Introduction to Algorithms

Greedy Algorithms

Dr.N.Naveenkumar
ASP/CSE,
MEC (Autonomous)

Greedy Algorithms

Similar to dynamic programming, but simpler approach

o Also used for optimization problems

Idea: When we have a choice to make, make the one
that looks best right now

o Make a locally optimal choice in hope of getting a globally optimal

solution
Greedy algorithms don’t always yield an optimal solution

Makes the choice that looks best at the moment in order

to get optimal solution.

Fractional Knapsack Problem

Knapsack capacity: W
There are n items: the i-th item has value v; and weight
Wi
Goal:
o find x; such thatforallO0<x. <1, i=1,2,..,n
> wx; <W and

2. X.v; is maximum

Fractional Knapsack - Example

. 20
= E.g. " s80
Item 3 30| +
Item 2
20| $100
Item 1 20 30 N
10 10| $60
$60 $100 $120 $240

$6/pound $5/pound $4/pound

Fractional Knapsack Problem

Greedy strategy 1:

o Pick the item with the maximum value

E.g.:
a W=1
Wy =].OO, Vi = 2

u

aw,=1,v,=1

o Taking from the item with the maximum value:
Total value taken = v;/w; = 2/100

o Smaller than what the thief can take if choosing the
other item

Total value (choose item 2) = v,/w, = 1

Fractional Knapsack Problem

Greedy strategy 2:
Pick the item with the maximum value per pound v./w.

If the supply of that element is exhausted and the thief can
carry more: take as much as possible from the item with the

next greatest value per pound
It is good to order items based on their value per pound

V1>V2> .Zvn

W, W, W

n

Fractional Knapsack Problem
Aly.: Fractional-Knapsack (W, v[n], w[n])
While w > O and as long as there are items remaining
pick item with maximum v./w,
x; < min (1, w/w,)
remove item i from list

W(—W~Xiwi

w — the amount of space remaining in the knapsack (w = W)

Running time: @(n) if items already ordered; else ©(nlgn)

Huftman Code Problem

Huffman’s algorithm achieves data
compression by finding the best variable
length binary encoding scheme for the
symbols that occur in the file to be
compressed.

Huftman Code Problem

The more frequent a symbol occurs, the
shorter should be the Huffman binary word
representing it.

The Huffman code is a prefix-free code.

0 prefix of a code word is equal to another
codeword.

Overview

= Huffman codes: compressing data (savings of 20% to
90%)

= Huffman’s greedy algorithm uses a table of the
frequencies of occurrence of each character to build
up an optimal way of representing each character as
a binary string

a b c a e f [— C: Alphabet
Frequency (in thousands) 45 13 12 16 9)

Fixed-length codeword 000 001 010 o011 100 101

Variable-length codeword | 0 101 100 111 1101 1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the char-
acters a—f, with the frequencies indicated. If each character is assigned a 3-bit codeword, the file

can be encoded in 300,000 bits. Using the variable-length code shown, the file can be encoded in
224,000 bits.

Example

Assume we are given a data file that contains only 6 symbols,
namely a, b, c, d, e, f With the following frequency table:

a b C d = f
Frequency (in thousands) 45 13 12 16 9)
Fixed-length codeword 000 001 010 OI1 100 101
Variable-length codeword 0 101 100 [11 1101 1100

Find a variable length prefix-free encoding scheme that
compresses this data file as much as possible?

‘ Huffman Code Problem

= Left tree represents a fixed length encoding scheme
= Right tree represents a Huffman encoding scheme

{
a:45] [b13] [c:12 d:16| ed| [E£:3

(i) (b}

‘ Constructing A Huffman Code

HUFFMAN((") I C is a set of n characters

n <~ |C|
Q <« (' Il Qis implemented as a binary min-heap O(n)
fori <« lton—1 Total computation time = O(n Ig n)

do allocate a new node :
leftlz] <~ x <« EXTRACT-MIN(Q) ©lan)
right|z] < y <= EXTRACT-MIN(Q) o(ig n)
flz] < flx] + fIy]
INSERT((), z) O(lgn)
return EXTRACT-MIN(Q) > Return the root of the tree.

WO 00 =] O Lh B LD D =

CostofaTree'T

For each character c in the alphabet C
o let f(c) be the frequency of ¢ in the file
o let d(c) be the depth of c in the tree
It is also the length of the codeword. Why?
Let B(T) be the number of bits required to
encode the file (called the cost of T)

BT)= ¥ F(dr(0)

Huftman Code Problem

In the pseudocode that follows:

we assume that C is a set of n characters and that
each character ¢ €C is an object with a defined
frequency f [c].

The algorithm builds the tree T corresponding to the
optimal code

A min-priority queue Q, is used to identify the two
least-frequent objects to merge together.

The result of the merger of two objects is a new
object whose frequency is the sum of the
frequencies of the two objects that were merged.

Running time of Huffman's algorithm

The running time of Huffman's algorithm assumes
that Q is implemented as a binary min-heap.

For a set C of n characters, the initialization of Q in
line 2 can be performed in O(n) time using the
BUILD-MINHEAP

The for loop in lines 3-8 is executed exactly n - 1
times, and since each heap operation requires
time O(lg n), the loop contributes O(n Ig n) to the
running time. Thus, the total running time of
HUFFMAN on a set of n characters is O(n Ig n).

Prefix Code

Prefix(-free) code: no codeword is also a prefix of some other

codewords (Un-ambiguous)

o An optimal data compression achievable by a character code can
always be achieved with a prefix code

o Simplify the encoding (compression) and decoding

Encoding: abc = 0. 101. 100 = 0101100

Decoding: 001011101 =0. 0. 101. 1101 =>» aabe

0 Use binary tree to represent prefix codes for easy decoding
An optimal code is always represented by a full binary tree, in which

every non-leaf node has two children

o |C| leaves and |CJ|-1 internal nodes Cost:

B(T)= X f(c)dr(c)

47

ceC AN

Depth of c (length of the codeword)

Frequency of ¢

Hutfman Code
Reduce size of data by 20%-90% in general

If no characters occur more frequently than others,
then no advantage over ASCII

Encoding:

o Given the characters and their frequencies, perform the
algorithm and generate a code. Write the characters
using the code

Decoding:

o Given the Huffman tree, figure out what each character
IS (possible because of prefix property)

Application on Huffman code

Both the .mp3 and .jpg file formats use
Huffman coding at one stage of the
compression

Dynamic Programming vs. Greedy Algorithms

Dynamic programming
2 We make a choice at each step
o The choice depends on solutions to subproblems

o Bottom up solution, from smaller to larger subproblems

Greedy algorithm
o Make the greedy choice and THEN
0 Solve the subproblem arising after the choice is made

o The choice we make may depend on previous choices,
but not on solutions to subproblems

o Top down solution, problems decrease in size

