
Introduction to Algorithms

Greedy Algorithms

Dr.N.Naveenkumar
ASP/CSE,

MEC (Autonomous)

Greedy Algorithms

 Similar to dynamic programming, but simpler approach

 Also used for optimization problems

 Idea: When we have a choice to make, make the one

that looks best right now

 Make a locally optimal choice in hope of getting a globally optimal

solution

 Greedy algorithms don’t always yield an optimal solution

 Makes the choice that looks best at the moment in order

to get optimal solution.

Fractional Knapsack Problem

 Knapsack capacity: W

 There are n items: the i-th item has value vi and weight

wi

 Goal:

 find xi such that for all 0  xi  1, i = 1, 2, .., n

  wixi  W and

  xivi is maximum

50

Fractional Knapsack - Example

 E.g.:

10
20

30

50

Item 1

Item 2

Item 3

$60 $100 $120

10

20

$60

$100

 +

$240

$6/pound $5/pound $4/pound

20

30

$80

 +

Fractional Knapsack Problem
 Greedy strategy 1:

 Pick the item with the maximum value

 E.g.:

 W = 1
 w1 = 100, v1 = 2
 w2 = 1, v2 = 1

 Taking from the item with the maximum value:

 Total value taken = v1/w1 = 2/100
 Smaller than what the thief can take if choosing the

other item

 Total value (choose item 2) = v2/w2 = 1

Fractional Knapsack Problem
Greedy strategy 2:

 Pick the item with the maximum value per pound vi/wi

 If the supply of that element is exhausted and the thief can

carry more: take as much as possible from the item with the

next greatest value per pound

 It is good to order items based on their value per pound

 n

n

w

v

w

v

w

v
 ...

2

2

1

1

Fractional Knapsack Problem
Alg.: Fractional-Knapsack (W, v[n], w[n])

1. While w > 0 and as long as there are items remaining

2. pick item with maximum vi/wi

3. xi  min (1, w/wi)

4. remove item i from list

5. w  w – xiwi

 w – the amount of space remaining in the knapsack (w = W)

 Running time: (n) if items already ordered; else (nlgn)

Huffman Code Problem

 Huffman’s algorithm achieves data
compression by finding the best variable

length binary encoding scheme for the

symbols that occur in the file to be

compressed.

Huffman Code Problem

 The more frequent a symbol occurs, the

shorter should be the Huffman binary word

representing it.

 The Huffman code is a prefix-free code.

 No prefix of a code word is equal to another

codeword.

Overview
 Huffman codes: compressing data (savings of 20% to

90%)

 Huffman’s greedy algorithm uses a table of the
frequencies of occurrence of each character to build

up an optimal way of representing each character as

a binary string

C: Alphabet

Example
 Assume we are given a data file that contains only 6 symbols,

namely a, b, c, d, e, f With the following frequency table:

 Find a variable length prefix-free encoding scheme that

compresses this data file as much as possible?

Huffman Code Problem
 Left tree represents a fixed length encoding scheme

 Right tree represents a Huffman encoding scheme

Example

Constructing A Huffman Code

O(lg n)

O(lg n)

O(lg n)

Total computation time = O(n lg n)

// C is a set of n characters

// Q is implemented as a binary min-heap O(n)

Cost of a Tree T

 For each character c in the alphabet C

 let f(c) be the frequency of c in the file

 let dT(c) be the depth of c in the tree

 It is also the length of the codeword. Why?

 Let B(T) be the number of bits required to

encode the file (called the cost of T)

B(T)  f (c)dT (c)

cC


Huffman Code Problem
In the pseudocode that follows:

 we assume that C is a set of n characters and that

each character c €C is an object with a defined

frequency f [c].

 The algorithm builds the tree T corresponding to the

optimal code

 A min-priority queue Q, is used to identify the two

least-frequent objects to merge together.

 The result of the merger of two objects is a new

object whose frequency is the sum of the

frequencies of the two objects that were merged.

Running time of Huffman's algorithm
 The running time of Huffman's algorithm assumes

that Q is implemented as a binary min-heap.

 For a set C of n characters, the initialization of Q in

line 2 can be performed in O(n) time using the

BUILD-MINHEAP

 The for loop in lines 3-8 is executed exactly n - 1

times, and since each heap operation requires

time O(lg n), the loop contributes O(n lg n) to the

running time. Thus, the total running time of

HUFFMAN on a set of n characters is O(n lg n).

Prefix Code
 Prefix(-free) code: no codeword is also a prefix of some other

codewords (Un-ambiguous)

 An optimal data compression achievable by a character code can
always be achieved with a prefix code

 Simplify the encoding (compression) and decoding

 Encoding: abc  0 . 101. 100 = 0101100

 Decoding: 001011101 = 0. 0. 101. 1101  aabe

 Use binary tree to represent prefix codes for easy decoding

 An optimal code is always represented by a full binary tree, in which
every non-leaf node has two children

 |C| leaves and |C|-1 internal nodes Cost:


Cc

T cdcfTB)()()(

Frequency of c

Depth of c (length of the codeword)

Huffman Code
 Reduce size of data by 20%-90% in general

 If no characters occur more frequently than others,
then no advantage over ASCII

 Encoding:
 Given the characters and their frequencies, perform the

algorithm and generate a code. Write the characters
using the code

 Decoding:
 Given the Huffman tree, figure out what each character

is (possible because of prefix property)

Application on Huffman code

 Both the .mp3 and .jpg file formats use

Huffman coding at one stage of the

compression

Dynamic Programming vs. Greedy Algorithms

 Dynamic programming

 We make a choice at each step

 The choice depends on solutions to subproblems

 Bottom up solution, from smaller to larger subproblems

 Greedy algorithm

 Make the greedy choice and THEN

 Solve the subproblem arising after the choice is made

 The choice we make may depend on previous choices,

but not on solutions to subproblems

 Top down solution, problems decrease in size

