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SYLLABUS

 UNIT I ELECTROSTATICS 9 Hrs

Review of vector algebra and coordinate systems - Line, surface and volume 
integrals - Gradient of a scalar field, Divergence of a vector field - Divergence 
theorem - Curl of a vector field, Stoke's theorem, Helmholtz's theorem.- Electric 
field, Coulomb's law, Electric potential, Electric flux density and dielectric 
constant, Boundary conditions, Capacitance- Parallel plate capacitors, 
Electrostatic energy. 

UNIT II MAGNETOSTATICS 9 Hrs

Lorentz force equation, Ampere's law, Vector magnetic potential, Biot-Savart law 
and applications, Magnetic field intensity and idea of relative permeability, 
Magnetic circuits, Behaviour of magnetic materials, Boundary conditions, 
Inductance and inductors, Magnetic energy, Magnetic forces and torques. UNIT III 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS 9 Hrs

Faraday's law- Maxwell’s Second Equation in integral form from Faraday’s Law-
Displacement current – Ampere’s circuital law in integral form, Equation expressed 
in point form -Maxwell’s four equations in integral form and differential form -
Electromagnetic boundary conditions, Wave equations and solutions, Time-
harmonic fields. 
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SYLLABUS

 UNIT IV TRANSMISSION LINES AT RADIO FREQUENCIES 9 Hrs Transmission 
line parameters- General solutions of transmission line –Wavelength, 
velocity of propagation - Waveform distortion – The distortion less line-
Reflections on a line not terminated in Z0 - Reflection coefficient -
Reflection factor and reflection loss - Standing Waves, Nodes, Standing 
wave Ratio- Smith chart and its application – Single stub matching using 
Smith chart

 UNIT V PLANE ELECTROMAGNETIC WAVES 9 Hrs Uniform Plane Waves –
Maxwell’s equation in Phasor form – Wave equation in Phasor form – Plane 
waves in free space and in a homogenous material - Wave equation for a 
conducting medium – Propagation in good conductors –, Skin effect. Group 
velocity, Electromagnetic power flow and Poynting vector, Normal 
incidence at a plane conducting boundary.

 TEXT BOOKS:

 John D Ryder, Networks, Lines and Fields , Prentice Hall India, 2010

 W.H. Hayt and J.A. Buck, Engineering Electromagnetics, TATA McGraw-
Hill,2007
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Introduction to 

Electromagnetic Fields 

 Electromagnetics is the study of the effect of charges at 

rest and charges in motion.

 Some special cases of electromagnetics:

 Electrostatics:  charges at rest

 Magnetostatics: charges in steady motion (DC)

 Electromagnetic waves: waves excited by charges in time-

varying motion
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Introduction to 

Electromagnetic Fields

• transmitter and receiver

are connected by a “field.”
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Introduction to 

Electromagnetic Fields

 When an event in one place has an effect on something 

at a different location, we talk about the events as 

being connected by a “field”.

 A field is a spatial distribution of a quantity; in general, 

it can be either scalar or vector in nature.
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Introduction to 

Electromagnetic Fields

 Electric and magnetic fields:

 Are vector fields with three spatial components.

 Vary as a function of position in 3D space as well as time.

 Are governed by partial differential equations derived 

from Maxwell’s equations.
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Introduction to 

Electromagnetic Fields

 A scalar is a quantity having only 
an amplitude (and possibly 
phase).

 A vector is a quantity having 
direction in addition to amplitude 
(and possibly phase).

Examples: voltage, current, charge, energy, temperature

Examples: velocity, acceleration, force
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Introduction to Electromagnetic Fields

 Fundamental vector field quantities in 
electromagnetics:

 Electric field intensity

 Electric flux density (electric displacement)

 Magnetic field intensity

 Magnetic flux density

units = volts per meter (V/m = kg m/A/s3)

units = coulombs per square meter (C/m2 = A s /m2)

units = amps per meter (A/m)

units = teslas = webers per square meter (T = Wb/ m2 )

 E

 D

 H

 B
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Introduction to Electromagnetic Fields

 Relationships involving the universal constants:

0

0
0

00

1







c

In free space:

HB 0

ED 0
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Introduction to Electromagnetic 

Fields

 Universal constants in electromagnetics:

Velocity of an electromagnetic wave (e.g., 
light) in free space (perfect vacuum)

Permeability of free space

Permittivity of free space:

 Intrinsic impedance of free space:

m/s 103 8c

H/m 104 7

0

 

F/m 10854.8 1 2

0



  1200
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Maxwell’s Equations

 Maxwell’s equations in integral form are the 
fundamental postulates of classical 
electromagnetics - all classical 
electromagnetic phenomena are 
explained by these equations.

