximum shear stress equals the ultimate

O unt normal stress.
i This is the type of failure we observe
.‘ when we twist a piece of chalk.
et -+0u|t
Torsion Bar
- -
3 - I‘_U alt
-
; .
o —
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Lecture.#.07 Failure Theories

W. Rankine ~1850

Failure will occur when the
magnitude of the major principal
stress reaches that which caused
fracture in a simple tension test.

In the case of 3-D stress, the fracture

envelope becomes a cube. Again, any stress
state which plots outside of the fracture 3-D Fracture Envelnpe
envelope represents a point where the material
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W. Rankine ~1850

To help us visualize the maximum normal stress failure
criterion, we plot a figure known as the fracture
01 envelope. The edges of the envelope reflects the points
at which the material fails, ie. O1=+ Gun, Oz =+
O ult.
some material, and it
lies on or outside of
O the envelope, we say O ult
j"‘*‘ 2 |that the material fails.

Fracture Envelope
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Example-#-01

The state of plane stress shown occurs at a critical point of a steel machine component.
As a result of several tensile tests, it has been found that the tensile yield strength is o,
= 250 MPa for the grade of steel used. Determine the factor of safety with respect to
yield, using (a) the maximum-shearing stress criterion, and (b) the maximum-distortion-

energy criterion?.

-

T J
40 MPa
Iy - == 80 MPa—
D
{0 MI ? ‘
|
I }- | T"l
| | _ 1 |
| 30 Miks s 25 MPa [ \ e plla |
! —i5t—f o
e ‘E O N ) | 25 MPa

—

20 MPa




Lecture.#.07 Failure Theories

Mohr’s Circle. We construct Mohr’s circle for the given state of
stress and find

Owe = OC = 3 (0y + a,) = 3 (80 — 40) = 20 MPa
r,, = R = V(CF)* + (FX)* = V(60)* + (25)* = 65 MPa

Principal Stresses

g,=0C+CA=20+65= +85 MPa
o, =0C — BC =20 —-65=—45 MPa

a. Maximum-Shearing-Stress Criterion. Since for the grade of steel
used the tensile strength is oy = 250 MPa, the corresponding shearing
stress at yield is

Ty = 30y = 5 (250 MPa) = 125 MPa

: 9
e Pl FS. = 1.92
T 65 MPa

For 7,, = 65 MPa: F.S.
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T

b. Maximum-Distortion-Energy Criterion. Introducing a factor of pRp—

safety into Eq. (7.26), we write

]
3 a _( Or Y
Uﬂ_ﬂ'ﬂﬂh+ﬂ'ﬁ_ FS

For o, = +85 MPa, 03, = —45 MPa, and oy = 250 MPa, we have

(85)F — (85)(—45) + (45)° = ( )

1143— F.§5. = 219
E.S.

Comment. For a ductile material with oy = 250 MPa, we have drawn
the hexagon associated with the maximum-shearing-stress criterion and the
ellipse associated with the maximum-distortion-energy criterion. The given
state of plane stress is represented by point H of coordinates o, = 85 MPa
and o, = —45 MPa. We note that the straight line drawn through points
O and H intersects the hexagon at point T and the ellipse at point M. For
each criterion, the value obtained for ES. can be verified by measuring the
line segments indicated and computing their ratios:

oT OM
(@)FS.= —=192 (b)F.S.=—= 219
OH OH
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UNIT-6

BENDING AND SHEAR STRESSES IN BEAMS

Syllabus

Introduction, Theory of simple bending, assumptions in simple bending, Bending stress
equation, relationship between bending stress, radius of curvature, relationship between bending
moment and radius of curvature, Moment carrying capacity of a section. Shearing stresses in
beams, shear stress across rectangular, circular, symmetrical I and T sections. (composite /

notched beams not included).

