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Sgnals and systems overview 6

What is Signal?

It is representation of physical quantity (Sound, temperature, intensity, Pressure, etc..,)
which varies with respect to time or space orindependent or dependent variable.

or

It is single valued function which cames information by means of Amplitude,
Frequency and Phase.

Example: voice signal, video signal, signals on telephone wires etc.
X(t) = ASin{wt + ¢)=A Sin(Znft+ ¢) x(t)
time
Where A= Peak Amplitude ]/ |
f= FrEl:lLIEﬂw:.T T ime Period \ /\ /\ /\ >
¢ = Phase angle / \/ \/ \/ \/

Angular Frequency w = 2mf ( Linear Frequency)




Signals and systems overview

Signal with different Phases, Ampilitudes and Frequencies
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Classification of Signals

Types of Signals with respect to no. of variables or dimensions

One Dimensional or 1-D Signal: If the signal is function of only one variable or If

Signal value varies with respect to only one variable then it is called “One
Dimensional or 1-D Signal”

Examples: Audio Signal, Biomedical Signals, temperature Signal etc.., in which
signal is function “time”
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Classification of Signals

Two Dimensional or 2-D Signal: If the signal is function of two variable or If Signal
value varies with respect to two variable then it is called “"Two Dimensional or 2-D
Signal”

Examples: Image Signal in which intensity is function of two spatial co-ordinates “X”
& “Y"i,.e I(X,Y)

Colorimage

Three Dimensional or 3-D Signal: Ifthe signal is function of | ™ eeeeatiielil
three variable or IfSignal value varies with respect to three |
variable then itiscalled “Three Dimensional or 3-D Signal”
Examples: Video Signal in which intensity is function of two
spatial co-ordinates "X” & "Y"” and also time “t" i.e v(x,y,t)




Classification of Signals
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Types of Signal with respect to nature of the signal
Contin s Time Signal (CTS) or Analog Signal :

If the signal values continuously varies with respect to time then it is called "Continuous Time
Signal (CTS) or Analog Signal . It contains infinite set of values and it is represented as
shown below.

Digital Signal: If the signal contains only two values then itis called “Digital Signal”.
Discrete Time Signal (DTS):

If signal contain discrete set of values with respect to time then it is called "Discrete Time
Signal (DTS)". It contains finite set of values. Sampling process converts Continuous time
signal in to Discrete time signal.

T Lot X(¢) ‘

DT Siﬁml o T




Representation of Discrete Time Signal (DTS)
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A discrete-time signal x(n) is a function of an integer variable n.In the DS processor, the signal is represented by the discrete
encoded values with a finite precision.

x(n)

Y(0) x(1)

l uT:» ...... 5o -‘;’f;"n=1§ Pl =2 1012345
3 x(n) =1{4, forn=
e 0 clsewhere Wl 0 00T 67100
X(3)
Functional representation Tabular representation

Graphical representation of a discrete-time signal x(n)

) =400:0, 1.2, 1,0,0,..-3 infinite — duration signal
x(n)={0,-2,1,4,-1,} finite — duration signal

Sequence representation (bold or arrow for origin n=0)

Mathematically a discrete-time signal x(n) can be determined by

x(n) = x()|¢=nr = x(nT)




Basic Types of Signals
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Unit Sep Function

Unit step function isdenoted by u(t). Itis defined as u(t) =1 when t >0
and U Owhent<0O

1

0O

~*

It isused as best test signal.
Area under unit step function is unity.




Basic Types of Signals

> Unit Impulse Function

Impulse function isdenoted by o(t). and itisdefined as o(t) ={0; t #0

RO -
Al f—oo d(t)dt = u(t)
L =50

o t=0}

Lot gl 3
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Basic Types of Signals

Ramp Signal

Ramp signal isdenoted by r(t), and itisdefined as r(t) = {f) Zig
. Tt
2 /u(t):/lztzr(t)
1 dr(t)
r
ult) =
0 1 2 t ( ) dt

Area underunit ramp is unity.

14




Basic Types of Signals
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Parabolic Signal
Parabolic signal can be defined as x(t) = {t2/2 t=>0

0 t<0
t2
L X(1) / / / (t)dt = / tdt = B = parabolicsignal
“a(t)
= u(t
u(t) = dt2
> dx(t
0 t = o(t) = 20




Basic Types of Signals

Signum Function

Signum function isdenoted as sgn(t). Itis defined as sgn(t) = {

A sgn(t)

1
O
—1

L = 0
t — 0O
t <<= 0O

16




Basic Types of Signals

Exponential Signal
Exponential signal isin the form of x(t) = eat
The shape of exponential can be defined by a.
Casei:ifa =0 — x(t) =el0=1

Caseii:ifa<0i.e. -ve then x(t) =e—at,
The shape iscalled decaying exponential.

Case iii: if a> 0 i.e. +ve then x(t) =eat, $x()

The shape iscalled raising exponential. J
— |1

+ J([t]

x(t)

17




Basic Types of Signals

Rectangular Signal
Let itbe denoted asx(t) and itisdefined as

r
0 =Arec [] ex4rect 7]
a X(t) A Xt)
A 4

-T/2 T/2 t -;




Basic Types of Signals

Triangular Signal A= A [1 _g 30 = A [1 _ |;1‘
Let itbe denoted as x(t), i .
M ;
- . - T T )I 5 | 5 }t
Sinusoidal Signal

Sinusoidal signal is in the form of x(t) =A cos(w0=x¢) or A sin(w0+¢)

»X(t)

A A[/ o / ;’f AN / \"‘u
=/ v \/ 7\

-

Where T0 =2r1/w0

/
/

A

>
t
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Classification of Signals

Signals are classified into the following categories:
Continuous Time and Discrete Time Signals
Deterministic and Non-deterministic Signals
Even and Odd Signals
Periodic and Aperiodic Signals
Energy and Power Signals

Real and Imaginary Signals




Classification of Signals

Continuous Time and Discrete Time Signals

A signal is said to be continuous when itis defined for all instants of time.

/\ /\

M

Amplitude

/ \ ,-'I/-\\ j

VARV

H\ jfl x\ /_f time

A signal is said to be discrete when itis def

aip

ined at only discrete instants of time.

is

discrete time

21




Classification of Signals
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Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any
instant of time. Or, signals which can be defined exactly by a mathematical formula are
known as deterministic signals. )

A signalis said to be non-deterministic if

there is uncertainty with respect to its value voltage

at some instant of time. Non-deterministic signals )\-x/\f\g?“‘-/w
are random in nature hence they are called 2 h

random signals. Random signalscannot be f,/

described by a mathematical equation. 7 time

They are modelled in probabilistic terms.



Classification of Signals

Even and Odd signals

A signal is said to be even when it satisfies the condition x(t) = x(-t)
Example 1:t2, t%... costetc.

Let x(t) = t2

X(-t) = ()2 =t2 =x(t)

~ t2iseven function

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function.
X(t)

L

A

>
T/2 T/2 t

A signal is said to be odd when it satisfies the condition x(t) = -x(-t)




Classification of Signals

Periodic and Aperiodic Signals
A signal is said to be periodic if it satisfies the condition x(t) =x(t +T) or x(n) =x(n + N).
Where, T=fundamental time period,

1/T=f =fundamental frequency.

AX(t)
- /
VAN /\
;’f k\\ I/ X Jf’ a’f \\ >
-A ff \/ \// \/ "U"f t
«1To o

The above signal will repeat for every time interval TOhence it is periodic with period TO0.

24




Classification of Signals

Energy and Power Signals
A signal is said to be energy signal when it has finite energy.

o0
Energy E = / x? (t)dt
— 00

A signal is said to be power signal when it has finite power.

