) MUTHAYAMMAL ENGINEERING COLLEGE
Rasipuram - 637 408

Estd. 2000

COURSE CODE & TITLE - 19GES24 /DIGITAL
PRINCIPLES AND SYSTEM DESIGN

UNIT-1

BOOLEAN ALGEBRA AND LOGIC GATES

Presentation by
Mrs.V.Hema
AP-ECE

SYLLABUS

UNITI: BOOLEAN ALGEBRA AND LOGIC GATES

Review of Number Systems -Arithmetic Operations -Binary Codes-
Boolean Algebra and Theorems -Boolean Functions-Simplification
of Boolean Functions using Karnaugh Map and Tabulation Methods
-Logic Gates-NAND and NOR Implementations.

UNIT II :COMBINATIONAL LOGIC

Combinational Circuits -Analysis and Design Procedures-Circuits
for Arithmetic Operations, Code Conversion -Decoders and
Encoders -Multiplexers and Demultiplexers -Introduction to HDL -
HDL Models of Combinational circuits.

UNIT III:SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits -Latches and Flip Flops ~Analysis and Design
Procedures -State Reduction and State Assignment -Shift
Registers-Counters -HDL for Sequential Logic Circuits.

SYLLABUS
- UNIT IV:ASYNCHRONOUS SEQUENTIAL LOGIC

Analysis and Design of Asynchronous Sequential Circuits-
Reduction of State and Flow Tables —-Race-free State Assignment-
Hazards.

« UNIT V:MEMORY AND PROGRAMMABLELOGIC

RAM and ROM -Memory Decoding -Error Detection and
Correction -Programmable Logic Array -Programmable Array
Logic -Sequential Programmable Devices -Application Specific
Integrated Circuits.

« TEXT BOOKS:

1.”Digital Design”, Pearson Education Publication, IV
Edition 2008 by Morris Mano M. and Michael D. Ciletti

2. “Digital Design Principles and Practices”, Pearson Education

Publication, IV Edition 2008 by John FWakerly

INTRODUCTION

Basically there are two types of signals in electronics,
1) Analog
1) Digital
» The term digital refers to any process that is accomplished
using discrete units
 Digital computer is the best example of a digital system.

» Almost all digital circuits are really logic circuits because it Is

much easier to manipulate and process multiple voltage levels

Woltame

Digital versus Analog (contd.)

lllllllllllllllllllllllllllll

Woltase
e e e QN [=SS R
Wolraoe

» : -

Time Time Time

Aualog Sigu Digial Sigul Logic (Biary)Sigu

ADVANTAGES AND DISADVANTAGES

The usual advantages of digital circuits when compared to

analog circuits are:
Information storage can be easier

Robustness

The Disadvantages of digital circuits are:

Digital circuits are sometimes more expensive

Digital systems must translate from continuous analog signals

to discrete digital signals. This causes quantizationerrors.

NUMBER SYSTEMS

» Asystem for representing number of certain type is called

“Number System”.

 Integers are normally written using positional numbering
number system, in which each digit represents the coefficient

In a power series.

1

=7]
it a4 a4 qg

ﬂ”_jr'

N = ﬂ”_lrn_l T

» Where n is the number of digit, r is the radix or base and a;

IS the coefficient

OD=a; <r

REVIEW OF NUMBER SYSTEMS

» Many number systems are in use in digital technology.

» The decimal system is clearly the most familiar to us because

It is tools that we use every day.
» Types of Number Systems are
» Decimal Number system
> Binary Number system
» Octal Number system

» Hexadecimal Number system

DECIMAL NUMBER SYSTEM

Decimal system is composed of 10 numerals or symbols.
These 10 symbols are 0, 1, 2,3, 4,5, 6, 7, 8, 9.

Using these symbols as digits of a number, we can express
any quantity.

The decimal system is also called the base-10 system because

It has 10 digits.

Even though the decimal system has only 10 symbols, any
number of any magnitude can be expressed by using our
system of positional weighting.

Example: 3.1415,527.10244,

BINARY SYSTEM

In the binary system, there are only two symbols or possible

digit values, 0 and 1.

This base-2 system can be used to represent any quantity that

can be represented in decimal or other base system.

Binary quantities can be represented by any device that has
only two operating states or possible conditions.

E.g.. Aswitch is only open or closed. We arbitrarily (as we
define them) let an open switch represent binary 0 and a

closed switch represent binary 1. Thus we can represent any

binary number by using series of switches.

OCTALNUMBERSYSTEM

» The octal number system has a base of eight, meaning that it
has eight possible digits: 0,1,2,3,4,5,6,7.

» An older computer-based number system is "octal" or base
eight. The digits in octal math are 0, 1, 2, 3, 4, 5, 6, and 7.

The value "eight" is written as "1 eight and O ones™ or 10s.

» Since, the octal numbers uses less number of digits as
compared to decimal numbers and hexadecimal numbers
therefore It Is easy to do computations in fewer steps and also

less chances of occurrence of error.

HEXADECIMAL NUMBER SYSTEM

o The hexadecimal system uses base 16. Thus, it has 16
possible digit symbols. It uses the digits 0 through 9 plus the
letters A, B, C, D, E, and F as the 16 digit symbols.

o Hexadecimal numbering system Is often used by
programmers to simplify the binary numbering system. Since
16 is equivalent to 24, there is a linear relationship between

the numbers 2 and 16.

o Computers use binary numbering system while humans use
hexadecimal numbering system to shorten binary and make it

easier to understand.

Fig: Number system and their Base value

Binary 2 (01
Octal 8 (01234567
Decimal 10 (0123456789
Hexadecimal | 16 |0123456789ABCDEF

Fig: Types of Number Systems

DECIMAL BINARY OCTAL HEXADECIMAL
0 0000 0 0
l 0001 1 l
2 0010 2 2
3 0011 3 3
4 0100 4 |
d 0101 S d
6 0110 6 6
1 0111 7 1
8 1000 10 8
9 1001 11 9
10 1010 12 A
3 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 [111 17 F

8421 CODE

I (w@@@
5 _ D+l+0tl= 010
|

= f@ﬂ/oﬂ :‘DO\

A RAr Rl

CODE CONVERSION

» Coding is the process of translating the input information
which can be understandable by the machine or a particular

device.

» Coding can be used for security purpose to protect the

Information from steeling or interrupting.

» Converting from one code form to another code form is
called code conversion, like converting from binary to

decimal or converting from hexadecimal to decimal.

BINARY TO DECIMAL COVERSION

Any binary number can be converted to its decimal
equivalent simply by summing together the weights of the

various positions in the binary number which contain a 1.

The decimal number is equal to the sum of binary digits (d,)
times their power of 2 (2"):

decimal =d x2° + d,;x21 + d,x2%2 + ...

Example

Find the decimal value of | 1 1001 :

binary number: 1 (1 (1 0 |0 |1
power of 2. 25 24 53 22 21 50

111001, = 1-2°+1-2%+1.23+0-22+0-2'+1-2° = 57,

DECIMAL TO BINARY CONVERSION

There are 2 methods:

« Reverse of Binary-To-Decimal Method
» Repeat Division

Reverse of Binary-To-Decimal Method

Decimal Binary
4510 =32+0+8+4+0+1
=2 +0+2°+2°+0+2"
Result =101101,

Repeat Division-Convert decimal to binary: This method uses repeated division by 2.

Division Remainder Binary
2512 = 12+ remainder of 1 I (Least Significant Bit)
1212 = 6 + remainder of 0
6/2 = 3 + remainder of 0
32 = | + remainder of 1 |
1/2 = () + remainder of 1 1 (Most Significant Bit)
Result 2510 =110012

Conversion steps:

Contd,.

 Divide the number by 2.

» (et the integer quotient for the next iteration.

 Get the remainder for the binary digit.

» Repeat the steps until the quotient is equal to O.

Example #1

Convert 13440 to binary:

Ciwvision

by 2 Cluotient Remainder
1372 S 1
022 > O
32 1 1
1/2 O 1

5':3'131|3 = 11[:'12

Bit #

W N =

EXAMPLE

1. How to convert 145 into the binary number system?

Solution:
Division of
Decimal Quotient Remainder Binary
Number by 2
145/2 72 1 1 (LSB)
7212 36 0 0
36/2 18 0 0
18/2 9 0 0
9/8 4 1 1
412 2 0 0
212 1 0 0
1/2 0 1 1 (MSB)

Hence, 14510 = 100100012

BINARY TO OCTAL

The following are the steps to convert a binary number into
octal number.

Take binary number

Divide the binary digits into groups of three (starting from
right) for integer part and start from left for fraction part.

Convert each group of three binary digits to one octal digit.
Example-1 — Convert binary number 1010111100 into octal

number. Since there is no binary point here and no fractional

part. So,

These two 0's are added
into MSB to complete group of 3 bits

4
OOT 010|111 10(TJ

9th position Oth position
(MSB) (LSB)

Contd,.

» Therefore, Binary to octal is.
=(001 010 111 100),
=(1 2 7 4)q
Example-2 Convert binary number 0110 011.1011 into octal

number. Since there is binary point here and fractional part.
S0,

Single 0 at MSB Binary These two O's are added
can be ignored point \ into LSB to complete group of 3 bits

\0 11001121011
A

0
~

X
0
X

\ \ (-4)th position

5th position 0Oth position (LSB)

e Therefore, Binary to octal is.
=(OI100I1I1.1011),
=@ 1100Il.101 1),
=(110011.101 100),
= (6 3.54),

Contd,.

OCTAL TO BINARY

This method is simple and also works as reverse of Binary to

Octal Conversion. The algorithm is explained as following

below.
Take Octal number as input
Convert each digit of octal into binary.

That will be output as binary number.

Example: Convert octal number 540 into binary number.

According to above algorithm, equivalent binary number will
be,

= (540),
= (101 100 000),
= (101100000),

DECIMAL TO OCTAL

Follow the steps given below to learn the decimal to octal
conversion:

Write the given decimal number

If the given decimal number is less than 8 the octal number is the
same.