6.1. INTRODUCTION

When some external load acts on a beam, the shear force and bending moments are set up
at all sections of the beam. Due to the shear force and bending moment, the beam undergoes
certain deformation. The matenial of the beam will offer resistance or stresses against these
deformations. These stresses with certamn assumptions can be calculated. The stresses introduced
by bending moment are known as bending stresses. In this chapter, the theory of pure bending,
expression for bending stresses, bending stress in symmetrical and unsymmetrical sections,
strength of a beam and composite beams will be discussed.

E.g., Consider a piece of rubber, most conveniently of rectangular cross-section, 1s bent
between one’s fingers it is readily apparent that one surface of the rubber is stretched, i.e. put into

tension, and the opposite surface 1s compressed.

6.2. SIMPLE BENDING

A theory which deals with finding stresses at a section due to pure moment 1s called
bending theory. If we now consider a beam initially unstressed and subjected to a constant B.M.
along 1ts length, 1t will bend to a radius R as shown in Fig. b. As a result of this bending the top
fibres of the beam will be subjected to tension and the bottom to compression. Somewhere
between the two surfaces, there are points at which the stress 1s zero. The locus of all such points
158 termed the neutral axis (N.A). The radius of curvature R 1s then measured to this axis. For
symmetrical sections the N.A. 1s the axis of symmetry, but whatever the section the N.A. will

always pass through the centre of area or centroid.
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H G
i IR "D )na
& D
E F
(9)

Beam subjected to pure bending (a) before, and (b) after, the moment
M has been applied.

In simple bending the plane of transverse loads and the centroidal plane coincide. The theory of

simple bending was developed by Galelio, Bernoulli and St. Venant. Sometimes this theory is

called Bernoulli's theory of simple bending.

6.3. ASSUMPTIONS IN SIMPLE BENDING

The following assumptions are made in the theory of simple bending:

1
2

[ad

|

The beam i1s initially straight and unstressed.

The matenal of the beam 1s perfectly homogeneous and isotropic, 1.e. of the same density
and elastic properties throughout.

The elastic limit 1s nowhere exceeded.

Young's modulus for the material 1s the same in tension and compression.

Plane cross-sections remain plane before and after bending.

Every cross-section of the beam 1s symmetrical about the plane of bending, 1.e. about an
axis perpendicular to the N.A.

There 18 no resultant force perpendicular to any cross-section.

The radius of curvature 1s large compared to depth of beam.

6.4. DERIVATION OF BENDING EQUATION

Consider a length of beam under the action of a bending moment M as shown i Fig. 6.2a. N-N 1s

the original length considered of the beam. The neutral surface 1s a plane through X-X. In the side

view NA indicates the neutral axis. O 1s the centre of curvature on bending (Fig. 6.2b).
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Compression

Tension

(a)

Fig. 6.2

Let R = radius of curvature of the neutral surface
6 = angle subtended by the beam length at centre O
o= longitudinal stress
A filament of original length NN at a distance v from the neutral axis will be elongated to a

length AB

The strain in AB = o L
NN
0_(R+y)0~R6 _y
L R6 R
o_Et
vV R
E
o= y—e<)
R

(1)
Thus stress 1s proportional to the distance from the neutral axis NA. This suggests that for the
sake of weight reduction and economy, 1t 1s always advisable to make the cross-section of beams
such that most of the material 1s concentrated at the greatest distance from the neutral axis. Thus
there is universal adoption of the I-section for steel beams. Now let dA be an element of cross-

sectional area of a transverse plane at a distance v from the neutral axis NA (Fig. 6.2).

For pure bending, Net normal force on the cross-section =0

fo+dAd=0
E E
I—k-y-dﬂ=[}nrﬁjy-dﬂl=ﬂ
[y-dd=0
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This indicates the condition that the neutral axis passes through the centroid of the section. Also,

bending moment = moment of the normal forces about neutral axis

L _(E _Er 2
M= I{H-M}}*—IE}-M-}—EIF - dA
-
R.
Or %:% (11)

Where [ =j v’dA and is known as the moment of inertia or second moment of area of the

section. From (1) and (11),

il
I

Where,

M = Bending Moment at a section (N-mm).