1 ? i
Power P = lim — / z” (t)dt
T— o0 T -7

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be
neither energy nor power signal.

Power of energy signal =0 and Energy of power signal = CO




Classification of Signals

Real and Imaginary Signals
A signal is said to be real when it satisfies the condition x(t) =x*(t)

A signal is said to be odd when it satisfies the condition x(t) = -x*(t)
Example:
If x(t)=3 then x¥(t)=3*=3, here x(t) isa real signal.

I x(t)= 3jthen x*t)=3j* =-3j =-x(t), hence x(t)isa odd signal.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal,
real part should be zero.




Basic Operations on Signals

There are two variable parameters in general:
Amplitude
Time
The following operation can be performed with amplitude:
Amplitude Scali
C x(t)isa amplitude scaled version of x(t) whose amplitude isscaled by a

factor C.

A2 x(t)
" 4 0.5 x (t)
xit

L4
L 4
ki

27




Addition of two signals is nothing but addition of their corresponding amplitudes
can be best explained by using the following example:

10

As seen from the previous diagram,

-10 <t <-3amplitude of z(t) =x1(t) +x2(t) =0 +2 =2
-3 <t <3 amplitude of z(t) =x1(t) +x2(t) =1 +2 =3
3<t<10amplitude of z(t) =x1(t) +x2(t) =0+2 =2

. This




subtraction of two signals is nothing but subtraction of their corresponding amplitudes.

Thiscan be best explained by the following example: i
1
| .
3 3
> 1 x2 (t)
10 10 >t
As seen from the diagram above, sz
-10 <t <-3 amplitude of z (t) =x1(t) -x2(t) =0-2 =-2 |
_3 <t<3amp||tUde OfZ(t)=X1(t)'X2(t)=1'2='1 -10 _% | 1 3 10 =

3<t<10amplitude of z (t) =x1(t) -x2(t) =0-2 =-2




Basic Operations on Signals

Multiplication of two signals is nothing but multiplication of their corresponding

amplitudes.
Thiscan be best explained by the following example:

As seen from the diagram above,

-10 <t <-3amplitude of z (t) =x1(t) xx2(t) =0 x2 =0
-3 <t <3 amplitude of z (t) =x1(t) -x2(t) =1 x2 =2
3<t<10amplitude of z (t) =x1(t) -x2(t) =0 x2 =0

-10

-10

5

X1 (t)

Az (1)

10




Basic Operations on Signals

The following operations can be performed with time:

Time Shifti

X(t £t0) is time shifted version of the signal x(t).

X (t +t0) —negative shift

X (t - t0) —positive shift

fu

x(t) |

/\

X(t-t,) |

X(t +t,) |

L

L

31




Basic Operations on Signals

X(At) is time scaled version of the signal x(t). where A is always positive.
|A| >1 - Compression of the signal
|A| <1 — Expansion of the signal

s

x(t) | x(2t) x(t/2) ]

-2 2 1| 1 -4

Note: u(at) = u(t) time scaling isnot applicable for unit step function.
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X(-t) isthe time reversal of the signal x(t).

X(t) X(-)




Basic Operations on Signals

Convolution: Convolution between two continuous time signals can be written as

—-.—-“ (o —" )= 0ROz rht-ndrz ([ h(-1)d

X
T=-1 T=--1&
‘ h (t)

The following operations are required to compute convolution
Time reversal
Time Shifting ( Delay & Advance)
Signal Multiplication
Integration

Note: F two signals are finite duration then Graphical Method is used and Else Function
Method is employed to compute Convolution




&) System Definition

What is System?

System is a device or combination of devices, which can operate on signals and
produces corresponding response. Input to a system is called as excitation and
output from itiscalled as response.

For one or more inputs, the system can have one or more outputs.
Example: Communication System

Input  «—— —» Qutput
Or «— System — o
Excitation € —* Response




Classification of Systems

Systems are classified into the following categories:
linearand Non-linearSystems

Time Variant and Time Invariant Systems

linear Time variant and linear Time invariant systems

Static and Dynamic Systems

Causal and Non-causal Systems

Invertible and Non-Invertible Systems

Stable and Unstable Systems




Classification of Systems
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A system is said to be linear when it satisfies superposition and homogenate principles. Consider two

systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

Tlalxi(t) +a2 x2(t)] =al Tx1(t)] +a2 Mx2(t)]
~Tl@alx1(t) +a2x2(t)] =alyl() +a2y2(t)

From the above expression, is clear that response of overall system is equal to response of individual
system.

Example: y(t) = x2(t)
Solution:
yl (t) =Tx1(t)] = x12(t)
y2 (t) =Tx2(t)] = x22(t)
Tlalx1(t)+a2x2(t)]=[al1x1(t)+a2x2(t)]?

Which isnot equal to al y1(t) +a2 y2(t). Hence the system issaid to be non linear.




Classification of Systems

A system is said to be time variant if its input and output characteristics vary with time.
Otherwise, the system is considered as time invariant. The condition for time invariant system is:

y (n, t) =y(n-t)
The condition fortime variant system is:
y (n,t) #y(n-t)
Where vy (n,t)=Tx(n-t)] =inputchange
y (n-t) =output change
Example:
y(n) =x(-n)
y(n, t) =Tx(n-t)] =x(-n-t)

y(n-t) =x(-(n-t)) =x(-n +t)
~y(n, t) #y(n-t). Hence, the system is time variant.




Classification of Systems

Ifa system is both liner and time variant, then itis called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant (LTI)
system.

Stati | ic Syst
Static system is memory-less whereas dynamic system isa memory system.
Example 1: y(t) =2 x(t)

For present value t=0, the system output is y(0) = 2x(0). Here, the output isonly dependent
upon present input. Hence the system is memory less or static.

Bxample 2: y(t) =2 x(t) + 3 x(t-3)
For present value t=0, the system output is y(0) = 2x(0) + 3x(-3).

Here x(-3) is past value for the present input for which the system requires memory to get
this output. Hence, the system isa dynamic system.




Classification of Systems

A system is said to be causal if its output depends upon present and past inputs, and does
not depend upon future input.

For non causal system, the output depends upon future inputs also.
BExample 1: y(n) =2 x(t) + 3 x(t-3)
For present value t=1, the system output isy(1) = 2x(1) + 3x(-2).

Here, the system output only depends upon present and past inputs. Hence, the system is
causal.

Example 2: y(n) =2 x(t) + 3 x(t-3) + 6x(t + 3)

For present value t=1, the system output isy(1) =2x(1) + 3x(-2) +6x(4) Here, the system
output depends upon future input. Hence the system is non-causal system.




Classification of Systems

A system is said to invertible if the input of the system appears at the output.

X(t)
— hff) —
Y(S) =X(S) H1(S) H2(S)

ha(f)
Invertible System

y(t) =x(t)
—

=X(S) H1(S) - 1(H1(9))
Snce H2(S) =1/( H1(S) )
=~ Y(S) =X(S)
— y(t) =x(t)
Hence, the system isinvertible.
If y(t) #x(t), then the system is said to be non-invertible.

a1




Classification of Systems
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Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a
bounded input, if the output isunbounded in the system then it is said to be unstable.

Note: Fora bounded signal, amplitude is finite.
Example 1:y (t) =x2(t)

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) =bounded
output.

Hence, the system isstable.
Example 2:y (t) = (t)dt

Let the input is u (t) (unit step bounded input) then the output y(t) = fu(t)dt =ramp signal
(unbounded because amplitude of ramp is not finite it goes to infinite when t —
infinite).

Hence, the system isunstable.