If the decimal numberis greater than 7 then divide the number by 8.
Note the remainder we get after division

Repeat step 3 and 4 with the quotient till it is less than 8

Now, write the remainders in reverse order(bottom to top)

The resultant is the equivalent octal number to the given decimal
number.

For example: Convert 1792 into octal number.

Decimal Number Operation Quotient Remainder Octal Number
1792 +8 224 0 0

224 +8 28 0 00

28 +8 3 4 400

3 -8 0 3 3400

OCTAL TO DECIMAL

» To convert an octal number (base-8) to the decimal (base-10)

number system, we need to use octal place value to add the

base-10 value of each digit.

 In the octal place value system, each time you move a place

to the left, the value increases eight-fold.

Octal to Decimal

7.1~|2’6{3

4

8" 8- gt n’

|

FCAl

3

48
128
512
28672

291363

il

- - W
s By BN W -
00 0 0 W

un 1 _ 1 N

HEXADECIMAL TO DECIMAL

Here are the stepsto convert hex to decimal:

Get the decimal equivalent of hex from table.
Multiply every digit with 16 power of digit location.
Sum all the multipliers.
Example:
7DE = (7 * 162) + (13 * 16%) + (14 * 169)
= (7 *256) + (13 *16) + (14 * 1)
=1792 + 208 + 14
/DE =2014

DECIMAL TO HEXADECIMAL

Take decimal number as dividend.

Divide this number by 16 (16 is base of hexadecimal so divisor
here).

Store the remainder in an array (it will be: 0 to 15 because of
divisor 16, replace 10, 11, 12, 13, 14, 15 by A, B, C, D, E, F
respectively).

Repeat the above two steps until the number is greater than zero.

Example — Convert decimal number 540 into hexadecimal
number.

Since given number is decimal integer number, so by using
above algorithm performing short division by 16 with
remainder.

Contd,.

Division Remainder (R)
540/16=33 12=C
33/16=2 1
2116=0 2
0/16=0 0

» Now, write remainder from bottom to up (in reverse order),
this will be 021C (or only 21C) which is equivalent

hexadecimal number of decimal integer 540.

BINARY TO HEXADECIMAL

Hexadecimal number system provides convenient way of
converting large binary numbers into more compact and smaller

groups.

First, we need to convert a binary into other base system (e.g., into
decimal, or into octal). Then we need to convert it hexadecimal

number.
Example — Convert binary number 1101010 into hexadecimal
number.
First convert this into decimal number:
(1101010), = 1x2°+1x2°+0x2*+1x23+0x2%+1x2%+0x2°
= 64+32+0+8+0+2+0 = (106),,

Then, convert it into hexadecimal number
(106),, =106/16=6.625=0.625*16=10(A)

=6/16=0.35=0.35*16= 6

= (6A)1 Which is answer.

HEXADECIMAL TO BINARY

Step 1: Write down the hex number. If there are any, change
the hex values represented by letters to their decimal
equivalents.

Step 2. Each hex digit represents four binary digits and
therefore is equal to a power of 2.

Step 3: Determine which powers of two (8, 4, 2 or 1) sum up
to your hex digits.

Step 4: Write down 1 below those 8, 4, 2 and 1’s that are
used. Write down 0 below those that are not used.

Step 5: Read the 1’s and 0’s from left to right to get the
binary equivalent of the given hex number.

Contd,.

» Example 1:
(2C1)s =7
2 C 1
2 12 1 (using 8421 code)
0010 1100 0001 ------- —> binary number
Example 2:
(9DB2),;=?
9O D B 2
9 13 11 2 (using 8421 code)
1001 1101 1011 0010 ------- => binary number

COMPLEMENT OF NUMBERS

Complements are used in digital computers to simplify the
subtraction operation and for logical manipulation.

There are TWO types of complements for each base-r system:
the radix complement and the diminished radix complement.

The first is referred to as the r's complement and the second

as the (r - 1)'s complement.

The two types are referred to as

2's complement and

1's complement for binary numbers

and the 10’s complement a complement for decimal
numbers.

I’sand 2°s COMPLEMENT
o The 1’s complement of a binary number is the number that

results when we change all1’s to zeros and the zeros to ones.

» The 2’s complement is the binary number that results when
we add 1 to the 1’s complement. It is used to represent

negative numbers.

Hnary representation of > s O 1 O]

Liarmmeemieni I 5 s 111

ARITHMETIC OPERATIONS

» The basic arithmetic operations for real numbers are addition,
subtraction, multiplication, and division.

 The Dbasic arithmetic properties are the commutative,
associative, and distributive properties.

Commutative Property

» The commutative property describes equations in which
the order of the numbers involved does not affect the result.
Addition and multiplication are commutative operations:

2+3=3+2=5

5.2=2-5=10
Subtraction and division, however, are not commutative.

Associative Property

» The associative property describes equations in which
the grouping of the numbers involved does not affect the
result.

ARITHMETIC OPERATIONS

« As with the commutative property, addition and
multiplication are associative operations:

(2+3)+6 = 2+(3+6)=11
(4-1)-2=4-(1-2)=8
Subtraction and division are not associative.

Distributive Property
» The distributive property can be used when the sum of two
quantities is then multiplied by a third quantity.
(2+4)-3=2-3+4-3=18
Arithmetic Operators

m

Addition 6
- Subtraction 4-2 2
o Multiplication 4%*2 8
/ Division 4/2 R

Modulus operator to
% get remainder in 5%?2 1
integer division

RULES FOR ARTHIMETIC OPERATIONS
1. Rules of Binary Addition

0+0=0

0+1=1

1+0=1

1+1 =0, and carry 1 to the next more significant bit

v Example 1

00011010 + 00001100 = 00100110
0 001 1010
+0 0001100

0 01T 0O0T1TOQO

RULES FOR ARTHIMETIC OPERATIONS

2. Rules of Binary Subtraction
0-0=0
0-1=1, and borrow 1 from the next more significant bit
1-0=1
1-1=0

V' Example

00100101 - 00010001= 00010100
00 1 001°O0°1
+00 010001

00 01T 0100

EXAMPLE

Binary Subtraction

Example:
Subtract binary number 101 from 1011

(borrow)

0 1
1481 1

- 101
0110

RULES FOR ARTHIMETIC OPERATIONS

3) Rules of Binary Multiplication

O0x0=0
Ox1=0
1x0=0

1x 1=1, and no carry or borrow bits

v Example

00101001 x 00000110 = 0010100 1
1111011 x0 000011 0
0000000 0

00101001

0101001

RULES FOR ARTHIMETIC OPERATIONS

4) Rules of Binary Division

- The process of binary division does not have any specific
rules to follow. Though this process is quite similar to the

decimal division.

Example:
101)11010(1 01> quotient

101

00110

101

001 —=remainder

BINARY DIVISION

10) 1111100 (111110

BINARY CODES

» The digital data is represented, stored and transmitted as
group of binary bits. This group is also called as binary code.

» Binary codes are codes which are represented in binary
system with modification from the original ones.

» The types of binary codes are:
1) Weighted codes.

2) Non-Weighted codes.

3) Binary Coded Decimal Code
4y Alphanumeric Codes

5) Error Detecting Codes

6) Error Correcting Codes

ADVANTAGES OF BINARY CODES

Following is the list of advantages that binary code offers.

Binary codes are suitable for the computer applications.
Binary codes are suitable for the digital communications.

Binary codes make the analysis and designing of digital

circuits if we use the binary codes.

Since only 0 & 1 are being used, implementation becomes

easy.

WEIGHTED BINARY CODES

Weighted binary codes are those binary codes which obey the

positional weight principle.
Each position of the number represents a specific weight.

Several systems of the codes are used to express the decimal
digits O through 9.

In these codes each decimal digit is represented by a group of

four bits.
Decimal > 2 | 4
Positional ¢ ‘L
weights —3> 8+4+2+1 8+4+2+1

Code > 0010 0100

NON-WEIGHTED CODES

 In this type of binary codes, the positional weights are not

assigned.
» The examples of non-weighted codes are
Excess-3 code and Gray code.
EXxcess-3 code

e The EXxcess-3 code is also called as XS-3 code. It is non-

weighted code used to express decimal numbers.

e The Excess-3 code words are derived from the 8421 BCD

code words adding (0011), or (3)10 to each code word In
8421.

EXCESS-3 CODE

e The excess-3 codes are obtained as follows —

Add
Decimal Number == 8421 BCD = Excess-3
0011
Example
Decimal BCD Excess-3
8 & 2 1 BCD + 0011
0 0 0 0O 0.10- % %
1 0 0 01 074:0:0
2 0010 0% 0 4
3 9 S0 5 R R | 0,719 9
4 0100 3 T s s |
5 (DI R 4 R | 1000
6 0% % 0 0 0%
7 01 10} 1051500
8 1 0:-0; 0 140 % 4
9 1001 ;S s N §

GRAY CODE

It is the non-weighted code and it is not arithmetic codes. That

means there are no specific weights assigned to the bit position.

As only one bit changes at a time so the gray code is called as a

unit distance code. The gray code is also called as a cyclic code.

Gray code cannot be used for arithmetic operation.

Decimal BCD Gray
0 0 O 00 3 DR 5 B 0 D 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 2 I 3T S
3 20 ERG s !) Ik 5 B s
4 01T 0O 0O 0% =% 0
5 01 0 1 0 %21 ¥
6 0 % =1 0O 0 % =0 14
7 b s R AR 0 1T 0 0
8 i1 0 0 0 i ¥ 0 0O
) 1 00 3 1 % 0%

D

Al B | Out

A
B

O ——0O

o = 0 —

0 0 = =

EXOR OPERATION

BINARY CODED DECIMAL (BCD) CODE

In this code each decimal digit is represented by a 4-bit

binary number.

BCD is a way to express each of the decimal digits with a

binary code.

In the BCD, with four bits we can represent sixteen numbers

(0000 to 1111).

Decimal | 0 1 2 3 4 5 6 | 7 8 9

BCD 10000 10001 {0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001

BCD CODES

Advantages of BCD Codes
e It is very similar to decimal system.

» We need to remember binary equivalent of decimal numbers

0 to 9 only.
Disadvantages of BCD Codes
» The addition and subtraction of BCD have different rules.
» The BCD arithmetic is little more complicated.