 Electromagnetic phenomena include 
electrostatics, magnetostatics, 
electromagnetostatics and 
electromagnetic wave propagation.

 The differential equations and boundary 
conditions that we use to formulate and 
solve EM problems are all derived from 
Maxwell’s equations in integral form.
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Maxwell’s Equations

 Various equivalence principles consistent with Maxwell’s 
equations allow us to replace more complicated electric 
current and charge distributions with equivalent magnetic 
sources.

 These equivalent magnetic sources can be treated by a 
generalization of Maxwell’s equations.
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Maxwell’s Equations in Integral Form (Generalized to 

Include Equivalent Magnetic Sources) 


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Adding the fictitious magnetic source 

terms is equivalent to living in a universe 

where magnetic monopoles (charges) 

exist.
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Continuity Equation in Integral Form 

(Generalized to Include Equivalent 

Magnetic Sources) 




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• The continuity 

equations are 

implicit in 

Maxwell’s 

equations.
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Contour, Surface and Volume 

Conventions

CS

dS

• open surface S bounded by

closed contour C

• dS in direction given by

RH rule

V

S

dS

• volume V bounded by

closed surface S

• dS in direction outward

from V
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Electric Current and Charge 

Densities

 Jc = (electric) conduction current density (A/m2)

 Ji = (electric) impressed current density (A/m2)

 qev = (electric) charge density (C/m3)
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Magnetic Current and Charge 

Densities

 Kc = magnetic conduction current density (V/m2)

 Ki = magnetic impressed current density (V/m2)

 qmv = magnetic charge density (Wb/m3)



Lecture 2

Maxwell’s Equations - Sources 

and Responses

 Sources of EM field:

 Ki, Ji, qev, qmv

 Responses to EM field:

 E, H, D, B, Jc, Kc
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Maxwell’s Equations in Differential Form 

(Generalized to Include Equivalent Magnetic 

Sources) 

mv

ev

ic

ic

qB

qD

JJ
t

D
H

KK
t

B
E



















Lecture 2

Continuity Equation in Differential Form 

(Generalized to Include Equivalent Magnetic 

Sources) 

t
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• The continuity 

equations are 

implicit in 

Maxwell’s 

equations.
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Electromagnetic Boundary 

Conditions

Region 2

Region 1
n̂
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Electromagnetic Boundary 

Conditions

 
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Surface Current and Charge 

Densities

 Can be either sources of or responses to EM field.

 Units:

 Ks - V/m

 Js - A/m

 qes - C/m2

 qms - W/m2
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Electromagnetic Fields in Materials

 In time-varying electromagnetics, we consider E
and H to be the “primary” responses, and 
attempt to write the “secondary” responses D, 
B, Jc, and Kc in terms of E and H.

 The relationships between the “primary” and 
“secondary” responses depends on the medium
in which the field exists.

 The relationships between the “primary” and 
“secondary” responses are called constitutive 
relationships.
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Electromagnetic Fields in 

Materials
 Most general constitutive relationships:
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Electromagnetic Fields in 

Materials
 In free space, we have:

0
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Electromagnetic Fields in Materials

 In a simple medium, we have:

HK

EJ

HB

ED

mc

c















 • linear (independent of field 

strength)

• isotropic (independent of position 

within the medium)

• homogeneous (independent of 

direction)

• time-invariant (independent of 

time)

• non-dispersive (independent of 

frequency)
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Electromagnetic Fields in 

Materials
  = permittivity = r0 (F/m)

  = permeability = r0 (H/m)

  = electric conductivity = r0 (S/m)

 m = magnetic conductivity = r0 (/m)
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Maxwell’s Equations: Electromagnetic Waves
In 1845, Faraday demonstrated that a magnetic field produces a

measurable effect on a beam of light. This prompted him to speculate that

light involves oscillation of electric and magnetic field lines, but his limited

mathematical ability prevent him from pursuing this idea.

Maxwell, a young admirer of Faraday, believed that the closeness

of these two numbers, speed of light and the inverse square root of ε0 and

µ0, was more than just coincidence and decide to develop Faraday’s

hypothesis.

In 1865, he predicted the existence of electromagnetic waves that

propagate at the speed of light.
1

2

Displacement Current

The inadequacy of the Ampere’s law does not give consistent 

answers for the following two choices.

Maxwell proposed that a new type of current, which he called

displacement current, I , can be associated with theD

nonconductor between the plates. Thus Ampere’s law should be

written as

B  dl   (I  ID )
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3

Displacement Current (II)

Where does the displacement current come from? The change of the

electric flux with time.