Convolution and correlation of signals

Convolution

Convolution is a mathematical operation used to express the relation between input and ouiput of an
LTI system. It relates input. output and impulse response of an LTI system as

y(t) — x(£) = h(e)

where y (1) = output of LTI
x () = input of LTI
h () = impulse response of LTI
There are two types of convolutions:
© Continuous convolution

= Discrete convolution

Continuous Convolution

Input LTI SYSTEM Output
> h(t) >
x(t) yvit) = x(t) * h(t)

y(t) = =(2) = (%)

= S 2(DR(E — )dr

= f_ozc x(t — T)Yh()dr




Convolution and correlation of signals

Discrete Convolution

Input LTI SYSTEmMnm Output
- h(n) 3 —
x(n) vin) = x(n) = hi(n)
() = x(72) = 2 (72)
— =22 __ax(R)R(r — k)

(or)
— =2 __w=(n — R)AR(E)

By using convoluifion we can find zero siate response of the sysiem.

Deconvolution

Deconvolution is reverse process o convolution widely used in signal and image processing.
Properties of Convolution

Commuiative Property

a1 (E) = xa2(t) = x2(F) = 21 ()

Distributive Property

231 (F) = [=2(F) + x3(F)] = [x1(F) = x2(F)] + [x1(¥) = =3 (£)]




Convolution and correlation of signals

Associative Property

() = [a(t) = xwz(f)] = [@Ei1(E£) = axa(Et)] = az(t)

Shiafttimg Property

a1 () =+ @ (t) — (L)

a1 () = aa(t — to) = (¥ — £a)

..‘II'_':]_'[:t —_— tﬂ} e :L’g[]!i} —— y(t — ]!qu.::l

it — Fp) = w2 — 1) — w(t — o — 1)

Convolution with Iimpulse

w1 () = () — =(t)

a1 (T) = S(E — o) = ®(t — La)




Convolution and correlation of signals

Convolution of Unit Steps

2w(E) = w(t) = ()
w(t — T} )= 2t — ALY = r(t — T — T5)
w7} = we(rr) = [rz 4+ 1]ze(72)

Scaling Property

IT () = A(t) = ()

then @w(at) = h(at) = ﬁy{cst]

Ditferentiation of Output
it 2(t) = a(t) = ()

dul) _ d=(£)

themn =y == =y

= Fut)

I

e L
At

ARz
oz

—— ;I!{f:::l e




Convolution and correlation of signals

Note:
Convolution of two causal sequences is causal.
Convolution of two anti causal sequences is anti causal.
Convolution of two unequal length rectangles resulis a trapezium.
Convolution of two equal length rectangles resulis a triangle.

A function convoluted itself is equal to integration of that funciion.

Example: You know that w(t) = u(t) = r(t)
According to above note, u(t) = u(t) = [u(t)dt = [ 1di =t = r(¢)

Here, you get the result just by integrating () .

47




Convolution and correlation of signals

Limits of Convoluted Signal

If two signals are convoluted then the resulting convoluted signal has following range:
Sum of lower limits < t < sum of upper limits

Ex: find the range of convolution of signals given below

x1 () T x(tr2) T

-1 2 -2 2

Here. we have two rectangles of unequal length to convolute, which results a trapezium.
The range of convoluted signal is:

Sum of lower limits < t < sum of upper limits

—1 + —2 == £ = 2+ 2

—3 =t = 4

Hence the result is trapezium with period 7.




Convolution and correlation of signals

Area of Convoluted Signal

The area under convoluted signal is given by A, = A .Ap

WwWhere A = area under input signal
A = area under impulse response

.Iﬁi.-:'.- = area under output signal

Proof: w(t) = [TC_wx()h{(t — 7)dr

Take integration on both sides

Swtydt = [ 75 x(+)h(t — T)drdt
= Ja(7)dr ff’; At — +)dt

e know that area of any signal is the integration of that signal itself.

R Ay = ﬂa: ﬂh




Convolution and correlation of signals

DC Component
O component of any sigmal is given by

area of the signal
Ppericd of the sigral

I component —

Ex what is the doc component of the resultant comnvoluted sigmnal given elow?

., e

21 () >t £ 2y
1 | 1

-1 2 2
Here area of X401 = length = breadith = 1 = 3 = 3
Area Of X=(1) = length = breadih = 1 = 4 = 4
areas of conmnvoluted sigmnal = area of (1) = area of X=(1)
= 3 = 4 = 12
Duration of thhe convoluted sigmnal = sum of lower limits < T = sum of upper limits

= -1 + 2 =t = Z2+=>F
= 3 = 1T = 4
Pericd=7T

aresa of the =signal

peric-d of the sigrmal

-7 Do component of the convoluted signal =




Convolution and correlation of signals

i. To calculate discrete linear convolution:

Convolute two sequences x[n] = {a.b.c} & h[n] = [e.T.g]

a b C
e| ea " eb —ec
gl ga ~gb gec

Convoluted output = [ ea. eb+fa. ecsTb+ga. Tfc+gb. gc]

Note: if any two sequences have m. n number of samples respectively. then the resulting convoluted
sequence will have [m+n-1] samples._

Example: Convolute two sequences X[n] = {1.2.3} & h[n] = {-1.2.2}

<| 1 2 3
=1 P P
2 =2 ~4a ~6
2 =2 a6

Convoluted output y[n] = [ -1. -2+2_ -33+4+2_  6+4_ 6]
=[-1. 0. 3. 10. 6]

Here x[n] contains 3 samples and h[n] is also having 3 samples so the resulting sequence having
3+3-1 = 5 samples.

51




Convolution and correlation of signals

52
il. To calculate pericodic or circular conwvolution:

Feriodic conwolution is walid Tor discrete Fourier transtfornmm. To calculate pericodic comnvoalution all

the
samples must e real. Pericodic or circular comnwolution is also called as fast comwvolutiom.

IT two sequences of length m, m respectively are convoluted using circular comvalution then resultimg
Sequence hawing max [m.on] samples.

Ex- conwvolute two sequences x[n] = {1.2.3} & h[n] = {-1_.2_2} using circular convolution
1 2 3
-1 -1 -2 =3
21 =2 "L-:trf & o
2 2 “a 5

Mormal Convoluted output y[n] = [ -1, —-2+2 -3+4+2_ 6+4_ 6]

= [-1, O, 3, 10, &]

Here =[] conmntains 3 samiples and h[n] also has 3 samples. Hence the resulting sequence obtaimed
by circular comwolution must hawve max[3.3]= 3 samples.

HMow o get

pericodic comvolution result, 1st 3 samples [as the period
same mext hwo samples are addaed o 1st samples as showmn Ebeelow:

-4 O 3
—+ 10 S

i=s 3] of mnoarmal convolution is

= 5 3

-T- Circular convolution result  w[rn] = [9 L& 2]




Convolution and correlation of signals

— Correlation

Correlation is a measure of similarity between two signals. The general formula for correlation is
R
f @y (E)ea(t — v )dt
—

There are two types of correlation:
= Auto correlation

= Zros correlatiomn

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similarity

between a signal & its time delayed version. It is represented with R{ +— ).

Consider a signals x(t). The auto correlation function of x(t) with its time delayed version is given by

RBi.(7) = R(+) = Lm a(t)x(t — ) dit [+wve shift]

_ L T a(t)ae(t + w)dt [-ve shift]

wWhere -+ = searching or scanning or delay parameter.




Convolution and correlation of signals

. Properties of Auto-correlation Function of Energy Signal

Auto correlation exhibits conjugate symmetryie R({( — )= R*(- T )

Auto correlation function of energy signal at origin ie. at -+ =0 is equal to total energy of

that signal. which is given as:

R@O=E= [ |=@)|*>dt
- 1

Auto correlation function oo=

Auto correlation function is maximumat - =0 ie|R({( 7 )| =R OV 7T

= Auto correlation function and energy spectral densities are Fourier transform pairs. i.e.