» BCD needs more number of bits than binary to represent the

decimal number. So BCD is less efficient than binary.

ALPHANUMERIC CODES

The alphanumeric codes are the codes that represent numbers

and alphabetic characters.

Mostly such codes also represent other characters such as
symbol and wvarious iInstructions necessary for conwveying

Information.
An alphanumeric code should at least represent 10 digits.

The following three alphanumeric codes are very commonly

used for the data representation.
1.American Standard Code for Information Interchange (ASCII).

2.Extended Binary Coded Decimal Interchange Code
(EBCDIC).

ERROR CODES

» There are binary code techniques available to detect and

correct data during data transmission.
Error detecting codes

» When data is transmitted from one point to another, there are
chances that data may get corrupted. To detect these data

errors, we use special codes, which are error detection codes.
Error-correcting codes

» It not only detect errors, but also correct them. This is used

normally in Satellite

e communication, where turn-around delay is very high as is

the probability of data getting corrupt.

ERROR CODES

Hamming Codes

» Hamming code adds a minimum number of bits to the data
transmitted in a noisy channel, to be able to correct every

possible one-bit error.
» Two types of parity are:

Even parity: Checks if there is an even number of ones; if
so, parity bit is zero. When the number of one’s Is odd then

parity bit is set to 1.

Odd Parity: Checks if there is an odd number of ones; if so,
parity bit iIs zero. When the number of one’s is even then

parity bit is set to 1.

CODE CONVERSION

» There are many methods or techniques which can be used to

convert code from one format to another.
» Binary to BCD Conversion
» BCD to Binary Conversion
» BCD to Excess-3

» Excess-3to BCD

BINARY TO BCD CONVERSION

o Step 1 -- Convert the binary number to decimal.
o Step 2 -- Convert decimal number to BCD.
Example — conwvert (11101), to BCD.

Step 1 — Convert the given number to Decimal

Step Binary Number Decimal Number

Step1 11101, (1% 29+ (1 23+ (1% 28+ (0% 2+ (1 % 2);,
Step2 111015 (16+8+4+0+1)

Stepd 11101, 2%

Binary Number - 11101, = Decimal Number - 29+

BINARY TO BCD CONVERSION

e Step 2 — Convert to BCD

Step Decimal Number Conversion
Step 1 294 0010, 1001,
Step2 294 001010015
Result

(11101), = (00101001)gy

BCD TO BINARY CONVERSION

o Step 1 -- Convert the BCD number to decimal.

» Step 2 -- Convert decimal to binary.

Example — convert (00101001)g-p to Binary.
Step 1 - Convert to BCD

Step BCD Number Conversion
Step 1 (00101001)gcp 0010, 1001,
Step2 (00101001)gep 240 910

Step 3 (00101001)agg 24y

BCD TO BINARY CONVERSION
o Step 2 - Convert to Binary

Use long division method for decimal to binary conwversion.

Decimal Number — 29,

Step Operation Result Remainder
Step1 29/2 14 1
Step2 1472 7 0
Step3d T7/2 3 1
Stepd 3/2 1 1
Step5 1/2 0 1
Result

» (00101001)5.p = (11101),

BCD TO EXCESS-3

Steps
= Step 1 - Convert BCD to decimal.
= Step 2 —- Add (3)4g to this decimal number.
= Step 3 - Convert into binary to get excess-3 code.

Example - convert (0110)gcp to Excess-3.

Step 1 = Convert to decimal

(0110)aco = 610
Step 2 — Add 3 to decimal

(6)10 + (3)10 = (9o

Step 3 — Convert to Excess-3
(9)10 = (1001)2

Result

(E’liajacn = {19‘31}3::5-3

EXCESS-3 TO BCD

Steps
2 Step 1 — Subfract (0011); from each 4 bit of excess-3 digit to obtain the

corresponding BCD code.
Example - convert (10011010)ys.2 to BCD.

leel116e18
16016111

Given XS5-3 number
Subtract (0011),

B(D=011686 @111

Result

(10011010) .5 = (01100111)zcp

BINARY CODE CONVERSION

Example L: Give the bmary, BCD, Excess-3, gray code representations of numbers: §,8,14,

Decimal Number | Bimarycode | BCDeode | Excess-3code | Graycode
) 0101 0101 1000 DIl
| 100 1000 1011 1100
14 1110 OTOI0 | 01000111 0]

BINARY CODE CONVERSION

Example 2: Binary To Gray Code Conversion

1+ 0+ ?+ 1+ 0 (BINARY)
EN
1

1 1 (CONVERTED GRAY CODE)

Example 3:Gray code to Binary code

V/’ f 1 (GRAY CODE)

0 1 0 (CONVERTED BINARY CODE)

BOOLEAN ALGEBRA

» Boolean algebra is an algebraic structure defined by a set of
elements, B, together with two binary operators, + and.,
provider that the following postulates are satisfied.

Principle of Duality

» |t states that every algebraic expression is deducible from the
postulates of Boolean algebra, and it remains valid if the
operators & identity elements are interchanged.

1. Interchanging the OR and AND operations of the

expression.

2. Interchanging the 0 and 1 elements of the expression.

3. Not changing the form of the variables.

BOOLEAN THEOREM

o The theorems of Boolean algebra can be used to simplify many a
complex Boolean expression and also to transform the given expression

Into a more useful and meaningful equivalent expression.

» The theorems are presented as pairs, with the two theorems in a given
pair being the dual of each other.

» These theorems can be very easily verified by the method of perfect
induction.
T1: Commutative Law
@QA+B=B+A
(b)AB=BA

T2: Associative Law
@ (A+B)+C=A+(B+C)
(b) (AB)C=A(BC)

BOOLEAN THEOREM
T3: Distributive Law
@ AB+C)=AB+AC
(b)A+(BC)=(A+B)(A+C)

T4: Identity Law
@A+A=A
(b)) AA=A

T5: Negation Law
(A)=A4 and (A)=4

T6: Redundancy
@A A+AB=A
(b)A(A+B)=A

Contd,.

T7: Operations with ‘0’ & ‘1°
@0+A=A

(b)IA=A

c)1+A=1

(dO0A=0

T8 : Complement laws

@) A+4=1

(b)A.A=0

T9O: ()A+AB=A+B
(b)A.(A+B)=A.B

Contd,.

T10: De Morgan's Theorem

It States that —The complement of the sum of the variables is
equal to the product of the complement of each variable This
theorem may be expressed by the following Boolean

expression.

(A+B)=A.B

» |t states that the —Complement of the product of variables is
equal to the sum of complements of each individual variable.

Boolean expression for this theorem is

(AB)=A+ B

GATES

A B Q
A 0 0 0
& Q
B — 0 1 0
i Symbol Truth Table
1 1 1 A Q
A Q
Boolean Expression O = AB Read as A AND B gives O 0 1
Inverter or NOT Gate 1 0
Boolean Expression Q=NOT A orﬂ Read as inversion of A gives Q
A B Q
0 0 0
A
Q
0 1 1
2-input OR Gate 1 0 1
1 1 1
Boolean Expression Q = A+B Readas AORB gives Q

Truth Table Outputs For Each Gate

A E AMD MAMD OR MOR EX-OR EX-MOR
0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1

AND AB
OR A+B
NOT A
NAND A B
NOR A+B
EX-OR (AB)+(ABlorA@B
EX-NOR (AB)+(AB)orAGB

VERIFICATION OF DEMORGAN’S LAW
De Morgan's First Theorem states:

» The complement of a product of variables is equal to the sum

of the complements of the individual variables .

De Morgan's Second Theorem states:

» The complement of sum of variables Is equal to the product

of the complements of the dividable variables

- FIRSTLAW
AB- la -+ B

A— e A S
- — A B B — & A
Figure: De Morgan’s First Law

- SECONDIL AW

A +B = A.B

=) o Ena sl =R

Figure: De Morgan’s Second Law

A+AB=Al+AB
~A(+B)+AB

PROBLEMS
Example 1: Using theorems, find A+A’B.

=A+AB +AB
=A+B(A+A)

=A+B

Using Truth Table

—

A

A+B

A’B

0
0
I
I

— o ~| o w

— -] -] ©

Ol O =] O

ORDER OF PRECEDENCE

NOT operations have the highest precedence, followed by

AND operations, followed by OR operations.
Brackets can be used as with other forms of algebra.
e.g. X.Y +Zand X.(Y + Z) are not the same function.

Truth tables are a means of representing the results of a logic

function using a table.

AND

NOT

OR

Contd,.

X Y F(X,Y)
0 0 0
0 l 0
l 0 0
l l I
X F(X)
0 1
l 0
X Y F(X,Y)
0 0 0
0 l 1
1 0 1
1 | 1

MINTERM AND MAXTERM

o A minterm is the product of N distinct literals where each

literal occurs exactly once.

o A maxterm is the sum of N distinct literals where each literal

occurs exactly once.

For a two-vartable expression, the minterms and maxterms are as follows

X Y | Minterm | Maxterm
() | XY X+Y
() 1 XY X+Y

l | X.Y X+Y

l 1 X.Y X4+Y

Contd,.

For a three-variable expression, the minterms and maxterms are as follows

X Y Z Minterm | Maxterm
0 0 0 XYZ X+Y+Z
0 0 | XYZ X+Y+Z
0 l 0 XYZ X+Y'+Z
0 l] X.Y.Z X+Y+Z
l 0 0 XY.Z X+Y+Z
l 0 | XYZ X+Y+Z
I l 0 XYZ | X+Y+Z
l l] XY.Z X+Y+Z

BOOLEAN FUNCTION

» A Boolean expression Is an expression which consists of
variables, constants and logical operators which results in true
or false.

A Boolean function i1s an algebraic form of Boolean
expression.

» The different ways of representing a Boolean function is
shown below.

1. Sum-of-Products (SOP) Form
2. Product-of-sums (POS) form

3.Canonical forms

SOP

» The Sum of Product (SOP) expression comes from the fact

that two or more products (AND) are summed (OR) together.

» The outputs from two or more AND gates are connected to
the nput of an OR ogate so that they are
effectively OR’ed together to create the final AND-OR

logical output.