I = Moment of Inertia of the cross section of the beam about Neutral axis (mmﬁ.

o = Bending stress 1n a fibre located at distance y from neutral axis (memzj. This stress could be
compressive stress or tensile stress depending on the location of the fibre.

y = Distance of the fibre under consideration from neutral axis (mm).

E = Young's Modulus of the material of the beam (N/mm°).

R = Radius of curvature of the bent beam (mm).

6.5. SECTION MODULUS

The maximum tensile and compressive stresses 1n the beam occur at points located farthest from
the neutral axis. Let us denote y; and y> as the distances from the neutral axis to the extreme

fibres at the top and the bottom of the beam. Then the maximum bending normal stresses are

My M M : : ; j
Ty = = = —; 0,18 bending compressive stress in the topmost layer.
1 Ly 2
Similarly,
My, M M : : : :
O, =——= = o, 18 bending compressive stress in the topmost layer.

: I Ify, ) Z, ?

Here, Z, and Z;, are called section moduli of the cross sectional area, and they have dimensions
, £ : : g ,
of length to the third power (ex. mm"). If the cross section 1s symmetrical (like rectangular or

square sections), then Z; = Z, = Z, and Z is called as section modulus. Section modulus is defined
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as the ratio of rectangular moment of inertia of the section to the distance of the remote layer

from the neutral axis. Thus, general expression for bending stress reduces to

o=—
7

It 1s seen from the above expression that for a given bending moment, it is in the best interests of
the designer of the beam to procure high value for section modulus so as to minimise the bending
stress. More the section modulus designer provides for the beam, less will be the bending stress

generated for a given value of bending moment.

6.6. MOMENT CARRYING CAPACITY OF A SECTION

From bending equation we have

g =—
I

It shows bending stress 1s maximum on the extreme fibre where y 1s maximum. In any design this
extreme fibre stress should not exceed maximum permissible stress. If o, is the permissible

stress, then 1n a design

Or if M i1s taken as maximum moment carrying capacity of the section,

M it
T Ymx = {Tprr
I/
Dr M :—f'j"m:'r
Y rax

The moment of inertia I and extreme fibre distance y,,, are the properties of cross-section.
Hence, I/ymax 18 the property of cross-sectional area and 1s termed as section modulus and is
denoted by Z. Thus the moment carrying capacity of a section 1s given by

M=o Z7Z

per
If permissible stresses in tension and compression are different, moment carrying capacity n
tension and compression are found separately by considering respective extreme fibres and the

smallest one 18 taken as moment carrying capacity of the section.
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Expressions for section modulus of various standard cross-sections are derived below.

Rectangular section of width b and depth d: -I— —
== b’
5 Ymax=d/2
Ymax = 'j' -
3 L :
p B N A"
o )
Ymax ff_
2
L.
Z = gbd ¥
- b -
Hollow rectangular section with symmetrically - —_—
placed opening: T
Ymax=D/2 — b s
Consider the section of size B * D with
symmetrical opening bx d as shown in Fig.. 1 a "
= — d -
N A
Bl 5P Bl -
IS5~ ~p¥P %)
D
YVmax = i v
L= : ——
Ymax
3 3 s Bire—
_ 1 (BD" =bd”)
"6 D
Circular section of diameter d
. : A
Forcircularsection =/ = —
ﬁ4
d
YVmax = 5
[ xd
Z = = —_—
Ymax 32
Hollow circular section of uniform thickness:
T 4 T 4
[=—D" ——
64 = 64d
T nd 4
- “ee Hl
., D
Extreme fibre distance = =
g 1 _X (D* -d%)
Yoo 32 D
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A . ' b
Triangular Section - —_—
B
"~ 36 Yrax
2
Ymax = Eh
2 = T T\ A
7= / < bh*
Ymax 24

6.7. SHEARING STRESSES IN BEAMS

we know that beams are usually subjected to varying bending moment and shearing
forces. The relation between bending moment M and shearing force F 1s dM/dx=F.
Bending stress act longitudinally and its intensity 1s directly proportional to its distance
from neutral axis. Now we will find the stresses induced by shearing force.