F.T[R(7)] = ¥(w)
W(w) = f_ozo R(T)e_j“’rd'r

- R(7) = =(7) = x2(—7)




Convolution and correlation of signals
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Auto Correlation Function of Power Signals
The auto corrslation function of pericdic power signmal with pericod T is given by
g
A 1i 1 = T T i
T) = ity — ac b7 il S i
=
Froperties
Auto correlation of power signal exhibits conjugate symmetry ie. R(+) = R = {(—7)
T Auto correlation function of power signal at +— = 0 (at origin)is equal to total power of that

signal_ ie.

R(0) = p

Auto correlation function of power signal ooX .

Auto correlation function of power signal is maximum at +— = 0 i.e_,

| R({)| = R(0) ¥+

Auto correlation function and power spectral densities are Fourier transform pairs. i.e_|

F.T[R(+)] — s(w)




Convolution and correlation of signals

Density Spectrum

Let us see density spectrums:

Energy Density Spectrum

Energy density spectrum can be calculated using the formula:s

B= [ 1=

[

Power Density Spectrum

Power density spectrum can be calculated by using the formula:

P — 32 __|Cn|®




Convolution and correlation of signals

o Cross Correlation Function

Cross correlation is the measure of similarity between two different signals.

Consider two signals xq(1) and x=(1). The cross correlation of these two signals Ri>(7) is given by

Ris(+) = L: x1(t)xa2(t — 7)) dE [+wve shift]

— Loo x1(t + Nx=() dt [-ve shift]

If signals are complex then

Ris(+) = L: x1(B)x3(t — ) dt [+ve shift]
— /;Oo x:(t + ")x35(t) dt [-ve shift]
Roi(+) = L: xa(t)xF(t — ) dt [+wve shift]

_ Lm Ol ey O [ve shift]




Convolution and correlation of signals

Properties of Cross Correlation Function of Energy and Power Signals

-

Auto correlation exhibits conjugate symmetry ie. Rjs(7) = R3,(—7)

Cross correlation is not commutative like convolution i.e.

Ris(7) &= Roy (—‘7')

If Ri2(0) = 0 means. if f_ogo x1(t)x3(t)dt = 0 . then the two signals are said to be

orthogonal.
T

For power signal if limsr .- %f_?r z(f)x*(f)dt then two signals are said to be
= =

orthogonal.

Cross correlation function corresponds to the multiplication of spectrums of one signal to the
complex conjugate of spectrum of another signal._ie

Ris(7) «—— X3 (w) X3 (w)

This also called as correlation theorem.
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Convolution and correlation of signals

Parseval's Theorem

Parseval's theorem for energy signals states that the total energy in a signal can be obtained by the
spectrum of the signal as

E= 2 [% 1 X(w)do

Note: If a signal has energy E then time scaled version of that signal x(at) has energy E/a.
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Analogy between vectors and signals

There isa perfect analogy between vectorsand signals.
Vector

A vector contains magnitude and direction. The name of the vector is denoted by
bold face type and their magnitude isdenoted by light face type.

Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in
the following diagram. Let the component of V1 along with V2 is given by C12V2.
The component of a vector V1 along with the vector V2 can obtained by taking a
perpendicular from the end of V1 to the vector V2 as shown in diagram:

Vi

The vector V1 can be expressed in terms of vector V2 '

V1i=C12V2 +Ve

Where Ve isthe errorvector. ' >
CiaV2 Ve




Analogy between vectors and signals

But this is not the only way of expressing vector V1 in terms of V2. The alternate
possibilities are:

V1=C1V2+Vel

W

v

Ve

I‘u"i

V2=C2V2+Ve2

CaVz  Vz

The error signal is minimum for large component value. If C12=0, then two signals are said to be
orthogonal.

Dot Product of wo VectorsV1.V2 =V1.V2cosb
SUB:ES UNIT:2
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Analogy between vectors and signals

62

The error signal is minimum for large component value. IfC12=0, then two signals are said to

be orthogonal.
Dot Product of Two Vectors
V1.V2=V1.V2cosH6
0 =Angle betweenV1and V2V1.V2 =V2.V1
From the diagram, components of V1 a longV2 =C 12V2

Vi. Vs
Vo =012 V5
Vi. V.
:}Clg: L 72

V5




Analogy between vectors and signals

Signal
The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t).
Similar to vectors, you can approximate f1(t) in terms of f2(t) as

f1(t) =C12 f2(t) +fe(t) for (t1 <t <t2)

= fe(t) =f1(t) —C 12 f2(t)

One possible way of minimizing the error is integrating over the interval t1 to t2.
1 tz
ftl [f. (D]t

to — &

1
to — 1

ft [f1(8) — Cuafa(t)]d

However, this step also does not reduce the error to appreciable extent. Thiscan be corrected by taking

the square of error function. t
| e = i L [fe)at

= tgitl :2 [fe(t) — Crafo]?dt




Analogy between vectors and signals

Where € is the mean square value of error signal. The value of C12 which minimizes the
error, you need to calculate de/dC12=0

= dc(‘il 5 —lz, ftf [f1(t) — Crafa(t)]?dt] =0
tl ft, dq I ) — o —4_2f1(t)Crafa(t) + Eg—mf.f (t)CZdt = 0

Derivative of the terms which do not have C12 term are zero.

> [ —2f1(t) fo(t)dt + 2C1a [ [f3(1)]dt = 0

IRFACTACY | | |
If Clg = component is zero, then two signals are said to be orthogonal.
L? f(t)dt

Put C12 =0to get condition fororthogonality.

R ACIACE

to
Qi i fo t1 fi(t)fo(t)dt =




Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider
a three dimensional vector space as shown below: 3

Wileeeeoooan i A(X1Y1, £4)

ra

Z
Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the
direction of X, Y, Z axis respectively. Since these unit vectors are mutually orthogonal, it
satisfies that

Vx.VX = Vy.Vy S Vz.VZ =3

1 &=
Ve W= W W= "Vip Wi =0 ‘/:"‘4’:{

0 a F#*b




Analogy between vectors and signals

The vector A can be represented in terms of its components and unit vectors as

A=X\Vy+ MWW +2V5eeeeeiinnnnn (1)

Any vectors in this three dimensional space can be represented in terms of these three unit
vectors only.

If you consider n dimensional space, then any vector A inthat space can be represented
as
A=X\Vx +YV\Wy + Z1Vz+...+N Vy..... (2)

As the magnitude of unit vectors is unity for any vector A
The component of A along x axis =A.VX

The component of A along Y axis=A.VY

The componentof A along Zaxis=A.VZ

Similarly, for n dimensional space, the component of A along some G axis
=AVG (3) SUB:ES UNIT:2




Analogy between vectors and signals

Substitute equation 2 in equation 3.

= CG = (X1iVx + YiW + Z1Vz+...+G1 V... + N1 V) Vi
= X, VxVg + iV Ve + Z1VzVa+...+G1 Vg Va. .. +N VN Vg
=Gy since VeV =1

IfVeVe #1ieVgVg =k

AVg = G1VgVe = G1K

(AVg)
=

Gy =
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Analogy between vectors and signals

Orthogonal Signal Space

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval
t1 to t2. As these functions are orthogonal to each other, any two signals xj(t), xk(t) have
to satisfy the orthogonality condition. i.e.