AND gate ‘; @—o Z

OR gate

=000 202200
== QN <QO0ON

- 00 4A00P

w P
N

SOP

» The short form of the sum of the product is SOP, and it is one

kind of Boolean algebra expression.

e The min term can be defined as, when the minimum

combinations of inputs are high then the output will be high.

X Y Z Min Term (m)
0 0 0 XY'Z'=mo
0 0 1 XY'Z=ml
0 1 0 XY Z =m2
0 1 1 XYZ=m3

1 0 0 XY'Z'=m4

1 0 1 XY'Z=mb
1 1 0 XYZ'=m6

1 1 1 XYZ=mT

SOP

The sum of products is available in three different

forms which include the following.
1). Canonical Sum of Products
2). Non-Canonical Sum of Products

3). Minimal Sum of Products

O
~—

L
[
3
L1

CANONICAL SUM OF PRODUCTS

e This i1sa normal form of SOP.

» The expression of the canonical SOP is denoted with sign
summation (})), and the minterms in the bracket are taken
when the output is true.

» The truth table of the canonical sum of the product is shown
below.

Contd,.

» For the above table, the canonical SOP form can be written as
F=> (ml, m2, m3, m5)
By expanding the above summation we can get the following
function.
F=ml+m2+m3+msS
By substituting the minterms in the above equation we can get the
below expression
F=XYZ +XYZ + X’YZ + XY’Z
e The product term of the canonical form includes both

complemented and non-complimented inputs

NON-CANONICAL SUM OF PRODUCTS

e In the non-canonical sum of product form, the product terms
are simplified. For example, let’s take the above canonical
expression

o F=XYZ+XYZ+XYZ+XY’Z

F=XY’Z+ XY (Z’+Z) + XY’Z
Here Z’+Z =1 (Standard function)
F=XYZ+XY (1) +XY’Z
F=XY’Z+X’Y + XY’Z
This is still in the form of SOP, but it is the non-canonical

form

MINIMAL SUM OF PRODUCTS

e This i1s the most simplified expression of the sum of the

product, and It is also a type of non-canonical.

o This type of can is made simplified with the Boolean
algebraic theorem although it is simply done by using K-map

(Karnaugh map).

» This form is chosen due to the number of input lines & gates

are used in this 1s minimum.

K-MAP

e Let’s take an example of canonical form function, and the
minimal Sum of Products K map is

F

YZ
\ 00 01
0/ o

1 0

©Elprocus.com

The expression of this based on the K-map will be

F=Y'Z+XY

SCHEMATIC DESIGN

o The expression of the sum of product executes two-level
AND-OR design, and this design requires a collection of
AND gates and one OR gate.

Y |Y

Minimal Form

Canonical Form

CElprocus.com

MINIMAL TO CANONICAL SOP FORM

» Conversion from minimal or any sort of non-canonical form

to canonical form is very simple.
» Example of conversion for minimal SOP form is given below.
F=AB+BC (Minimal SOP form)

« The term AB is missing input C. So we will
multiply AB with (C+C) because (C+C = 1). The term BC is
missing input A. so it will be multiplied with (A+A)

F=AB(C+C)+BC(A+A)
F=ABC+ABC +ABC+ ABC (Canonical SOP)

PRODUCT OF SUM(POS)

e The product of Sum form is a form in which products of

different sum terms of inputs are taken.

» These are not arithmetic product and sum but they are logical

Boolean AND and OR respectively.

Max Term

» Maxterm means the term or expression that is true for a
maximum number of input combinations or that is false for

only one combination of inputs.

- - a a0 00>

- =m0 0=al0o0m

MAX TERM

mlo=m0o=o0=00n

Max term
Mog=A+B+C
Mi=A+B+C
M,=A+B+C
Ms=A+B+C
M,=A+B+C
Ms=A+B+C
Mg=A+B+C
M-=A+B+C

TYPES OF POS

The product of the sum Is classified into three types which
Include the following.

 Canonical Product of Sums

» Non — Canonical Product of Sums

e Minimal Product of Sums

CANONICAL PRODUCT OF SUM

» The canonical POS is also named as a product of max term.

» The expression this is denoted by [[and the max terms in the

bracket are taken when the output is false.

X Y Z F
0 0 0 0
0 0 1 1

0 1 0 1

Contd,.

o Forthe abowve table, the canonical POS can be written as
F=]] M0, M4, M6, M7)

By expanding the above equation we can get the following
function.
F = MO0, M4, M6, M7
By substituting the max terms in the above equation we can
get the below expression
F=(X+Y+Z) X+Y+Z)(X°+Y’+Z)(X°+Y’+Z7)
The product term of the canonical form includes both

complemented and non-complimented inputs

NON - CANONICAL PRODUCT OF SUM

» The expression of the product of sum (POS) is not in normal formis
named as non-canonical form. For example, let’s take the above expression
F=(X+Y+Z) (X°+Y+Z)(X+Y’+Z)(X’+Y’+Z)
F=(Y+Z) X°+Y+Z) (X’+Y’+Z)
Similar although reversed terms remove from two Max terms & forms only
term to show it here is an instance.
= (X+Y+Z) (X’+Y+Z)
= XX°+XY+HXZAXY+YY+YZAXZ+YZA+ZZ
= 0+XY+XZA XY+ YY+YZAXZ+YZHZ
=X (Y+Z) + X’ (Y+Z) + Y(1+Z) +Z
= (Y+Z) (X+X) +Y (1) +Z
= (Y+2) (0) +Y+Z
=Y+Z

The above expression is in the form of non-canonical.

MINIMAL PRODUCT OF SUM

o This type of can is made simplified with the Boolean algebraic
theorems although it is simply done by using K-map (Karnaugh
map).

o Let’s take an example of canonical form function, and the Product
of sums Kmap is

NZ00 01 11 10

CElprocus.com
o POS K-mapThe expression of this based on the K-map will be
F=(Y+Z) (X’+Y’)

SCHEMATIC DESIGN

» The expression of the product of the sum executes two levels
OR- AND design and this design requires a collection of OR
gates and one AND gate.

"‘ -

—[
2. 58

Minimal Form

Canonical Form
©Elprocus.com

UNIT-2 COMBINATIONAL CIRCUITS

Combinational Logic

o for digital systems may be
or

e A combinational circuit consists of input variables, logic
gates, and output variables.

— >
— o >
Combinational 5

ninputs — > m outputs

circuit

Fig. 4-1 Block Diagram of Combinational Circuit

4-2.Analysis procedure

To obtain the output Boolean functions from a logic
diagram, proceed as follows:

Label all gate outputs that are a function of input variables with
arbitrary symbols. Determine the Boolean functions for each
gate output.

Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols. Find the
Boolean functions for these gates.

4-2.Analysis procedure

Repeat the process outlined in step 2 until the outputs of the
circuit are obtained.

By repeated substitution of previously defined functions, obtain
the output Boolean functions in terms of input variables.

Example

F,=AB+AC +BC; T\=A + B+ C;

F| =T3 +T2

T2 - ABC, T3 - FZ,T|;

Fi=T;+T,=F,'T,+ABC=A'BC’+ A'B'C + AB'C’ + ABC

A=)

c—L

>

D
1
-

Fig. 4-2 Logic Diagram for Analysis Example

100

Derive truth table from logic diagram

‘» We can derive the truth table in Table 4-1 by using the

circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C F, F, T, T, Ts [
§) 0O 0O 0 | 0 0 0 0
0 0 | 0 | | 0 | |
0 | 0 0 1 | 0 | |
0 | 1 | 0O | 0 0 0
| 0 0 0 | | 0 | |
| 0 | | 0 | 0 0 0
| | 0 | 0 | 0 0 0
| | | | 0 | | 0 |

IU1L

4-3. Design procedure

Table4-2 is a Code-Conversion example,first, we can
list the relation of the BCD and Excess-3 codes in the
truth table.

Table 4-2
Truth Table for Code-Conversion Example
nput BCD Output Excess- 3 Code

102

Karnaugh map

For each symbol of the Excess-3 code, we use |'s to
draw the map for simplifying Boolean function.

AL
00

01

AB
00

11

10

cD <
00 01 11 10
1 1
1 1
X X X X
1 X X
F8)
z — DD
cD <
00 01 11 10
1 1 1 ‘
1
X X X X
1 X X ‘

X = B'C +

D

B'D + BC D'

AB
00

D (&
00 o1 11 10
1 1
1 1
X X X X
1 X X
D
v = CD + C'D
D =
00 01 11 10
ERIE
X ‘ X ‘ X ‘ X ‘
1 1 X X ‘
D
w =4 + BC + BD

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

103

Circuit implementation

z2=D’; y=CD +C'D’'=CD + (C + D)’
x = B'C + B'D + BC'D’ = B'(C + D) + B(C + DY’
w=A +BC +BD =A +B(C + D)

P z
D I 2 Y S v
C / m—
3%-(6@0)'
C +D

Fig. 4-4 ILogic Diagram for BCD to Excess-3 Code Converter 104

4-4. Binary Adder-Subtractor

»_A combinational circuit that performs the addition of two bits is
called a
e The truth table for the half adder is listed below:

Table 4-3

Half Adder
x y | C 5 S: Sum
0 0 0 0 C: Carry
] | 0 I
l 0 0 |
| t | 0
S=xy+xy

105

Implementation of Half-Adder

- |
=S =D
B IS

(a) S=xy' +x'y b)S=xDy
C=xy C=xy

Fig. 4-5 Implementation of Half-Adder

106

Full-Adder

‘» One that performs the addition of three bits(two
significant bits and a previous carry) is a

Table 4-4
Full Adder

X ¥ Zz C 5

]) 0 | 0)
0] () 1 0 i
L] | (]]]
) 1 1 1 0
| 0)] |
1 0] i 1 0
1 1 () 1]
| 1] 1 1

107

Simplified Expressions

vz Y vz Y
00 01 11 10 00 01 11 10
x X
1 1 0 1
xil1 1 1 x 1 1 1 | ‘
|
Z Z
S=x"y'z+x'yz'+xy'z' +xyz S=xy+xz+yz

= xytxy'z+x'yz

Fig. 4-6 Maps for Full Adder

C

S=xyz+Xxyz +xyz + xyz
C=xy+xz+yz

108

Full adder implemented in SOP

| ||

)

M =
| 1]

D—

-
-
)

= =
|]|

Fig. 4-7 Implementation of Full Adder in Sum of Products

—>— DD

109

Another implementation

» Full-adder can also implemented with

S=zP xDYy)
=Z/(xy" + xy) +z(xy’ +xy)
=Xyz +Xyz + xyz+x'yz
C=z(xy + x'y) +xy =xyz+ xXyz+ xy

}

N>
A

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

110

Binary adder

» This is also called Subscript i 3 2 1 0
[nput carry 0O 1 1 0 C,
,because of the Augend WL T TR
construction with full Addend 0 0 1 1 B
adders are connected Sum 11 10 3§
: Output carry 0O 0 1 1 Cis
in cascade.
B; A3 B, A By A By A
C3 G C
If FA < FA < FA < FA <~ ()
Cy S3 5 A So

Fig. 4-9 4-Bit Adder

Carry Propagation

e Fig.4-9 causes a factor on ,and produces a

» The signal from C, to the output carry C;, |,
, so, for an n-bit RCA, there are 7 gate
levels for the carry to propagate from input to output.

