
Arrays and Pointers in C

Mrs.P.Rupa Ezhil Arasi

Associate Professor/CSE

MEC (Autonomous)

Objectives

Be able to use arrays, pointers, and strings in
C programs

Be able to explain the representation of these
data types at the machine level, including
their similarities and differences

Arrays in C

No bounds checking!

Allowed – usually causes no obvious error

 array[10] may overwrite b

Unlike Java, array size in declaration

int array[10];

int b;

array[0] = 3;

array[9] = 4;

array[10] = 5;

array[-1] = 6;

Compare: C: int array[10];

Java: int[] array = new int[10];

All elements of same type – homogenous

First element (index 0)

Last element (index size - 1)

Array Representation

Homogeneous  Each element same size – s bytes

 An array of m data values is a sequence of ms bytes

 Indexing: 0th value at byte s0, 1st value at byte s1, …

m and s are not part of representation

 Unlike in some other languages

 s known by compiler – usually irrelevant to programmer

 m often known by compiler – if not, must be saved by
programmer

a[0]

a[1]

a[2]

0x1000

0x1004

0x1008

int a[3];

Array Representation

char c1;
int a[3];
char c2;
int i;

c1

a[0]

a[1]

a[2]

i

0x1000

0x1004

0x1008

0x100C

0x1014

c2 0x1010

Could be optimized by
making these adjacent,
and reducing padding

(by default, not)

Array aligned by
size of elements

Array Sizes

What is

sizeof(array[3])?

sizeof(array)?

int array[10];

4

40

returns the size of

an object in bytes

Multi-Dimensional Arrays

int matrix[2][3];

matrix[1][0] = 17;

matrix[0][0]

matrix[0][1]

matrix[0][2]

0x1000

0x1004

0x1008

matrix[1][0]

matrix[1][1]

matrix[1][2]

0x100C

0x1010

0x1014

Recall: no bounds checking

What happens when you write:

 matrix[0][3] = 42;

“Row Major”
Organization

Variable-Length Arrays

int

function(int n)

{

 int array[n];

 …

New C99 feature: Variable-length arrays

defined within functions

Global arrays must still have fixed (constant) length

Memory Addresses

Storage cells are typically viewed as being
byte-sized

 Usually the smallest addressable unit of memory

• Few machines can directly address bits individually

 Such addresses are sometimes called byte-
addresses

Memory is often accessed as words

 Usually a word is the largest unit of memory access
by a single machine instruction

• CLEAR’s word size is 8 bytes (= sizeof(long))

 A word-address is simply the byte-address of the
word’s first byte

Pointers

Special case of bounded-size natural numbers

 Maximum memory limited by processor word-size

 232 bytes = 4GB, 264 bytes = 16 exabytes

A pointer is just another kind of value

 A basic type in C

int *ptr;

The variable “ptr” stores a pointer to an “int”.

Pointer Operations in C

Creation
& variable Returns variable’s memory address

Dereference
* pointer Returns contents stored at address

Indirect assignment
* pointer = val Stores value at address

Of course, still have...

Assignment
pointer = ptr Stores pointer in another variable

Using Pointers

int i1;

int i2;

int *ptr1;

int *ptr2;

i1 = 1;

i2 = 2;

ptr1 = &i1;

ptr2 = ptr1;

*ptr1 = 3;

i2 = *ptr2;

i1:

i2:

ptr1:

0x1000

0x1004

0x1008

…
ptr2:

…

0x100C

0x1010

0x1014

1

2

0x1000

0x1000

3

3

Using Pointers (cont.)

Type check warning: int_ptr2 is not an int

int1 becomes 8

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

*int_ptr1 = int_ptr2;

*int_ptr1 = int2;

What happens?

Using Pointers (cont.)

Type check warning: *int_ptr2 is not an int *

Changes int_ptr1 – doesn’t change int1

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

int_ptr1 = *int_ptr2;

int_ptr1 = int_ptr2;

What happens?

Pointer Arithmetic

pointer + number pointer – number

E.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1; In each, p now points to b

(Assuming compiler doesn’t
reorder variables in memory)

Adds 1*sizeof(char) to
the memory address

Adds 1*sizeof(int) to
the memory address

Pointer arithmetic should be used cautiously

A Special Pointer in C

Special constant pointer NULL

 Points to no data

 Dereferencing illegal – causes segmentation fault

 To define, include <stdlib.h> or <stdio.h>

Generic Pointers

void *: a “pointer to anything”

Lose all information about what type of thing
is pointed to

 Reduces effectiveness of compiler’s type-checking

 Can’t use pointer arithmetic

void *p;
int i;
char c;
p = &i;
p = &c;
putchar(*(char *)p);

type cast: tells the compiler to
“change” an object’s type (for type
checking purposes – does not modify
the object in any way)

Dangerous! Sometimes necessary…

Pass-by-Reference

void
set_x_and_y(int *x, int *y)
{

 *x = 1001;
 *y = 1002;
}

void
f(void)
{
 int a = 1;
 int b = 2;

 set_x_and_y(&a, &b);
}

1

2

a

b

x

y

1001

1002

Arrays and Pointers

Dirty “secret”:

Array name  a pointer to the
initial (0th) array element

a[i]  *(a + i)

An array is passed to a function
as a pointer

 The array size is lost!

Usually bad style to interchange
arrays and pointers

 Avoid pointer arithmetic!

Really int *array

int

foo(int array[],

 unsigned int size)

{

 … array[size - 1] …
}

int

main(void)

{

 int a[10], b[5];

 … foo(a, 10)… foo(b, 5) …
}

Must explicitly
pass the size

Passing arrays:

Arrays and Pointers

int

foo(int array[],

 unsigned int size)

{

 …
 printf(“%d\n”, sizeof(array));

}

int

main(void)

{

 int a[10], b[5];

 … foo(a, 10)… foo(b, 5) …
 printf(“%d\n”, sizeof(a));

}

What does this print?

What does this print?

8

40

... because array is really

a pointer

Arrays and Pointers

int i;

int array[10];

for (i = 0; i < 10; i++) {

 …
 array[i] = …;
 …
}

int *p;

int array[10];

for (p = array; p < &array[10]; p++) {

 …
 *p = …;
 …
}

These two blocks of code are functionally equivalent

Strings

In C, strings are just an array of characters

 Terminated with ‘\0’ character

 Arrays for bounded-length strings

 Pointer for constant strings (or unknown length)

char str1[15] = “Hello, world!\n”;
char *str2 = “Hello, world!\n”;

H e l l o , w l o r d ! \n length

H e l l o , w l o r d ! \n terminator

Pascal, Java, …

C, …

C terminator: ’\0’

String length

Must calculate length:

Provided by standard C library: #include <string.h>

int

strlen(char str[])

{

 int len = 0;

 while (str[len] != ‘\0’)

 len++;

 return (len);

}

can pass an
array or pointer

Check for
terminator

array access
to pointer!

What is the size
of the array???

Pointer to Pointer (char **argv)

Passing arguments to main:

int

main(int argc, char **argv)

{

 ...

}

an array/vector of

char *

Recall when passing an
array, a pointer to the
first element is passed

size of the argv array/vector

Suppose you run the program this way

UNIX% ./program hello 1 2 3

argc == 5 (five strings on the
 command line)

char **argv

argv[0]

argv[1]

argv[2]

0x1000

0x1008

0x1010

argv[3]

argv[4]

0x1018

0x1020

“./program”

“hello”

“1”

“2”

“3”

These are strings!!
Not integers!

Next Time

Structures and Unions