123
/ zj(t)xr(t)dt = 0 wherej # k
iy

ta
Let[ x3 (t)dt = ky
1

Let a function f(t), it can be approximated with this orthogonal signal space by adding the
components along mutually orthogonal signals i.e.

f(t) = Ciz1(t) + Coza(t)+. . . +Crxn(t) + fe(t)
= X" Crz:(t)

f(t) = £(t) — L7, Crz,(2)




Analogy between vectors and signals

Mean sqaure error € = toitz “2[f.(t)]2dt

flt C,z,(t)])%dt
t2—t>/l £t - Z E

The component which minimizes the mean square error can be found by

ds B de L des _ 0
dC;  dC, —"'_dC’k B
Let us consider 9 de =)
¢t [0 - m, O 0P = 0
- ' rLp =
dCy, "ts — 1 4 =3

All terms that do not contain CKk is zero. i.e. in summation, r=k term remains and all other terms are zero.

ts ts
/ 2f()x(t)dt + 2C, / [wz(t)]dt =0
ty Ly

[ F@@i(tydt

= Cljy =
int)? rz(f)df

ts
e f J()xp(t)dt = Cr Ky,
t




Analogy between vectors and signals

The average of square of error function fe(t) is called as mean square error. It is denoted
by € (epsilon).

s =gt — [ [f-(D)]%ae

= - .2 [f-(t) — =, Crz (D)]%dt

= L [[2[Ff2@®)]dt + =2, C? [* zZ(t)dt — 227, C, [,? =, () f(t)dt
You know that C7? ft? 22 (H)dt — C; f;? xz; () f(d)dt = C2Z K,
o 7 '
e = ——[[,2[F2(®)]dt + T, CP K, — 2" ,C?K,]

to —i,

= (L2 [f2(8)]dt — =7, CRK,]

2—t1

—L_[[2 [f2()]ldt + (C2K1 + C2Ksz+. .. +C2K,)]




Fourier Series
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To represent any periodic signal x(t), Fourier developed an expression called Fourier
series. This is in terms of an infinite sum of sines and cosines or exponentials. Fourier
series uses orthoganality condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x (t) =x (t +T)or x (n) =x (n +N).
Where T=fundamentaltime period,

w0=fundamental frequency =2n/T

There are two basic periodic signals: x(t)=coswO0t(sinusoidal) & x(t)=ejw0t(complex
exponential)

These two signals are periodic with period T=2r1/w0
A set of harmonically related complex exponentials can be represented as {¢pk(t)}

ailt) = {e"!} = {* T Iwherek =01, £2..m ... (1)

All these signals are periodic with period T
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According to orthogonal signal space approximation of a function x (t) with n, mutually

orthogonal functionsis given by
Cx:-.

Where ak =Fourier coefficient =coefficient of approximation.
This signal x(t) is also periodic with period T.
Equation 2 represents Fourier series representation of periodic signal x(t).
The term k =0 is constant.
The term k=1 having fundamental frequency w0, is called as 1st harmonics.

The term k=x2 having fundamental frequency 2w0, is called as 2nd harmonics, and so
on...

The term k=xnhaving fundamental frequency nw0, is called as nth harmonics.




Denving Fourier Coefficient
We know that

=28 ™, ... (1)

Multiply e—jnw0t on both sides. Then

o0
m(t)e—jnth — E akejkat ) e—jnth

k=—o0
Consider integral on both sides.

T . T (x' . .
/ :L'(t)e"kw“t dt — / § : ake_'/kw(,t . e-an(,fdt

0

0 k=—o0
T oo
0 k=—o0c
%7 5y : o0 s 1l Y
/ z(t)e*otdt = > a / elh—m)wot gy . (2)
0 R o 58 <0
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Fourier Series
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by Euler's formula,

T T T
/ ellk—m)ant iy — / cos(k — n)wydt +j/ sin(k — n)wyt dt
0 0 0

T _
/ gilknleat gy — {T E=0
0 0 k#n

Hence in equation 2, the integral is zero for all values of k except at k =n. Put k =n in

equation 2.
:>/ z(t)e "tdt = a, T

’ —anot dt
o = /

==y = T (’_-7 Rt g

Replace n by k

sot(t) = Z ayelF—m)wot

k=—o0

1 7.
wherea; — T/ e Ihwot g
0




Fourier Series Properties

Linearity Property

3 fourier series coefficient y ¥ fourier series coefficient :

If 2(t) ¢ » fen &Y(t) ¢ :
then linearity property states that
a:z:(t) + by(t) <fomrzer series coefficien > afm + bfyn

Time Shifting Property

: fourier series coe fficient \

If 2(t) < > fon

then time shifting property states that

fourier series coe fficient

z(t — tp) 4 y gl f

fin
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Fourier Series Properties

Fl‘equency Shifting PI‘Opel‘ty If :c(t) (four'ier series coefficient " fm

Time Reversal Property

Time Scaling Property

then frequency shifting property states that

ednwoto ( t) < Jourier series coe fficient

> fm(n—no)

fourzer series coefficient e

It m(t) < fa:n

then time reversal property states that

ourier series coefficient o f
= 4 S—

If x(—t) <

LTL

fourier series coe fficient

|f£l!(t> ¢ ? f:m

then time scaling property states that

? f:m

Time scaling property changes frequency components from wy to awy.

) faurzer series coe ffzczent

If z(at
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Fourier Series Properties

Differentiation and Integration Properties
fourzer series coef ﬁczent

f a(t) ¢ — for

then differentiation property states that

dz(t) fourzer series coeffwze7zt 2
It a2 > Jnwg- fan

& integration property states that

I f:c(t)dt {fourier series coefficient X

Jrewg

Multiplication and Convolution Properties

£ ( t) fourier series coe fficient fourier series coefficient
T y:

¥ Jan &y(t) < ? fyn

‘hen multiplication property states that

B(t). y(t) <fou:rz'er series coefﬁcient> Tfm g fyn

& convolution property states that

e(t) * y(t) < ¥ Lne b

fourier series coe fficient
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Fourier Series Properties
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Conjugate and Conjugate Symmetry Properties

5 fourier series coefficient 1 f
xn

If 2(t) 4 .

Then conjugate property states that

fourier series coefficient f ™
N 4 aTrn

x * ()

Conjugate symmetry property for real valued time signal states that

f*a:n. = f—;rn

& Conjugate symmetry property for imaginary valued time signal states that

f *pn = —f—am




sinnw0t and sinmwO0t are orthogonal over the interval (t0,t0+2n1w0). So sinwO0t,sin2w0t forms
an orthogonal set. Thisset is not complete without {cosnwO0t }because this cosine set is
also orthogonal to sine set. So to complete this set we must include both cosine and sine
terms. Now the complete orthogonal set contains all cosine and sine terms i.e.
{sinnwO0t,cosnwOt }where n=0, 1, 2...

.. Any function xt in the interval (#g, tg + i—:) can be represented as

x(t) = ag cosDwgt + a; cos lwot + az cos2wgt+. .. +a, cosnwot+. ..
+bp sin Owgt + by sin lwot+-. . . +b, sin nwgt+-. ..
— agp + ai cos lwgt + as cos 2wpt+-. .. +a, cosnwpt+t. ..

+ 67 sin lwgt+-. .. +b, sin nwot+-. ..
S.z(t) = ag + Z[ﬂu cos nwnt + h o= -

The above equation represents trigonometric Fourier series representation of x(t).