Carry Propagation

* Because the propagation delay will affect the output signals on
different time, so the signals are

* The most widely used technique employs the principle of

to
A; P;
Bj Si

e L)

Fig. 4-10 Full Adder with P and G Shown

113

Boolean functions

P.=A @ B, steady state value
G, = A;B,steady state value
Output sum and carry
S;=P, D C
Civ) =G+ PC
G, : carry generate P, : carry propagate
Co = input carry
Ci =G+ PG
C=G +PC =G +P Gy + P PGy
C3 =Gy + PGy = Gy + PyGy + PoP Go + PoP PG

* C; does not have to wait for C, and C, to propagate.

Logic diagram of
carry look-ahead generator

» C; is propagated at the same time as C, and C,.

. LN LHUHJ

Fig. 4-11 Logic Diagram of Carry Lookahead Generator .
5

4-bit adder with carry lookahead

» Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

C4 C4
B3 —"_)Di P3
A3 7 P S

%

2
>
) G2 Carry

Look ahead

AN
R
°
R

Fig. 4-12 4-Bit Adder with Carry Lookahead
116

Binary subtractor

M = | 2>subtractor ;M = 0—>adder

oL L

Fig. 4-13 4-Bit Adder Subtractor

117

Overflow

o Itis noting Fig.4-13 that binary numbers in the
by the same basic

addition and subtraction rules as unsigned numbers.

» Overflow is a problem in digital computers because the number
of bits that hold the number is finite and a result that contains

n+ | bits cannot be accommodated.

Overflow on signed and unsigned

When two unsigned numbers are added, an overflow is detected

from the

When two signed numbers are added, the sign bit is treated as
part of the number and the end carry does not indicate an

overflow.

An after an addition if one number is

positive and the other is negative.

An overflow may occur if the two numbers added are both

positive or both negative.

119

4-5 Decimal adder

‘BCD adder can’t exceed 9 on each input digit. K is the carry.

Table 4-5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zg Zs Z> Zs C Ss Sa s> S,

O 0 () §) O O 0O 8] (8] 0O 0
0 §) 0O O 1 O 8} (8] 8] | |
O 0 () 1 8} O O (8] | 0 2
) () O 1 | QO 8] 8] | | 3
0 (§) 1 (§) O O O | (8] 0O 4
0 0 1 §) | O 8] | O | 5
0 8} 1 | O O 8 | | (8] 6
0 () 1 1 1 O 8} | | 1 7
0 | O §) 0O O | 8] O O bad
0 | O 0 | O 1 (§) O 1 O
) 1 O | O 1 O 0O 0O 0O 10
0 | O 1 | 1 (§) (8] 0 | 11
0 | | §) (8] 1 0O (8] | QO 12
0 1 1 0 1 1 0 §) | 1 13
0 1 1 1 8] | O | O 0 14
0 | 1 | | | (8 1 O 1 15
1 0 O () 0O 1 (8] 1 1 O 16
1 0 (9] O 1 1 O 1 | 1 17
1 (§) O | O 1 1 O 0O QO 18
| 0 O 1 1 1 | () (8] 1 19

120

Rules of BCD adder

* When the binary sum is greater than 001, we obtain a

representation.

e The to the binary sum
representation and also produces an output

carry as required.

* To distinguish them from binary 1000 and 1001, which also have a
| in position Zg, we specify further that either Z, or Z, must have
al.

C=K+ZZ, +Z7Z,

Implementation of BCD adder

* A decimal parallel
adder that adds n

decimal digits needs n
BCD adder stages.

Output

The

Addend Augend

bad b vl

Carry
out

K 4- bit binary adder
2y Ly Zy Zy

carry

must
If =1
to the
input carry of the
next higher-order

stage.

A

-
-

0 AN

Y Y Y 4

0110

4- bit binary adder

R

Ss Si S S

Fig. 4-14 Block Diagram of a BCD Adder 122

Cgrry

1n

4-6. Binary multiplier

¢ Usually there are in the partial products and it is necessary to use
to produce the sum of the partial products.

B By Ag

HA HA
l l l Y
Cs; C C, Co

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier 123

4-bit by 3-bit binary multiplier

» For bits and T
bits we need A B| Bl B| % U
AND gates and \g u Q u (i)
to produce a Addend Augend
4-bit add
PrOdUCt OfJ+K bitS. Sum and output carry
» K=4and J=3,we need 12 " ARRE
AND gates and two 4-bit jj u L}J w
adders. e 4-bit adder e
l SIm and oquut carryl l

Y
Cs Cy Cs3 &) C Co

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

124

4-7.Magnitude comparator

* The

A
can be expressed logically EQ}DL
with an function %

as.

A=A3A2A|AO;B= B3BzB|BO BZE:’E[% o
x=AB+A’B’ fori=0,1,2,3 Alm

(A = B) = X3%;% %o

LHU

==y L

P

JU 00 U

(4 = B)

Fig. 4-17 4-Bit Magnitude Comparator
125

Magnitude comparator

* We
.If equal, we
compare the next lower significant
pair of digits until a pair of unequal

digits is reached.

* If the corresponding digit of A is |
and that of B is 0, we conclude that
A>B.

(A>B)=
A3 B,3+X3AzB,2+X3X2A | B, | +X3X2X |AoB,0
(A<B)=

A, 3 B3 +X3A, ZBZ+X3X2A’ | B | +X3X2X IA,OBO

Aj

By

LHU

SO UU U

—— >—4>p)

(4 = B)

Fig. 4-17 4-Bit Magnitude Comparator

126

4-8. Decoders

e The decoder is called n-to-m-line decoder,
where m<2" .

* the decoder is also used in conjunction with
other code converters such as a BCD-to-
seven_segment decoder.

e 3-to-8 line decoder: For each possible input
combination, there are seven outputs that are
equal to 0 and only one that is equal to |.

Implementation and truth table

Table 46
) po=xy= [uth Tobkof o 3t Line Do
e o
D py=xye b) h 0 0 1) D, Ds b
) pi=vye 0 0 000 0 0 0 0
— 0 (| 0 | 0 0 0 0 0 o
- Pamo 0 0 | 0 0 0 0 0
) v 00 0 1 0 0 0 0
| 0 0 0 0 0 0 | 0 0 O
) pe=ne | | 00 0 0 0 1 0 0
— | | 00 0 0 0 0 |
— G 00 00 0 0 0 |

Fig. 4-18 3-to-8-Line Decoder

128

Decoder with enable input

complemented form.

are

gates, it becomes

to generate the decoder minterms in their

e As indicated by the truth table, only
at any given time,

A

B

E

—)O Dy
} E A B D() D] Dz Dj,
D
- ! 1 X X 11 1 1
T—[>of 0 0 0 01 1 1
0 0 1 1 0 1 1
} D, 0 1 0 1 1 0 1
[>D 1 0o 1 1 1 1 1 0
)0 D3
> B
(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

129

Demultiplexer

» A decoder with an enable input is referred to as a
decoder/demultiplexer.

* The truth table of demultiplexer is the same with

decoder. A 3
DO
E +—Demultiplexer D1
—— D2
—— D3

3-to-8 decoder with enable implement

the 4-to-1 6 decoder

X °
. 3 X8 L Dot D
Y decoder oto Ly
Z * E
3 X8
decoder Dgto Dis
E

Fig. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders

131

Implementation of a Full Adder with a
Decoder

» From table 4-4, we obtain the functions for the combinational circuit in sum of
minterms:

S(x,y,z) = > (1,2,4,7)
C(x,y,2) = >(3,5,6,7)

Fig. 4-21 Implementation of a Full Adder with a Decoder
132

4-9. Encoders

e An encoder is the

* We can derive the Boolean functions by table 4-7

Z=D|+D3+ D5+ D7
y =D;+ D3+ D+ Dy
X=D4+ D5+ D6+ D7

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
D, D, D, D, D, Dy D, D, X v 2
| 0 0 0 0 0 0 0 0 0 0
0 | 0 0 0 0 0 0 0 0 |
0 0 l 0 0 0 0 0 0 | 0
0 0 0 1 0 0 0 0 0 | |
0 0 0 0 | 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 |
0 0 0 0 0 0 | 0] | 0
0 0 0 0 0 0 0 1 1 | |

133

Priority encoder

* |If two are , the
produces an .We can establish an
input to ensure that only one input is encoded.
o in the octal-to-binary encoder is
that an is generated when all the

inputs are 0; the output is the same as when D, is equal
to I.

e The discrepancy tables on Table 4-7 and Table 4-8 can

to indicate that at least one input is equal to |.

Priority encoder

V=0-2>no valid inputs
V=1->valid inputs

in output columns represent
conditions
in the input columns are
useful for representing a truth
table in condensed form.

of four variables.

