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Greedy Algorithms 

 Similar to dynamic programming, but simpler approach 

 Also used for optimization problems 

 Idea: When we have a choice to make, make the one 

that looks best right now 

 Make a locally optimal choice in hope of getting a globally optimal 

solution 

 Greedy algorithms don’t always yield an optimal solution 

 Makes the choice that looks best at the moment in order 

to get optimal solution. 



Fractional Knapsack Problem 

 Knapsack capacity: W 

 There are n items: the i-th item has value vi and weight 

wi 

 Goal:  

 find xi such that for all 0  xi  1,   i = 1, 2, .., n 

   wixi  W and  

   xivi is maximum 
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Fractional Knapsack - Example 

 E.g.:  
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Fractional Knapsack Problem 
 Greedy strategy 1: 

 Pick the item with the maximum value 

 E.g.: 

 W = 1 
 w1 = 100,  v1 = 2 
 w2 = 1, v2 = 1 

 Taking from the item with the maximum value: 

   Total value taken = v1/w1 = 2/100 
 Smaller than what the thief can take if choosing the 

other item 

   Total value (choose item 2) = v2/w2 = 1 



Fractional Knapsack Problem 
Greedy strategy 2: 

 Pick the item with the maximum value per pound vi/wi 

 If the supply of that element is exhausted and the thief can 

carry more: take as much as possible from the item with the 

next greatest value per pound 

 It is good to order items based on their value per pound 
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Fractional Knapsack Problem 
Alg.: Fractional-Knapsack (W, v[n], w[n]) 

1.  While w > 0 and as long as there are items remaining 

2.   pick item with maximum vi/wi 

3.   xi  min (1, w/wi) 

4.   remove item i from list 

5.   w  w – xiwi 

 

 w – the amount of space remaining in the knapsack (w = W) 

 Running time: (n) if items already ordered; else (nlgn)  



Huffman Code Problem 

 Huffman’s algorithm achieves data 
compression by finding the best variable 

length binary encoding scheme for the 

symbols that occur in the file to be 

compressed. 



Huffman Code Problem 

 The more frequent a symbol occurs, the 

shorter should be the Huffman binary word 

representing it. 

 

 The Huffman code is a prefix-free code.  

 No prefix of a code word is equal to another 

codeword. 

 



Overview 
 Huffman codes: compressing data (savings of 20% to 

90%) 

 Huffman’s greedy algorithm uses a table of the 
frequencies of occurrence of each character to build 

up an optimal way of representing each character as 

a binary string 

C: Alphabet 



Example 
 Assume we are given a data file that contains only 6 symbols, 

namely a, b, c, d, e, f With the following frequency table: 

 

 

 

 

 

 

 Find a variable length prefix-free encoding scheme that 

compresses this data file as much as possible? 



Huffman Code Problem 
 Left tree represents a fixed length encoding scheme 

 Right tree represents a Huffman encoding scheme 

 



Example 



Constructing A Huffman Code 

O(lg n) 

O(lg n) 

O(lg n) 

Total computation time = O(n lg n) 

// C is a set of n characters 

// Q is implemented as a binary min-heap O(n) 



Cost of a Tree T 

 For each character c in the alphabet C 

 let f(c) be the frequency of c in the file 

 let dT(c) be the depth of c in the tree 

 It is also the length of the codeword.  Why? 

 Let B(T) be the number of bits required to 

encode the file (called the cost of T) 

    
B(T )  f (c)dT (c)

cC




Huffman Code Problem 
In the pseudocode that follows: 

 we assume that C is a set of n characters and that 

each character c €C is an object with a defined 

frequency f [c]. 

 The algorithm builds the tree T corresponding to the 

optimal code 

 A min-priority queue Q, is used to identify the two 

least-frequent objects to merge together. 

 The result of the merger of two objects is a new 

object whose frequency is the sum of the 

frequencies of the two objects that were merged. 



Running time of Huffman's algorithm 
 The running time of Huffman's algorithm assumes 

that Q is implemented as a binary min-heap.  
 

 For a set C of n characters, the initialization of Q in 

line 2 can be performed in O(n) time using the 

BUILD-MINHEAP 
 

 The for loop in lines 3-8 is executed exactly n - 1 

times, and since each heap operation requires 

time O(lg n), the loop contributes O(n lg n) to the 

running time. Thus, the total running time of 

HUFFMAN on a set of n characters is O(n lg n). 



Prefix Code 
 Prefix(-free) code: no codeword is also a prefix of some other 

codewords (Un-ambiguous) 

 An optimal data compression achievable by a character code can 
always be achieved with a prefix code 

 Simplify the encoding (compression) and decoding 

 Encoding: abc  0 . 101. 100 = 0101100 

 Decoding: 001011101 = 0. 0. 101. 1101  aabe 

 Use binary tree to represent prefix codes for easy decoding 

 An optimal code is always represented by a full binary tree, in which 
every non-leaf node has two children 

 |C| leaves and |C|-1 internal nodes Cost:  


Cc

T cdcfTB )()()(

Frequency of c 

Depth of c (length of the codeword) 



Huffman Code 
 Reduce size of data by 20%-90% in general 

 

 If no characters occur more frequently than others, 
then no advantage over ASCII 

 

 Encoding: 
 Given the characters and their frequencies, perform the 

algorithm and generate a code. Write the characters 
using the code 

 

 Decoding: 
 Given the Huffman tree, figure out what each character 

is (possible because of prefix property) 



Application on Huffman code 

 Both the .mp3 and .jpg file formats use 

Huffman coding at one stage of the 

compression 



Dynamic Programming vs. Greedy Algorithms 

 Dynamic programming 

 We make a choice at each step 

 The choice depends on solutions to subproblems 

 Bottom up solution, from smaller to larger subproblems 

 Greedy algorithm 

 Make the greedy choice and THEN 

 Solve the subproblem arising after the choice is made  

 The choice we make may depend on previous choices, 

but not on solutions to subproblems 

 Top down solution, problems decrease in size 