Consider a parallel plate capacitor

Q  0 AE  0 E

D

dQ
 

dE  I
dt dt

0

With Maxwell’s modification, Ampere’s law becomes

) B dl  0 (I  0
dt

dE

4

Use the Ampere-Maxwell law to find the magnetic field between the

circular plates of a parallel-plate capacitor that is charging. The radius of

the plates is R. Ignore the fringing field.

Solution:

 B  dl  B(2r)

dt

B 
1 
  r 

dE

(r  R)2 dt

B(2r)    (r 2 )
dE

  E(r 2 )

0 0

0 0

E

Example 1
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5

With the inclusion of Maxwell’s contribution, we now display all the

fundamental equations in electromagnetism. There are just four:





B dA 0

E dA


dE )B dl   (I 

d
E  dl  

B

Ampere- Maxwell

Faraday

Gauss

Gauss

00

0

dt

dt

Q

 4KQ 
Q

 0

The net flux through a closed surface equals 1/0 times the 

net charge enclosed by the surface.

Can we prove the above statement for arbitrary closed 

shape?
6

Gauss’s Law
How much is the flux for a spherical Gaussian surface around a 

point charge?

The total flux through this closed Gaussian surface is

  E  n̂da 
kQ

4 r 2

r 2
E 

Maxwell’s Equations
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The Magnetic Field
When iron filings are sprinkled around a bar magnet, they form

a characteristic pattern that shows how the influence of the

magnet spreads to the surrounding space.

The magnetic field, B, at a point along the tangent to a field line. The

direction of B is that of the force on the north pole of a bar magnet, or

the direction in which a compass needle points. The strength of the

field is proportional to the number of lines passing through a unit area

normal to the field (flux

density).

8

The Magnetic Field: monopole?
If one try to isolate the poles by cutting the magnetic, a curious

thing happens: One obtains two magnets. No matter how thinly the

magnet is sliced, each fragment always have two poles. Even

down to the atomic level, no one has found an isolated magnetic

pole, called a monopole. Thus magnetic field lines form closed

loops.

Outside a magnetic the lines emerge from the north pole and enter

the south pole; within the magnet they are directed from the south

pole to the north pole. The dots represents the tip of an arrow

coming toward you. The cross represents the tail of an arrow

moving away.
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Faraday’s Law and Lenz’s Law

The generation of an electric current in a circuit implies the

existence of an emf. Faraday’s statement is nowadays

expressed in terms of the magnetic flux:

dt


d
VEMF

The induced emf along any closed path is proportional to the

rate of change of magnetic flux through the area bounded by the

path.

The derivative of magnetic flux is

d


dB 
A cos  B 

dA 
cos  BAsin

d
dt dt

dt dt

10

Faraday’s Law

The emf is always opposite to the sign of the change in flux

. This feature can be incorporated into Faraday’s law by 

including a negative sign.

The modern statement of Faraday’s law of electromagnetic 

induction is

dt

V  N
d

EMF

Suppose that the loop is replaced by a coil with N turn. The net 

emf induced in a coil with N turns is

dt
 

d
VEMF



Lecture 2

11

Ampere’s Law

Ampere had several objections to the work of Biot and Sarvart. For

example, accuracy and assumption.

He pursued his own line of experimental and theoretical research and

obtained a different relation, now called Ampere’s law, between a

current and the magnetic field it produces.

Although Ampere’s law can be derived from the Biot-Sarvart

expression for dB, we will not do so. Instead, we can make it plausible

by considering the field due to an infinite straight wire.

We know that the field lines are concentric circles for a infinite long,

straight current-carrying wire.

B(2r)=0I

12

Ampere’s Law (II)

B(2r)=0I.  We may interpret it as follows: 2r is the length of a 

circular path around the wire, B is the component of the 

magnetic field tangential to the path, and I is the current through 

the area bounded by the path.

Ampere generalized this result to the paths and wires of any 

shape.
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Derivation of the Wave Equation

Mathematical manipulation of Faraday’s law and Ampere-

Maxwell law leads directly to a wave equation for the electric and

magnetic field.

0  t 2

2

0 2E    (E)  
(B)

t

 E

14

Derivation of the Wave Equation (II)

We will assume E and B vary in a certain way, consistent with

Maxwell equations, and show that electromagnetic wave are a

consequence of the application of Faraday’s law and Ampere-

Maxwell law.

 E  dl  (Ey 2   Ey1 )y

(Faraday's law)

(E y2  E y1)y  

t
 

Bz

x

E y

t

xy
t

t

Bz

  B xy 
 B  

Bz xy
B z

Faraday’s law Ampere-Maxwell law

d

 E  dl   B

dt

 B  dl   (I 



d E  )

0

0

dt
 E  

B

t

 B   

E

0    0   t
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By taking the appropriate derivatives of these two equations, it is

straightforward to obtain Maxwell’s wave equation.