Table 4-8
Truth Table of a Priority Encoder
Inputs Outputs

Db, D, D, D X y V
0 | 0 0 X X 0
10 0 0 0 0 I
X l 0 0 0 I I
X X | 0 I 0 I
) S | X I I I I

135

4-input priority encoder

e Implementation of

table 4-8

X = D2+ D3
y=D;+D,D,
V=D,+ D, +D,+ D,

DZ DZ
00 01 11 10 00 01 11 10
ol x | 1 1 1 o| x | 1 1 0
01 1 1 1 01 1 1 1 0
Dy
11 1 1 1 11 1 1 1 0
Dy
10 1 1 1 10 1 1 0
Ds D3
x =Dy + Ds y=D3+ DD’
Fig. 4-22 Maps for a Priority Encoder
Dj
> > %i}
Dy
> :
0 L/

Fig. 4-23 4-Input Priority Encoder 136

4-10. Multiplexers

S=0,Y =1,
S=1Y =1,
Iy
I

> S

Y Y=SI,+Sl

e
-

§ >0

(a) Logic diagram

MUX Y

(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

137

4-to-| Line Multiplexer

0 ol Iy
0 1| I
I 1 0| I
1 1| I
— v
I, } (b) Function table
S1
50

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

138

Quadruple 2-to-1 Line Multiplexer

» Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. Compare with Fig4-24.

Ag I N
— >
—) o>

Ay 0 —
— Df Y,

As Y
-0 T

Bg [N
—1 Function table

F S| Output Y
B ~
] =) 1 x| allos
0 0O select A

B> | N 0 1| seclect B
—1
—1

S Dc Dc
(select)
E
(enable) {>C

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer
139

Boolean function implementation

» A more efficient method for implementing a Boolean function of
n variables with a multiplexer that has n-| selection inputs.

F(x,y,z) = 2(1,2,6,7)

4 X1 MUX

y — S

X — S]
Xy z F
0 0 0 0
001 |1 F=z z —0 F
o 1o [Ll
01 1|0 "¢ ‘ !
rojolor 0o—»
1 o1 o "
Lo ! 3
1 1 1|1 B

(a) Truth table (b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer 140

4-input function with a multiplexer

F(A,B,C,D) = 3(1,3,4, 11,12, 13, 14, I5)

8 x 1 MUX

A B CD|F
00 000 ¢ %0
o0 o0 1|1 F=PD B §i
0 0 1 00 . A s
0 0 1 1 1F_D
0 1 0 0] 1

S Y D ¢ * 0
o1 0 1|0 F=P 1
01 1. 0[0 |,
o 1 1 1|0 F=Y ! D" 2
1 0 0 00 . 0 3
1 0 0 10 F7Y T 4
1 0 1.0/ 0
1o 1 1,1 F=D >
1 1 0 0] 1 1 6
11 o0 1|1 B T 7
1 1 1.0/ 1
111 11 =71

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer 141

Three-State Gates

»_ A multiplexer can be constructed with three-state gates.

Normal input A N Output Y =Aif C =1
High-impedance if C = 0
Control input C

Fig. 429 Graphic Symbol for a Three-State Buffer

1 I > e
[~
A L, Y I3 >
> - -
Select ! 1
>~ <
B P — s, 2 4
) decoder 2
Enable — EN
Select 3
(a) 2-to-1- line mux (b)4 -to-1 line mux

Fig. 4-30 Multiplexers with Three-State Gates
142

4-11.HDL for combinational circuits

* A module can be described in any one of the

following modeling techniques:

. modeling using instantiation of

and

2. modeling using continuous assignment

statements with

3. modeling using procedural assignment

statements with

Gate-level Modeling

e A circuit is specified by its logic gates and their interconnection.
» Verilog recognizes as

* The logic values of each gate may be I, 0, x(unknown),z(high-impedance).

Table 4-9

Truth Table for Predefined Primitive Gates

and 0O 1 X 2z or | 0O 1 X z
0 O 0 0O 0O 0 O 1 X X
1 0 | X X | 1 | | |
X 0 X X X X X 1 X X
z 0 X X X z X 1 X X

xor |O 1 x =z not | input output
0 0 | X X 0 1
|] 0 X X 1 0O
X X X X X X X
z X. X ¥ X | z X

144

Gate-level description on Verilog code

HDL Example 4-1

The declaration is for intern: e e s o s 2ot aveon

//Figure 4-19
module decoder_gl (A,.B,E,D);
input A.B.E;
output [0:3)D;
wire Anot, Bnot,Enot;
not
nl (Anot,A),
n2 (Bnot,B),
n3 (Enot, E);
nand

nd (D[0],Anot, Bnot, Enot)

D nS (D{1],Anot, B, Enot),
0 né (D{2),A,Bnot, Enot),
n7 (D{3].A.B,Enot);

endmodule

Dy Dy Dy Ds

oo o o = | M
—_ = o o | o
_—— e D
—_ = O =
—_ O = =
[R

(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

145

Design methodologies

* There are two basic types of design methodologies:
and

» Top-down:the top-level block is defined and then the sub-
blocks necessary to build the top-level block are
identified.(Fig.4-9 binary adder)

e Bottom-up: the building blocks are first identified and then
combined to build the top-level block.(Example 4-2 4-bit adder)

e |
-

7

Y

A bottom-up hierarchical description

" HDL Example 4

//Gate-level hierarchical description of 4-bit adder
/| Description of half adder (see Fig 4-5b)
module halfadder (S,C,x,y);
input x,y;
output S,C;
//Instantiate primitive gates
%L (S,X,Y);
and (C,x,y);
endmodule

147

Full-adder

<§§E§;§ IDescription of full adder (see Fig 4-8)
— module fulladder (S,C,x,y,2);

input x,y,2;
output 5,C;
wize S1,01,02; //Outputs of first XOR and two AND gates
//Instantiate the halfadder
halfadder HAL (S1,D1,x,y),
HA2 (S,D2,81,2);
or ¢1(C,D2,D1);
endmodule

148

4-bit adder

§ //Description of 4-bit adder (see Fig 4-9)
' module 4bit_adder (S,C4,A,B,C0O);
| input [(3:0] A,B;

input CO;

output (3:0] S;

output C4;
: wire C1,C2,C3; //Intermediate carries
| //Instantiate the fulladder
| fulladder FAO (S[0],C1,A[0],B[0],CO),
FAl (S[1),C2,A[1]),.B[1]).C1),
FA2 (S[2],C3,A[2]),B[2),C2),
FA3 (S[3),C4,A[3]),B[3],C3);

149

Three state gates

Gates statement: gate name(output, input, control)

>>

A = OUT when control = |,OUT = z when control = 0;

>>

Y = B’ when enable = 0,Y = z when enable = [;

in S~ out
control j/

bufifl
in fout
control

notifl

Fig. 4-31

in [\I > out
control

bufifO
in fout
control

notifO

Three-State Gates

150

2-to-| multiplexer

¢ HDL uses the keyword tri to ! oo
indicate that the output has

multiple drivers.

N

B LT
select ®

Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers

module muxtri (A, B, select, OUT);
inputA,B,select;
output OUT;
tri OUT;
bufif| (OUT,A,select);
bufif0 (OUT,B,select);

endmodule

Dataflow modeling

* |t uses a number of operators that act on operands to produce
desired results.Verilog HDL provides about 30 operator types.

Table 4-10

Symbol Operation
+ binary addition
—bimarysubtraction

& bit-wise AND

| bit-wise OR

4 bit-wise XOR
o bit-wise NOT
== equality

> greater than

< less than
{} concatenation
2. conditional

Dataflow modeling

»_ A continuous is a
statement that assigns a value

to a net.
HDL Example 4-3
® The data t)’Pe iS used in Dataflow description of a 2-to-4-line decoder
. /See Fig. 4-19
Vemlog HDL to represent a module decoder_df (A,B,E,D):;
input A,B,E;
physical connection SEIGER; [D:3) Dy »or WS e
assign D[0] = ~(~A & ~B & ~E),
D[{1] = ~(~A & B & ~E),
D[2] = ~(A & ~B & ~E),
D(3) = ~(A & B & ~E);
endmodule

e A defines a gate output
declared by an or

153

Dataflow description of 4-bit adder

HDL Example 4-4

//Dataflow description of 4-bit adder
module binary_adder (A,B,Cin,SUM,Cout);
input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout,SUM} = A + B +Cin;
endmodule

Data flow description of a 4-bit
| comparator

HDL Example 4-5

//Dataflow description of a 4-bit comparator.
module magcomp (A, B,ALSB,AGTB,AEQB) ;
input [(3:0] A,B;
output ALTB, AGTB, AEQB;
assign ALTB=(A < B),
AGTB = (A > B),
AEQB = (A == B);
endmodule

155

Dataflow description of 2-1 multiplexer

N

¢ Condition! true-expression : false-expression;

HDL Example 4-6

//Dataflow description of 2-to-1-line multiplexer
module mux2x1_df (A,B,select,QUT);

input A,B,select;

output OUT;

assign OUT = select ? A : B;
endmodule

156

Behavioral modeling

It is used mostly to describe , but can be used

also to describe

descriptions use the keyword followed by a list

of procedural assignment statements.

The of procedural assignment statements must be
of the data type. Contrary to the data type, where the
target output of an assignment may be continuously updated, a

data type

Behavioral description of 2-1 multiplexer

DL Example 47

//Behavioral description of 2-to-1-line multiplexer
module mux2xl_bh(A,B,select,OUT);
input A, B, select;
output OUT;
reg OUT;
always @ (select or A or B)
if (select == 1) OUT = A;
else OUT = B;
endmodule

158

4-to- | -line Multiplexer

HDL Example 4-8

//Behavioral description of 4-to-1- line multiplexer
//Describes the function table of Fig. 4-25(b).
module mux4xl_bh (i10,1il1,i2,i3,select,y);

input 10,11,312:13;

input [(1:0] select;

output vy;

reg v:

always @ (i0 or il or i2 or i3 or select)

case (select)
2'b00: y = 1i0;

2'b01: v= 11;

2'bl0: y = 12;

2'bll: y = 13;
endcase

endmodule

159

e
T

B

e

Unit-111 & IV

Synchronous and Asynchronous
Sequential Circuits

Combinational Logic

e Combinational Logic:

> Qutput depends only on current input

> Has no memory

n' input
variables

—p
—P

4'.,.