Trigonometric Fourier Series

S 2ty - 1k 1 to+T
Where ag = pm = / x(t)dt
J O 1A T Jy
to
ft:"+T x(t) - cos nwytdt
a, —
/. ti" T cos? nwyt dt
T .
5 ft{t;’+ xz(t) - sin nwot dit
53 = T
t‘t)ﬂ' Sill2 ’nthdt

to+T to+T T
Here / cos? nwot dt = / sin? nwot dt — —
ta o 2

2 to+T

Op = - x(t) - cos nwotdt
T Jy

2 lo+T
b, = —- / x(t) - sin nwyt dt
T Jy




Exponential Fourier Series
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Consider a set of complex exponential functions {ejnwnt}(n =i0+1:42...)

which is orthogonal over the interval (t0,t0+7). Where T=2r/w0 . Thisisa complete setso itis
possible to represent any function f(t) as shown below

f(t) = FO ~+ Flejw"'t -+ F2€j2w”t 4. .. ‘{—Elejnw“t 4. ..
F_le‘jwnt + F_.28~j2wnt+. - +F_ne~~jnw"t+. .

= = i Eie™ (b &taty+ T (1)

n=-—oo

Equation 1 represents exponential Fourier series representation of a signal f(t) over the
interval (t0, tO+T).




Exponential Fourier Series

to+ W J'*
- U f(t)(emnt) dt

j;:0+T eJnw,t (ej"*wnt )*dt

ty+1 e
S f(t)e et dt

j;t"+1 e~ Jnwpt gt Jt
0

ft;“*T 1dt T Ji,

to+T — Jnw,t
f(t)e ot dt to+T |
J. . / £()e-Tmat g

1

o+ |
SE == t)e ot dt
. f F(t)e

& 2]
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Consider a periodic signal x(t), the TFS & EFS representations are given below respectively

z(t) = ag + X2, (a, cosnwyt + b, sinnwgt). . . ... (1)

:lt(t) = Ego:_oanejnwnt ag = Fy
= FO -+ Flej“’”‘ + Fgej?“’“t—l— +F e-""“’"'+ an, = El + F—n
F je ¥t L F e aty P e ity by = j(Fpn — F_p)

= Fy + Fi(coswyt + jsinwgt) + Fy(cos2wgt + jsin 2wyt)+. .. +F, (cosnwyt + jsin nwyt)+.

A F_(coswyt - jsinwyt) + F_o(cos gt - jsin2ugt)+... +F_, (cosnwyt - jsinnwgt)+...

| F, = %(av: - jbn)
=By + (R 4 Fy)coswgt + (Fy + Fy) cos gt +5(F; - F.y)sinwgt 4 5B, - F u#Zwo

By = %(an o ]bn)
“o(t)= By + B2 ((Fy + Fop) cosnut + §(F, - Fy ) sinnagt). ... (2)




Continuous Time Fourier Transform

The main drawback of Fourier series is, it is only applicable to periodic signals. There are
some naturally produced signals such as nonperiodic or aperiodic, which we cannot
represent using Fourier series. To overcome this shortcoming, Fourier developed a
mathematical model to transform signals between time (or spatial) domain to
frequency domain & vice versa, which is called 'Fourier transform’.

Fourier transform has many applications in physics and engineering such as analysis of LTI
systems, RADAR, astronomy, signal processing etc.

Consider a periodic signal f(t) with period T. The complex Fourier series representation of
f(t) isgiven as %

fit) = Z aye’ ot

az_cx)




Continuous Time Fourier Transform

Let TL., = A f, then equation 1 becomes
Fll) =5 . HpEl"0, e (2)

but you know that

+T A
= tot" f(t)e kot d¢

Substitute in equation 2.

2= f(t) =30 & [0 f(t)e Tt dp ef2mhAst




Continuous Time Fourier Transform

In the limit as T—oo,Af approaches differential df, kKAf becomes a continuous variable f,
and summation becomes integration

f( ) — lZmT —00 { b=—00 / f ﬂMAﬁ dt] eﬂﬂkAﬂ Af}

y / | / f(t)e R e g

Where Flw] = [[7. f(t)e 72"/t dt]
Fourier transform of a S|gnal

£&) = Flol = [ T f(@)e

Inverse Fourier Transform is

F(t) = /_ " Flw]elt dew




\\)
S o
(o]

1E OF
A
Ed
=
=
THA
$10 200

2, o)
> v,

s X
6 B °
w = i @
> . <
~ %

‘?k <>

oy 2

~LH
7
06 10/ 1 e
wo
.

Fourier Transform of Basic functions

FT of GATE Function

FT of Impulse Function:

X (t)
A
A

>t
-1/2 T/2

Flu] = ATSa(%)

FT[w(t)] = [Joo, 6(t)e F*dt]
=gk 1{. =0

=l =1

Cow) =1




Fourier Transform of Basic functions

FT of Unit Step Function: U(w) - 5(w) 11 /jw

FT of Exponentials:

FT of Sighum Function : ET




Continuous Time Fourier Transform

Any function f(t) can be represented by using Fourier transform only when the function
satisfies Dirichlet’s conditions. i.e.

The function f(t) has finite number of maxima and minima.

There must be finite number of discontinuities in the signal f(t),in the
given interval of time.

It must be absolutely integrable in the given interval of time i.e.

[ | f()] dt < 00
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Fourier Transform Properties

If =(t) &5 X(w)

& y(t) =5 Y(w)
Then linearity property states that

az(t) + by(t) & aX (w) + bY (w)

Time Shifting P e

F[f:z:(t) <£> X(w)
Then Time shifting property states that

5 R
z(t —ty) «— e X(w)




\
€ OF
\\‘o

Fourier Transform Properties

& @, )
§ A ©
2 e £ 2

N ¢

son fo
SE

>
THA ¥O'

1
on fo
s %
i
S
A
$10 20

Ko

H

If 2(¢) e X(w)

Then frequency shifting property states that

ekt (t) & X(w— wp)

Time Reversal Property:
If 2(t) — X(w)

Then Time reversal property states that

2(—1) ¢ X(—=w)
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Then Time scaling property states that :z:(at) X«

If 2(t) 6 X(w)

Then Differentiation property states that

z(¢) E.T
Zt() — jw. X(w)

d*x Y
® > (Jw)". X(w)

dt®

and integration property states that

[z(t) dt+—> 1X( )

F.T

[J--- J2(®) dt «— =X (w)

(jw)”
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I 2(f) ——> X(w)

& y(t) ¢ Y(w)
Then multiplication property states that

o(t).ft) < X() +Y(0)

and convolution property states that

z(t) * y(t) Ly (w). Y(w)

o
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Sampling theorem of low pass signals

Statement of Sampling Theorem:

A band limited signal can be reconstructed exactly if it is sampled at a rate atleast twice
the maximum frequency component in it."

The following figure shows a signal G()

m m —= {1

Figurel: Spectrum of band limited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from
its samples it has to be sampled at a rate fs >2fm.

The minimum required sampling rate fs = 2fm is called “Nyquist rate”.
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Figure 2: (a) Original signal g(t) (b) Spectrum G(w)

dr(t) is the sampling signal with f. = 1/T > 2.

[TENNREINNE

(a) sampling signal 4r(f) (b) Spectrum d7(w)




Sampling theorem of low pass signals

Let g s(t) be the sampled signal. Its Fourier Transform Gs(w) is given by

Fg=(t)) = Flg@)ér ()]
—+oC
— F [g(t) > B@— »nT)]
1 X ma=
- S [G(u,') * 0 E ) O (w — 'n.u;o)]
1 —+ o
Gs(w) - Al E Gw) = 0w — newg)
Gi(w) = Flg(t) + 2g((t) cos(wat) + 2g(¥) cos(2wpt) + -- -]
1 o0
Gs(w) = ? s E - Glw — 1e0g)
GH((i))
QS“)
| | ‘ //\ / TN / \
| | ‘ I | / \\/
um

1
] | i e

Figure 4: (a) sampled signal g<(¢) (b) Spectrum Gs(w)
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. Sampling theorem of low pass signals
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If we = 2y, 1ce., T = 1/2f,,,. Therefore, G4(w) is given by

Ci(w) = % Z Glw — nw,y)

n——=0C
To recover the original signal G'(w):

1. Filter with a Gate function, Ho,,_(w) of width 2w,,.

2. Scale it by T.

C(w) = TG (w)Hyy (w).

