Number Systems

Overview

° The design of computers

- It all starts with numbers
- Building circuits
- Building computing machines
- ° Digital systems
- ° Understanding decimal numbers
- ° Binary and octal numbers
 - The basis of computers!
- ° Conversion between different number systems

Digital Computer Systems

° Digital systems consider *discrete* amounts of data.

° Examples

- 26 letters in the alphabet
- 10 decimal digits
- ° Larger quantities can be built from discrete values:
 - Words made of letters
 - Numbers made of decimal digits (e.g. 239875.32)
- ° Computers operate on *binary* values (0 and 1)
- ° Easy to represent binary values electrically
 - Voltages and currents.
 - Can be implemented using circuits
 - Create the building blocks of modern computers

Understanding Decimal Numbers

- Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
- But how many items does a decimal number represent?
 - $8653 = 8 \times 10^3 + 6 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$
- What about fractions?
 - $97654.35 = 9x10^4 + 7x10^3 + 6x10^2 + 5x10^1 + 4x10^0 + 3x10^{-1} + 5x10^{-2}$
 - In formal notation -> (97654.35)₁₀
- Why do we use 10 digits, anyway?

Understanding Octal Numbers

- Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)
- How many items does an octal number represent?
 - $(4536)_8 = 4x8^3 + 5x8^2 + 3x8^1 + 6x8^0 = (1362)_{10}$
- What about fractions?
 - $(465.27)_8 = 4x8^2 + 6x8^1 + 5x8^0 + 2x8^{-1} + 7x8^{-2}$
- Octal numbers don't use digits 8 or 9
- Who would use octal number, anyway?

Understanding Binary Numbers

- Binary numbers are made of <u>binary digits</u> (bits):
 - 0 and 1
- How many items does an binary number represent?
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - $(110.10)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2}$
- Groups of eight bits are called a *byte*
 - (11001001) ₂
- Groups of four bits are called a *nibble*.
 - (1101) ₂

Why Use Binary Numbers?

Fig. 1-3 Example of binary signals

Conversion Between Number Bases

- Already demonstrated how to convert from binary to decimal.
- Hexadecimal described in next lecture.

Convert an Integer *from* **Decimal** *to* **Another Base**

For each digit position:

- 1. Divide decimal number by the base (e.g. 2)
- 2. The *remainder* is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for (13)_{10:}

	Integer Quotier		Remainder	Coefficient
13/2 =	6	+	1/2	$a_0 = 1$
6/2 =	3	+	0	$a_1 = 0$
3/2 =	1	+	1/2	$a_2 = 1$
1/2 =	0	+	1/2	$a_{3}^{-} = 1$

Answer $(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$

Convert an Fraction *from* **Decimal** *to* **Another Base**

For each digit position:

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.
- Example for (0.625)_{10:}

Answer $(0.625)_{10} = (0.a_{-1}a_{-2}a_{-3})_2 = (0.101)_2$

The Growth of Binary Numbers

n	2 ⁿ		n	2 ⁿ	
0	2 ⁰ =1	│	8	2 ⁸ =256	
1	2 ¹ =2		9	2 ⁹ =512	
2	2 ² =4		10	2 ¹⁰ =1024	
3	2 ³ =8		11	2 ¹¹ =2048	
4	2 ⁴ =16		12	2 ¹² =4096	
5	2 ⁵ =32		20	2 ²⁰ =1M	Mega
6	2 ⁶ =64		30	2 ³⁰ =1G	Giga
7	2 ⁷ =128		40	2 ⁴⁰ =1T	Tera

ENGIN112 L2: Number Systems

September 5, 2003

- ° Binary addition is very simple.
- ^o This is best shown in an example of adding two binary numbers...

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- [°] Let's subtract (10111)₂ from (1001101)₂...

Binary Multiplication

 Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

For each digit position:

- 1. Divide decimal number by the base (8)
- 2. The *remainder* is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for (175)_{10:}

	Integer Quotien		Remainder	Coefficient
175/8 =	21	+	7/8	$a_0 = 7$
21/8 =	2	+	5/8	a ₁ = 5
2/8 =	0	+	2/8	$a_2 = 2$

Answer $(175)_{10} = (a_2 a_1 a_0)_2 = (257)_8$

For each digit position:

- 1. Multiply decimal number by the base (e.g. 8)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.
- Example for (0.3125)_{10:}

Answer $(0.3125)_{10} = (0.24)_8$

- Binary numbers are made of <u>binary digits</u> (bits)
- ° Binary and octal number systems
- Conversion between number systems
- ° Addition, subtraction, and multiplication in binary