Combinational

Logic

Clrcuit

—p

E ! DutI:-ut

4'.,,

Combinational Circuit- Block Diagram

variables

PJF

161

Sequential Logic

» Sequential Logic:

> Qutput depends not only on current input
but also on past input values, e.g., design a
counter

> Need some type of memory to remember
the past input values

Sequential Circuits

Circuits that we Information Storing
have learned Circuits
so far
Inputs ——m! » Outputs
Combinational Next
circuit state St Present
[e eleﬂzg%(tas state

PJF

163

Sequential Logic: Concept

 Sequential Logic circuits remember past
inputs and past circuit state.

e Outputs from the system are
“fed back” as new inputs
> With gate delay and wire delay
* The storage elements are circuits that are

capable of storing binary information:
memory.

Combinational Circuits Sequential Circuits

Outputs depend only on present Outputs depend on both present inputs and present

nputs. state.
Feedback path is not present. Feedback path Is present
Memory elements are not required. Memory elements are required.
Clock signal is not required. Clock signal Is required.

Easy to design. Difficult to design.

PJF

165

Synchronous vs.Asynchronous

There are two types of sequential circuits:

* Synchronous sequential circuit: circuit output
changes only at some discrete instants of time.
This type of circuits achieves synchronization by
using a timing signal called the clock.

* Asynchronous sequential circuit: circuit
output can change at any time (clockless).

Synchronous Sequential Circuits:

Flip flops as state memory

Inputs —m

—

» Qutputs

Combinational
circuit

Clock pulses

Flip-flops

(a) Block diagram

(b) Timing diagram of clock pulses

m The flip-flops receive their inputs from the

combinational circuit and also from a clock signal
with pulses that occur at fixed intervals of time,
as shown in the timing diagram.

PJF

167

Clock Period

Circuit

\ Y 4

Smallest clock period = largest combinational
circuit delay between any two directly connected FE,
subjected to impact of FF setup time.

\

V:A

2022/5/22 Sequential Circuits

PJF

168

5V

ov

5V

ov

CLOCK SIGNAL

<

Time Period

-
Time Period

>

PJF

169

TYPES OF TRIGGERING

There are two levels, namely logic High and logic Low in clock signal. Following are the two

- types of level triggering.

= Positive level triggering
= Negative level triggering

If the sequential circuit i1s operated with the clock signal when it is in Logic High, then that
type of triggering is known as Positive level triggering. It is highlighted in below figure.

If the sequential circuit is operated with the clock signal when it is in Logic Low, then that
type of triggering is known as Negative level triggering. It is highlighted in the following
figure.

PJF

170

EDGE TRIGERRING

There are two types of transitions that occur in clock signal.
That means, the clock signal transitions either from Logic Low

to Logic High or Logic High to Logic Low.

» Following are the two types of edge triggering based on the

transitions of clock signal.
 Positive edge triggering

» Negative edge triggering

POSITIVE EDGE TRIGGERING

» If the sequential circuit is operated with the clock signal that is
transitioning from Logic Low to Logic High, then that type of
triggering is known as Positive edge triggering. It is also called as

rising edge triggering. It is shown in the following figure.

PJF

172

NEGATIVE EDGE TRIGGERING

» If the sequential circuit is operated with the clock signal that is
transitioning from Logic High to Logic Low, then that type of triggering is
known as Negative edge triggering. It is also called as falling edge

triggering. It is shown in the following figure.

PJF

173

LATCH

Latch I1s one kind of a cand 1t 1s also known as
a

Latches are useful for the design of the

The working of these circuits can be done in 2-states based on the
enable signal being high or else low.

When the latch circuit is the in an active high state, then both the
I/ps are low.

Similarly, when the latch circuit is then an active low state, then
both the i/ps are high.

The latches can be classified into different types which include

SR Latch, Gated S-R Latch, D latch, Gated D Latch, JK Latch, and
T Latch.

https://www.elprocus.com/different-types-of-digital-logic-circuits/
https://www.elprocus.com/bistable-multivibrator-using-555-timer/
https://www.geeksforgeeks.org/digital-logic-asynchronous-sequential-circuits/

Set Output

Reset Output(c)

JG

FLIPFLOP

 Flip flops are also considered as sequential logic
circuits as their present output value depends on
present and past input and past output.

e when input is changed from one value to
another then the stored bit changes only when
there is a change in the clock signal either from
low level to high or high to a low level.

» Therefore, we can say a flip changes the output
according to input but with respect to the clock
signal.

PJF

176

Input Output

Input Output(c)

Difference between both....?

Latches.. Flip Flop..

< Both are same but there is a little difference between both.

Latches are the building blocks of + flip-flops are also the building blocks of

sequential circuits. sequential circuits.
% latches can be built from gates. % Flip-flops can be built from latches.
% latch does not have a clock signal. % Aflip-flop always has a clock Signal
- 5
2 Q
Cloek
R ¢ .

PJF

2022/5/22 Sequential Circuits 178

m FLIP LATCHES

Flip-flop is a bistable device i.e., it has
two stable states that are represented
asOand I.

It is a edge triggered device.

Gates like NOR, NOT,AND, NAND are
building blocks of flip flops.

They are classified into asynchronous
or synchronous flipflops.

It checks the inputs but changes the
output only at times defined by the

clock signal or any other control signal.

More power is consumed by the Flip-
Flop.

ex:D Flip-flop, JK Flip-flop

Latch is also a bistable device whose states
are also representedas 0 and |.

It is a level triggered device.

These are also made up of gates.

There is no such classification in latches.

It checks the inputs continuously and
responds to the changes in inputs
immediately.

Less power is consumed by the Latches.

ex:SR Latch, D Latch oF

179

SR LATCH

« A bistable multivibrator has two stable states, as indicated by the
prefix bi in its name.

« Typically, one state is referred to as set and the other as reset. The
simplest bistable device, therefore, is known as a set-reset, or S-R,
latch.

» To create an S-R latch, we can wire two In such a way
that the output of one feeds back to the input of another, and vice
versa, like this:

https://www.allaboutcircuits.com/textbook/digital/chpt-3/gate-universality/

LOGIC SYMBOL

Set Output

Reset Output(c)

oG

NOR BASED SR LATCH

TRUTH TABLE
INPUTS | QUTPUTS
s R|Q Q
0 o0 |Q Qq
0 1 0 1
1 0 1 0
1 1 X A

PJF

182

CIRCUIT DIAGRAM-SR Latch

v

TRUTH TABLE

Qt+1

Q£

SR FLIPFLOP

* The Sand Rin SR flip — flop means ‘SET’ and ‘RESET’
respectively. Hence it is also called Set — Reset flip —
flop. The symbolic representation of the SR Flip Flop
is shown below.

t—] aQl— ous Fin Flop Output

ate | Q | O
Output ST { 0
RESET | l

Clock

PJF

185

UNCLOCKED 5-R FLIP-FLOP USING NAND
GATE

» SR flip flop can be designed by cross coupling
of two NAND gates. It is an active low input
SR flip — flop. The circuit of SR flip — flop using
NAND gates is shown in below figure

} DD - § Q State

Previous State | No change
| Reset
l et

! Forbidden

S | —m o | — o

O | <O - - O

PJF

186

UNCLOCKED S R FLIP-FLOP USING NOR
GATE

» SR flip flop can also be designed by cross coupling of
two NOR gates. It is an active high input SR flip —
flop. The circuit of SR flip — flop using NOR gates is
shown in below figure.

o X S | R 0 State
: 0 | 0 | PreviousState | Nochange
| | 0| 1 0 Reset
Q 1| 0 1 Set
0 1 | 1 ! Forbidden

PJF

187

CLOCKED SR FLIP - FLOPS

5_}_ 0 INPUTS OUTPU| STATE
T

CLK S R Q
X 0 0 No [Previous

CLK = Change
4 0 1 0 Reset
o |4 1| o | 1 | s

>: ? 1 1 . |Forbidde
R et 1

PJF

188

D Latch

 There Is one drawback of SR Latch. That is the next
state value can’t be predicted when both the inputs S &
R are one. So, we can overcome this difficulty by D
Latch. It i1s also called as Data Latch. The circuit
diagram of D Latch is shown in the following figure.

v

2N

TRUTH TABLE-D LATCH

D Qt+l

0 0

1 1

Flip-Flops

e Latches are “transparent” (= any change
on the inputs is seen at the outputs
immediately when C=1).

» This causes synchronization problems.

* Solution: use latches to create flip-flops
that can respond (update) only on specific
times (instead of any time).

* Types: RS flip-flop and D flip-flop

Master-Slave FF configuration
using SR latches

S Y s Q
* C C
R oM R n— - Q

PJF

192

Q Q
, *When C=1, master is enabled and
Qo Qo Store stores new data, slave stores o/d
Reset data.
1 0 Set *When C=0, master’s state passes
1 1 , Disallowed {4 enabled slave, master not
Qo Qo Store sensitive to new data (disabled).
S Y S Q
C —— C
R Y R a

—I>o

D Flip-Flop

D D
C
C*DQ ’ C R ~—Q

PPPPPPP

Characteristic Tables

» Defines the logical properties of a flip-flop (such
as a truth table does for a logic gate).

e Q(t) — present state at time t
* Q(t+l) — next state at time t+|

Characteristic Tables (cont.)

SR Flip-Flop

Q(t+1) Operation

— = O Ol W

R

0 Q(T) No change/Hold
1 0 Reset

0 Set

1

? Undefined/Invalid

PJF

196

Characteristic Tables (cont.)

D Flip-Flop
D Q(T+1) Operation
0 0 Set
1 1 Reset

Characteristic Equation: Q(t+1) = D(¥)

D Flip-Flop Timing Parameters

D D S Q

— C

—|>c

Setup time PJF

198

Sequential Circuit Analysis

* Analysis: Consists of obtaining a suitable description

that demonstrates the time sequence of inputs, outputs,
and states.