Consider an elemental length of beam between the sections A-A and B- B

separated by a distance dx as shown in Fig. 6.3a. Let the moments acting at A- A and B-B

be M and M+dM.

Ala MM
f

|- dxl
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Let CD be a fibre at a distance y-from neutral axis. Then bending stress at left side of the element

_
I y
The force on the element on left side
M
=— ybd
I ybdy
Similarly due to bending, force on the right side of the element
M +dM
= +f ybdy

Unbalanced force towards right in element

= sl yvbdy — % yvbdy = % vbdy

There are a number of such elements above section CD. Hence unbalance honzontal force above

section CD

This horizontal force 1s resisted by shearing stresses acting horizontally on plane at CD. Let
intensity of shearing stress be g. Then equating shearing force to unbalanced horizontal force we
get

= thdx = j% vbdy

M 1%
Or T=—" —|va
dx bl

Where a = b dy 1s area of element.

The term I va can be looked as

)
."..
> ay=ay
.
Where av 1s the moment of area above the section under consideration about neutral axis.

From equation, dM/dx=F
F

T=—ay

bl

From the above expression it may be noted that shearing stress on extreme fibre 1s zero.

6.8 SHEAR STRESSES ACROSS RECTANGULAR SECTIONS
Consider a rectangular section of width & and depth d subjected to sheanng force F. Let A-A be
the section at distance y from neutral axis as shown i Fig. 6.4.

We know that shear stress at this section.

T—ia:?
bl
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Tz, waralon
| |
cual Qs
rl*__b___ri

(a)

where ay is the moment of area above this section (shown shaded) about the neutral axis.

Now

and

1.¢., shear stress varies parabolically.
When y=d/2, t =0
y=d/2, t =1

y = (), T1s maximum and its value 1s

Where

b (5

(b)

— ol -

Fig. 6.4

5]
{4)-44)

=l pd’
12

y=y+

6F d°
Tnax = 3
bd” 4

155 152,
bd ¢

_ ShearingForce F

bd

Area

Thus, maximum shear stress 18 1.5 times the average shear stress 1n rectangular section and

occurs at the neutral axis. Shear stress variation is parabolic. Shear stress vanation diagram

across the section 1s shown in Fig.6.4b.
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WORKED EXAMPLES

1) A simply supported beam of span 5 m has a cross-section 150 mm * 250 mm. If the
permissible stress 1s 10 N/mm~, find (¢) maximum intensity of uniformly distributed load it
can carry. (b) maximum concentrated load P applied at 2 m from one end 1t can carry.

Solution:

L
Il
o | —

Ymax

Z = —bd? = =x150x 2502 =1562500 mm>

A= |8

1
6
Moment carrying capacity M = o Z=10 x 1562500 N - mm

(a) If w 1s the intensity of load in N/m units, then maximum moment

w2 wx5?  wx25
8§ 8 8

=l;—125x1000N—nun

F=

N-m

Equating 1t to moment carrying capacity, we get maximum intensity of load as

“"“325 x 1000 = 10 x 1562500

w = 5000 N/m

=5 kN/m

(b) If P 1s the concentrated load as shown 1n Fig., then maximum moment occurs under the load
and 1ts value

P
M___anxb= Px2x3
L 5 L ¥
=1.20P kN-m
=1200P N-mm - 8=2M —ste b=3M ~——————p
- |=5m -

2) A symmetric I-section has flanges of size 180 mm x 10 mm and its overall depth is 500 mm.
Thickness of web 1s 8 mm. It is strengthened with a plate of size 240 mm x 12 mm on
compression side. Find the moment of resistance of the section, 1f permissible stress 1s 150
N/mm-. How much uniformly distributed load it can carry if 1t 18 used as a cantilever of span
3m?

Solution

The section of beam 1s as shown 1n Fig. Let y be the distance of centroid from the bottom-most

fibre.
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e 240mm et} 1—1Emrn

L

—

L

10

+— 180mm ——

Moment of area about botton fibre
Total area

_ 240x12x506+180x10x495+180x10x5+480x8x250
B 240x12+180x10+180x10+480x8

y=

3317280

10320 =321.442mm

i =%:24{]x 12 + 240 12(506 - 321.442)?