LW N
H 2m"n‘(w )
~ AR
yYARNVARN / \
/ \/ N\ |
— 0 (G

Figure 5: Recovery of signal by filtering with a filter of width 2w,




Sampling theorem of low pass signals

Aliasing is a phenomenon where the high frequency components of the sampled signal
interfere with each other because of inadequate sampling ws <wm

Interference of high frequency componengs

Figure 6: Aliasing due to inadequate sampling

Aliasing leads to distortion in recovered signal. Thisis the reason why sampling frequency
should be atleast twice the bandwidth of the signal.




Sampling theorem of low pass signals

In practice signal are oversampled, where fs is significantly higher than Nyquist rate to
avoid aliasing.

— -, 0 w w

Figure 7: Oversampled signal-avoids aliasing
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Here we take the exponential signals to be [Em}where ‘W’is a real nhumber. The
representation is motivated by the Harmonic analysis, but instead of following the
historical development of the representation we give directly the
defining equation.

Let {x[n]} be discrete time signal such that f z[n]l < 0 , that is sequence is absolutely
summable. e

The sequence {x[n]} can be represented by a Fourier integral of the form,

T

IHH]=§II[E‘TH)EF“&{U

Where,

e

I[Ej”) = z r[n]f_j”“

n=-0d
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Equation (1) and (2) give the Fourier representation of the signal.

Equation (1) is referred as synthesis equation or the inverse discrete time Fourier transform
(IDTFT) and equation (2)is Fourier transform in the analysis equation.

Fourier transform of a signal in general isa complex valued function, we can write,
W W W
K%)= Xale") 0"

where [{[## magnitude and ﬂ[?ﬁ) isthe phase.

We also use the term Fourier spectrum or simply, the spectrum to refer to. Thus \X[H“]\ is called
the magnitude spectrum and ﬂ{[gﬂ“) is called_the phase spectrum.

Iln] = %f ( z .I‘[m]e_j"'m) ghivm g

Interchanging the order of integration, -x NI

i!ﬂ] = Z .r[m] (E%fe-l-ju'{ﬂ—m]du)

Mm==04
=N
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Example: Let {z[n]} = {o"u/n]}
Fourier transform of this sequence will exist if it is absolutely summable. We have

_Z 2]l =) lal"

X(e™) = ix[”]e_jw" = ia"u[n]e‘f“’" = i(ae‘j‘” )—" _ 1

11 =—0C n=—oc n=0 1 e (7€_

Jjo -

The magnitude and phase for this example are show in the figure below. where a >0 and a< 0
are shown in (a) and (b).

poa|

1 1 t-a 1
P

—27 —-n

2w
= “ 2w w

+ X&)

a
i o
A <« Xfe*)
\ ﬂ‘” i 7‘\ tan~" {al/v —#)\J/\
2= —= 0 - 2= o v
2w —= o w 2 w
tan {2’ — a9

‘b)\ —tan ' gal1 — a%)
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Example: x[n] = al’, la| <1.

103

{1-ajlt+aj

i
X(e™) = Za "ly[n e — Z a e 4 Z a"e ™
R=—1 =
1
Let m = —n 1n the first summation. we obtain
I(Ejﬂl:}_ Zﬂ'ulﬂ[ﬂ —jom Zﬂm JﬂJJ'H_I_TﬂH — jam
n=—00 n= I:I' ‘
uﬂﬂ”l hh"“l
ae’” 1 1—a’ '
= Jin t — i = 2 "
1—ae 1 —ae 1-2acosm+a




Discrete Time Fourier Transform

Example: Consider the rectangular pulse

L =2 14 ;
=1 B o1 Hm

sine| N, +1/2)

X(jw)=3e"™ = (5.15)

sin(e /2)

This function 1s the discrete counterpart of the sic
function, which appears in the Founer transform of

-, 0 My i
e

VWA

the contimous-time pulse.

- U—ﬂ U 0 v 2T
(5]

The difference between these two functions is that

the discrete one is periodic (see figure) with period of 2.

whereas the sinc function 15 aperniodic.

104




Discrete Time Fourier Transform

For a periodic discrete-time signal,

Jitl',:,rr
n]=e"".
its Fourier transform of this signal is periodic in w with period 2[], and is given

+X

X(e")=) (0~ -2n)

==

105

Now consider a periodic sequence x[n] with period N and with the Fourier series

representation

H2n N)n
1n]= ZHkE?‘I .
k=<N>

The Fourier transform is,
2k
N k

J
-

X (&) = Z 2, 8(0 -

k=-x




Discrete Time Fourier Transform

Example: The Fourier transform of the periodic signal

1 J@gn 1 —J@an = 2”
x[nn]=coson=—e’" +—e 7"  with w, =——.
2 2 3
IS given as
o [ 27 ) J 27 )
X(e’™) =md w_Tl+”6((0+T | — T =@ < T .
\ -— J \ -~ 7/
X{e!™)
1y
ot t |t to -
—2 ‘I‘ —wg O wg 2% w
(27w —wg) (—2w+wy) (27 —wg) (27 +wyg)
Discrete-time Fourier transform of x[n] = COS wyn.
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Example: The periodic impulse train

] = iS[n — AN].

k=

The Fourier series coefficients for this signal can be calculated

Z x[nl]e T i

n=N >

Choosing the interval of summationas 0= n = N —1. we have

&y —

N
The Fourier transform i1s

27k
~ )

X(e™) =%le '




Discrete Time Fourier Transform

x[nj}
. 1
—N 0 N 2N

(a)

x(eiw)

27/N
2_11’ (73)
N

( b)

(a) Discrete-time periodic impulse train; (b) its Fourier transform.
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Discrete Time Fourier Transform

Let {x[n]}and {y[n]} be two signal, then their DTFT is denoted by f[¢*jand. The notation

e} X%

109

is used to say that left hand side is the signal x[n] whose DTFT X[¢) isgiven at right hand side.

1.Periodicity of the DIFT:
The discrete-time Fourier transform is always perfodic in @ with period 2. 1€..

Xl )= x{e”™ )




Discrete Time Fourier Transform

2. Linearity of the DTFT: If x,[n]«— X, (). and x,[n]¢<> X, (™).

then

ax, [1]+ by, [n]«——>aX, (e’ )+ DX, (e')

3.Time Shifting and Frequency Shifting: I *71<—— X"},

then

x[r1 — 11y ]«——> e " X (&%)

ard

Lo RV

x[r]<«——— X (/')

e

110
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4.Conjugation and Conjugate Symmetry:
If xn]et—s X(e™™).

then

x ¥ [n]«L—>X *(e7?)

If x{n] is real valued, its transform X {(e'") is conjugate symmetric. That is

X(&)y=X*(e’")

From this, it follows that Re{X(e jw )} isan even function of wand In{X (e jw )}isan odd
function of w . Similarly, the magnitude of X(e jw ) isan even function and the phase
angle isan odd function. Furthermore,

Ev{x{n]}«——>Re {X(e"‘” .
and

Od {x[nl}«<——j Im{X(e"" }




Discrete Time Fourier Transform

5.Differencing and Accumulation
If x[n]«—I— X (™).

then

x[n] —x[rn —1]<—=L }(1 — e ¥ )X{Ejm) _

For signal

v ] = ix[;m] .

TR =—aiE
its Fourner transform i1s given as

m]<«E—- l_ — X (/) + X (e’”) > 6 (w—27k)
1 - Ja — -

M=—u0 — &

112

The impulse train on the right-hand side reflects the dc or average value that can result

from summation.