Derivation of the Wave Equation (III)

B dl  (Bz 2  Bz1)z

(Ampere- Maxwell law)

(Bz 2  Bz1)z  00

 00

x t

EyBz

xz
t

Ey

y xz
t

E

t
 E  Eyxz  E  



y 

t 2

2E 2E
 00

y 

x2

z 

t 2
2B 2B

 00

z

x2
,

16

Electromagnetic Waves

We saw that a wave traveling along the x-axis with a wave 

speed v satisfies the wave equation:

t 2

 2 y 1  2 y

v2x2


From Faraday’s law and Ampere-Maxell law, we can derive the 

following equations:

y 

t 2

2E 2E
 00

y 

x2

z 

t 2
2B 2B

 00

z

x2
,

On comparing these with standard wave equation, we see 

that the wave speed is

 3.00108 m/s (speed of light in vacuum)

(  4 107 H/m and   8.551012 F/m)
0 0

1

0 0

c 
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Electromagnetic Waves (II)

The simplest solution of the wave equations are plane wave

 00 , Ey  E0 sin(kx t)

, Bz  B0 sin(kx t)

x2 t 2

2E2E
t 2

2B 2B
 00

x2

yy

zz



The electric E and magnetic B are in phase and are

perpendicular to each other and also perpendicular to the

direction of propagation.

18

Electromagnetic Waves (III)

One representation of an electromagnetic wave traveling 

along the +x direction.

A representation of a plane electromagnetic wave in which the 

variation in the field strengths is depicted by the density of the 

field lines.
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Energy Transport and the Poynting Vector

The energy density of the electric and magnetic fields in free space

are given.

The total energy density is therefore

B  uE   uB

BuE    E ; u

Since E  cB 

 B

1

20

1 1

2

00

2 2

0

0 EBu   E2 
B



00

2

0


20

Energy Transport and the Poynting Vector (II)

Consider two planes, each of area A, a distance dx apart, and 

normal to the direction of propagation of the wave. The total 

energy in the volume between the planes is dU=uAdx.

The rate at which this energy through a unit area normal to the 

direction of propagation is

S 
1  dU  


1 

uA 
dx 

 uc A  dt A dt

S  uc 
EB

0

The vector form of the Poynting vector is

S 
EB

0
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Energy Transport and the Poynting Vector (III)

The magnitude of S is the intensity, that is instantaneous power

that across a unit area normal to the direction of the propagation.

The direction of S is the direction of the energy flow.

In an electromagnetic wave, the magnitude of S fluctuates rapidly

in time. Thus a more useful quantity, the average intensity, is

The quantity Sav, measured in W/m2 is the average power

incident per unit area normal to the direction of propagation.

20

c 
EB

S  uav av

22

A radio station transmits a 10-kW signal at a frequency of 100 MHz.

For simplicity, assume that it radiates as a point source. At a distance

of 1 km from the antenna, find: (a) the amplitude of the electric and

magnetic field strengths, and (b) the energy incident normally on a

square plate of side 10 cm in 5 min.

(b) U  S t  2.4103   J


B  2.58109 T

E0  0.775V/m

24 107 3108  E 2

410002

10000

20c4 r


Average power


E
(a) S

 0

0

2

0

2



av

av

Solution:

Example:
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Momentum and Radiation Pressure

An electromagnetic wave transports linear momentum.

We state, without proof, that the linear momentum carried by an

electromagnetic wave is related the energy it transport according

to

c

U
p 

If surface is perfectly reflecting, the momentum change of the

wave is double, consequently, the momentum imparted to the

surface is also doubled.

The force exerted by an electromagnetic wave on a surface 

may be related to the Poynting vector

F


p 

U  


SA


S
 u 

A At Act

Ac c

24

Momentum and Radiation Pressure (II)

The radiation pressure at normal incident is

F  


S  
 u A c

Examples: (a) the tail of comet, (b) A “solar sail”
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Hertz’s Experiment

When Maxwell’s work was published in 1867 it did not receive

immediate acceptance. It is Hertz who conclusively

demonstrated the existence of electromagnetic wave.

26

The Electromagnetic Spectrum

Electromagnetic waves span an immerse range of frequencies,

from very long wavelength to extremely high energy r-way with

frequency 1023 Hz. There is no theoretical limit to the high end.
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Mainly Heating Effect in Micro/mm-Wave Spectrum

28

Windows for Research and Application Opportunities
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Spectrum to Be Exploited

30