+.115=-= 180 10° + 180 x 10(495 — 321.442)?

+%xl$ﬂ:~:]ﬂj +180x10(5-321.442)°

;%x 8 480° + 8x 480(250 — 321.442)?

=4.25952%10° mm*

Yiep = 512-321.442 =190.558 mm
Ymax = ¥ =321.442 mm

Moment of resistance (Moment carrying capacity)

=fpcrxz

y 425952x10° 8
=150x 371443 =1.98769x10° N — mm
=198.769 kN —mm (Ans)
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Let the load on cantilever be w/m length as shown 1n Fig.

W

! am |

- 2
Then maximum moment produced = % kKN—-m (where w is in kilo Newtons)

2

=wx3?=4.5 wkN -m

Equating moment of resistance to maximum moment, we get maximum load w
4.5w=198.769

w= 44,171 kN/m (Ans)

3) A T-section is formed by cutting the bottom flange of an I-section. The flange 1s 100 mm x
20 mm and the web 1s 150 mm x 20 mm. Draw the bending stress distrnibution diagrams if
bending moment at a section of the beam 1s 10 kN-m (hogging).

Solution

M = 10 kN-m = 10 x 10° N mm (hogging)

Maximum bending stresses occur at extreme fibres, 1.e. at the top bottom fibres which can be

computed as

I (i)

(100 X 20) (150 + 10) + [(zu x150) (%}]
=109 mm

y = (100 x 20) + (20 x 150)

Moment of inertia is given by

3
I [(mu;zn ) 4 (100 x 20) (109 — (150 + m)}*]

3 p 4
+[(2“ };;5':' ) + 20 x150) (1[19—%) }:143515?:-:1{15 mm®

Substituting these values in Eq. (1),
Stress 1n the top fibre =

M

y, (10x10°%)(61)

14.36167 x 10°

}é = 42,4742 N/mm>

Stress 1n the bottom fibre =
_Mxy, (10x10°)(109)

o = 75,8965 N/mm?
. T 14.36167 x 10°
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The given bending moment 1s hogging and hence negative and the tensile stresses occur at top

fibre and compressive stresses in bottom fibres.

0=4247 j:le+

.ff..i...T.E;...f

12 mm=—=

6=759

4) Fig. shows the cross-section of a beam which 1s subjected to a shear force of 20 kN. Draw

shear stress distribution across the depth marking values at salient points.

| F 100 .
12| E Y 22.288 N/mm?
Yt 2.675 N/mm?
3 bl
- — 1t o e = 23.730 N/mm?
88
L4
—] 12—
(a) (b)
Solution

Let y, be the distance of C.G form top fibre. Then taking moment of area about top
fibre and dividing it by total area, we get
- _100x12x6+12x88(44 +12)

Vi
Moment of inertia about N A, R 12

= 29.404 mm

[
= I—Z-xlﬂﬂx]f +100x12(29.404 - 6)°

|
ton 12x88° +12x88(56 —29.404)2
=2100127.3 mm*
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Shear stress at bottom of flange:
Area above this level = 100 x 12 = 1200 mm
C.Gof thisareafromN -A j =y, —6=29.404 -6

= 23.404 mm
Width at this level= 100 mm

» __ 20x10°
4 )bottom of flange = 100x2100127.3
= 2.675 N/mm?.

q at same level but in web where width is 12 mm
_20x10°
12x2100127.3
= 22.288 N/mm?

x (1200 x 23.404)

x(1200% 23.404)

To find shear stress at neutral axis;
a y above this level = ay of flange + ay of web above this level

=12x100x(29.404 - 6) + 12 x (29.404 - 12) x (29-4T -12)

= 29902.195 mm"*

T= Fﬂf
bl

_20x10°
12x2100127.3
= 23.730 N/mm’

x 29902.195
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