* Logic diagram: Boolean gates, flip-flops (of any kind), and
appropriate interconnections.
e The logic diagram is derived from any of the following:

> Boolean Equations (FF-Inputs, Outputs)
o State Table

o State Diagram

Example

e lnput: x(t)

o Output: Yy(t)
* State: (A(t), B(t))
* What is the Output

e What is the Next State
Function?

PJF
20
2022/5/22 Sequential Circuits 0

Example (continued)

* Boolean equations
for the functions:
o A(t+1) = A(t)x(t)
+ B(t)x(t)
o B(t+1) = A’(t)x(t)

> y(0) = X () (B(t) +A(t)

X—.-

l—j_l iA

Next State

State Table Characteristics

o State table — a multiple variable table with the following
four sections:

o Present State — the values of the state variables for each allowed
state.

° Input — the input combinations allowed.

> Next-state — the value of the state at time (t+1) based on the
present state and the input.

> Qutput — the value of the output as a function of the present state
and (sometimes) the input.

* From the viewpoint of a truth table:
° the inputs are Input, Present State
> and the outputs are Output, Next State

Example: State Table

. "”Th__e. state table can be filled in using the next state and output equations:
o A@EFl) =A@)x(t) + BE)x(t)
- B(e+1) = A (O)x(t);
© y(®) = x (©)(B(r) +A())

2022/5/22 Sequential Circuits 3

State Diagrams

* The sequential circuit function can be represented in
graphical form as a state diagram with the following
components:

o A circle with the state name in it for each state

o A directed arc from the Present State to the Next State for each
state transition

> A label on each directed arc with the Input values which causes
the state transition, and

> A label:
On each circle with the output value produced, or

On each directed arc with the output value produced.

~ confusing for

Example: State Diagram

~+ Diagram gets

large circuits

e For small circuits,
usually easier to
understand than
the state table

PJF

20
2022/5/22 Sequential Circuits 5

UNIT-5 MEMORY AND
PROGRAMMABLE LOGIC

PLAS
Programmable Logic Array

207

Dense array of
AND gates

!

Product
terms

Dense array of
OR gates

Outputs

208

vy

.".'| .".'2 Xz
Programmable
,u" connections
T 1 A OR plane
l'}-
N | -
N —— -
-
— 1
[o = p
F==E S
— -
="\l
$ ~
| ! e I
S=5¢ Xl
—1"
- a
L "\~
= »-
L - 4 -
1 _m: J F
li—
- <ﬁ| {ﬁ,

AND plane ' '

Gate-level diagram of a PLA | |

| '«l
Y IY|Y
—x—|—% D——4
—x 3 . = x
x | x x| [¥ %
—¢ P

*—
AND plane | ||
fa

Customary schematic of a PLA I
;
1

» A 3x2 PLA with 4 product terms.

210

Design for PLA:

Example
> Implement the following functions using PLA
FO=A +B'C'
F1=AC' + AB .
E2=B'C' + AB Input Side: |
F3=B'C + A 1 =assertedin term
0 =negated interm
Personality Matrix - = does not participate
Product| Inputs Outputs _
term |ABC|F, F, F, F, Output Side:
1-10 1 =term connected to output
%\I(B: 131 0 %) %) 1 \ Reuse O =no connectionto output
AT |1-0l0 1 0 0 Of
e erms
BC |-00/@® O @ O
A 1--'"®00

211

Example: Continued

g

Y

—)_AB

B'C

AC’

BC

LUUUL

FO=A +B'C'
F1=AC + AB
F2=B'C' + AB
F3=B'C + A
Personality Matrix
Product | Inputs Outputs
ter'm |ABC| R F F, F3
AB |11-10 QO O
§C - 01 0 0 0 1 Reuse
AC |1-0/0 1 0 02O
BC [-o00|@® 0 @ o/ &M
A 1--'"®0 0 Q

FO

212

8

F3

Constants

> Sometimesa PLA output must

be programmedto be a

constant | or a constant 0.
Pl is always | becauseits
product lineis connected to
no inputs and is therefore
always pulled HIGH;

this constant-| term drives
the OI output.

No product term drives the
O2 output, which is therefore
always 0.

Another method of obtaining

a constant-0 output is shown
for O3.

213

12 —
13 —
14 —

MM MM

T e

N

Yy

BCD to Gray Code Converter

of o o < <
< X <
- || X X X X o
1 o
© g
=
m — — o o K.
ol © o o o
e}
m [an]
/8 3 3 9 2
© O
o
m — — X X
< = <
— X x X X o
— S
Bf
o]
| © — - — m
o \'4
ol o o o o
S
m m
/8 =3 =2 9 2
© 13)
NOA T 0000 dd0O X X X X X X
SO0 0Adddddd0O O X X X X X X
XooooOoddO0O OO XX X X XX
SO0 00O dHAAHAAAX XXX X X
alleRNeoR_NeoR_NoR_ NeoR_ NeR_ Nol_ Nel_|
Olcoddoo0odd0O0OA140 O —
NMOoOOOOOAAA A0 00O AAAA
locoocoocoococococooddAdAAAA A A

1
m_l OVAVA
ﬂ__x X I X ||l X
(a]
m_o O I+ || ©
sle (=)o |-
/8 &8 49 8
O (@]
o
1
ol o o |[Ix | x
ﬂ__x X X | X
oM
m_l - |l | -
ol © o - —
o
/8 8,4 8 .
O O D
@)
m
+
()
L <
n +
(-
o o
-lw C
c w m
= +
LL) N
d -
g 1,99
= TO+m
E <pmx
(= 1|
e TR
S =x>N

K-map for Z

K-map for Y

214

BD
BC
BC’
ABCD
BCD
AD’
BCD’

w X 'Y Z

215

o013

o2

<%

4 product terms per each OR gate

PALs

* Programmable Array Logic

> a fixed OR array.

Dense array of
AND gates

1Y

Product
terms

Dense array of
OR gates

Outputs

216

v

e -inputs

»1st output
section

section

»3r4 output
section

4th output |
section -~

217

Only functions with

at most four

products can be
implemented

W=AB'C' +CD
X=A'BC" +A’CD+ACD’'+BCD
Y=AC'D+ACD +A'BD

218

PAL16LS
—n

S o1 |2
1z o2}
s o3
—2lis joa}®
—Slie 1052
— 17 os}Z
_lig jo7}Z
S T 08 |2
1o

(19)

(18)
—— 102

(17)

— 103

(16)
104

(15)

— 105

(14)

— 1086

(8)

(13)

— 107

FlriFL gy

18 —[)

(12)
Qo8

T

an

19 !91[-

T

110

219

Helper Terms

(19)
— O1

° Ifan I/O pin’s output-control
gate produces a constant |, 2> @
the output is always enabled, f
but the pin may still be used as
an input too.

° => outputs can be used to
generate first-pass “helper

(18)
— 102

13 i[:k

(17)
—— 103

14 i{)

(18)
— 104

Nilllbl il

terms” for logic functions that 3
cannot be performed in a single s s
pass with the limited number of ' o
AND terms available for a oy
single output. :
IBEI:):
19 i{:x . gjimlm

220

Read Only Memory (ROM)

e Decoder

» Produces minterms

e ORs
» Produce SOP’s

o O m >

4:16
S, dec

H
Fooww~NwooprwNnEko

=
N

13
14

+— AB'CD’
1— ABCD

+— AB'CD
+— ABCD—

+— ABCD’

L ABCD -
. AB'CD — =

1— ABCD’
+— ABCD —
1 ABCD’
+— ABCD

— AB'CD’

— ABCD

— ABCD——

15]

— ABCD

Enb[

221

ROM

¢« ROM
» A decoder

» A set of programmable

OR’s

D7
D6
D5
D4

D3
A2
D2

Al p1
AO DO

222

ROM vs. PLA/PAL

Fixed
Inputs AND array Pr(())glgagpgable —=Outputs
(decoder) y

(a) Programmable read-only memory (PROM)

Inouts Programmable > Fixed L Outputs
. AND array OR array P

(b) Programmable array logic (PAL) device

Programmable Programmable L__gn 0utouts
AND array OR array P

Inputs

(c) Programmable logic array (PLA) device

223

Example

* Find a ROM-based circuit
implementation for:
° f(a,b,c) = a’b’ + abc
° g(a,b,c) =a’b’c’ +ab + bc
° h(a,b,c)=2a’b’ + ¢
» Solution:

> Express f(), g(), and h() in 2m() format (use
truth tables)

> Program the ROM based on the 3 > m()’s

225

Example

> There are 3 inputs and 3 outputs, thus we
need a 8x3 ROM block.

£=Ym(0, 1,7)
g =>m(0,3,6,7)
h=Ym(,1,3,5,7)

226

ROM as a Memory

e Read Only Memories (ROM) or Programmable Read
Only Memories (PROM) have:

> N inputlines,

> M output lines,and

o 2N decoded minterms.

e Can be viewed as a memory with the inputs as
addresses of data (output values),
> hence ROM or PROM names!

227

(Memories)

e Volatile:

> Random Access Memory (RAM):
SRAM "static"
DRAM "dynamic”

* Non-Volatile:
> Read Only Memory (ROM):

Mask ROM "mask programmable”
EPROM "electrically programmable”
EEPROM “electrically erasable electrically programmable”

FLASH memory - similar to EEPROM with programmer
integrated on chip

228

Read Exﬁn%?etﬂo?iﬁpmgzmlggsx— 011, output is (Fy,F1,F5,F3) =

0010.

Whatare functions F3, F, , F; and Fj interms of (A,, A4, Ag)?

DO
D1

D2
D3

D4
A2
D5

Al pg
A0 D7

Address 8x4 ROM
——— :
X ! 1
1* 2
4 AJ2:0] 3 F[3:0]
z L
A 7 7
X 3 4 4
)
-

229

Design by ROM: Example

 BCD to 7 Segment Display Controller

230

Standard Devices
> Vpp and PGM are used when

) 2764 EPROM
programmlng 8K x 8
2764
—| VPP
—o| PGM
—1 Al12
—1 All
—1 A10 07—
—1 A9
Og—
—1 A8 08—
— A7)
04—
— A6 O’:'—
—1 A5 O:
‘—
— A4 01—
—1 A2
— Al
—1 AO
—0o| CS
—o| OE

231

THANK YOU