Discrete Time Fourier Transform

6.Time Reversal If afn]<«E— X(e’).,

then

N[—n]<«——> X (—e’”)|

7.Time Expansion
For continuous-time signal, we have

x( ar){L}iX{j—m] :
o\ a

113

For discrete-time signals, however, a should be an integer. Let us define a signal with k a

positive integer,

{x[n.’k]. if nis a multiple of k
X [n=

0. if nis not a multiple of k-




Discrete Time Fourier Transform

X [1] 1s obtained from x{n] by placing k -1 zeros between successive values of the original
signal.

The Fourier transform of x,;,[n] is given by

T

Xy (€)= D x [ne ™ = X x [kl ™ = 2 a7 = x(e™).

H=—a0 =—a0 F=—00

That is.

xtk}[”]‘(L}X(eﬁm) .

For k> 1, the signal isspread out and slowed down in time, while its Fourier transform is
compressed.

114
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8.Differentiation in Frequency

If a[n]<«E— X(e’™).

ol

Differentiate both sides of the analysis equation X (e’®)= Z x[nle

Jjw +00 ) o
dX;Z) ) - Z_jnx[n]e—](m |

The right-hand side of the above equation is the Fourier transform of - jnx[n] . Therefore,

multiplying both sides by j, we see that dx(e’®)
_ nx{n]<«———j
9.Parseval’s Relation dw

If a{n]<— X(e’). then we have

—Jjamn

2 1

>l =5 [ x| do
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A system is said to be linear when it satisfies superposition and homogenate principles. Consider two

systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

Tlal x1(t) +a2 x2(t)] =al Tx1(t)] +a2 TMx2(t)]
~Tlalx1(t) +a2x2(t)] =alyl(t) +a2y2)

From the above expression, is clear that response of overall system is equal to response of individual
system.

Example: y(t) =2x(t)
Solution:
yl (t) =Tx1(t)] = 2x1(t)
y2 (t) =Tx2(0)] = 2x2(t)
Tlal x1(t) +a2 x2(t)] =2[ al x1(t) +a2 x2(t)]
Which isequal to alyl(t) +a2 y2(t). Hence the system issaid to be bueaer UNIT:2
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The impulse response of a system is its response to the input d(t) when the system is initially
at rest. The impulse response is usually denoted h(t). In other words, if the input to an
initially at rest system is 0(t) then the output isnamed h(t).

&1 a(t)

N svstem

Liner Ti jant (LTV) and Liner Time Invariant (LTD Sysl

Ifa system is both liner and time variant, then itis called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant
(LTI) system.




SGNAL TRANSMISSON THROUGH UNEAR SYSTEMS

118

Impulse Response:

The impulse response h(t) of a continuous-time LTIsystem (represented by T)is defined to
be the response of the system when the input is 0(t), that is,

h(t)= o)} (1)
Response to an Arbitrary Input:
The input x(t) can be expressed as

ac

()= [ x(r)b(t—r)dr (2)

Since the system is linear, the response y(t of the system to an arbitrary input x(t)can be
expressed as
P y(t) =T{x(1)} =T{f x(7)8(t —T]d'r}

- &

o

=fx x(T)T{8(t — 1)} d7
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Since the system is time-invariant, we have

h(t=7)=T{5(t-7)) —

Substituting Eq. (4) into Eq. (3), we obtain

y{:;-=f x(7)h(t —1)dr —O)

— X

Equation (5) indicates that a continuous-time LTIsystem is completely characterized by its
impulse response h( t).

Convolution Integral:
Equation (5) defines the convolution of two continuous-time signals x (t) and h(t) denoted

By )’(’)”(’)*h(f):[abr(r)h(!-r)dr """ (6)
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Equation (6) iscommonly called the convolution integral.

Thus, we have the fundamental result that the output of any continuous-time LTI system is
the convolution of the input x ( t ) with the impulse response h(t) of the system.

The following figure illustrates the definition of the impulse response h(t) and the
relationship of Eq. (6).

8(7) LTI h(r)
SRS VRS
x(1) e (1) = x(1) = h(r)

Ag. : Continuous-time LTl system.
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Properties of the Convolution Integral:
The convolution integral has the following properties.

I. Commutative:
x(£)xh(t)=h(t)*x(t)
2. Associative:
(x(0)hy(0))  hy(0) = x(1)# {hy(0) * (1))
3. Distributive:
x()#{h ()} +hy(t)) =x(t) hy(t) +x(t) hfr)
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Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is u(t); that is,

S(t)=Tut)}

In many applications, the step response s(t) is also a useful characterization of the
system.

The step response s(t) can be easily demtermined by,

s(1)=h(t)u(t)= [ h(r)u(t=7)dr=[" h(r)ds
Thus, the step response s(t) can be obfgined by integr;i::ing the impulse response h(t).

Differentiating the above equation with resge(ct}to t, we get
s(1

Thus, the impulse response h(t) can be determined by differentiating the step response

s(t).
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Transmission is said to be distortion-less if the input and output have identical wave
shapes. i.e., in distortion-less transmission, the input x(t) and output y(t) satisfy the
condition:

y (t) =Kx(t - td)
Where td =delay time and
k =constant.

Take Fourier transform on both sides
FTL y (t)] = FI[Kx(t - td)]
=K FT[x(t -td)]
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According to time shifting property,  y(w) = KX (w)e i

Thus, distortion less transmission of a signal x(t) through a system with impulse response h(t) isachieved when

|H(w)|=K and (amplitude response) k(w) — —wty = —2nfts phaseresponse

» ||l(\\')i . D)

(L))

\ ook
Amplitude response Phase response

A physical transmission system may have amplitude and phase responses as shown below:

b H(w) s O(w)

| < 3
J \ N S
(1) A

»
-

. 4
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Bandwidth

x(t) 1 Xi(N|

based on the 0

» Theorems of
communication and
information theory are ‘
t 0 /
) (b)

(a

assumption of strictly
band limited channels *2t) 1 XAf)]

The mathematical
description of a real
signal does not permit ; p
0
(d)

the signal to be strictly .

(c)
duration limited and . Bt [ i |
Figure 1.19 (a) Strictly bandlimited signal in the time domain. (b) In

StriCtly band limited. the frequency domain. (c) Strictly time limited signal in the time domain.
(d) In the frequency domain.
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- Different Bandwidth Criteria

sinnlf—fOT 2 .
General shape of Gu(f) = T[W] (a) Half—power bandwidth.

power spectral ------ ) g

density (PSD) (b) Equivalent
rectangular or noise

equivalent bandwidth.

( ;;) Null-to-null bandwidth.
i3 L fe et (d) Fractional power
= containment
e bandwidth.
f (c) -]
L (o R (¢) Bounded power
= (e) 35 dB " spectral density.

- (e) 50 dB - (1) Absolute bandwidth.

Figure 1.20 Bandwidth of digital data. (a) Half-power. (b) Noise equiv-
alent. (c) Null to null. {d) 99% of power. (e) Bounded PSD (defines atten-
tuation outside bandwidth) at 35 and 50 dB.
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FILTERING
One of the most basic operations in any signal processing system is filtering.

Filtering is the process by which the relative amplitudes of the frequency components in
a signal are changed or perhaps some frequency components are suppressed.

For continuous-time LTI systems, the spectrum of the output is that of the input multiplied
by the frequency response of the system.

Therefore, an LTI system acts as a filter on the input signal. Here the word "filter" is used to
denote a system that exhibits some sort of frequency-selective behavior.

Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of
frequencies and completely rejects the rest.

The band of frequencies passed by the filter is referred to as the pass band, and the
band of frequencies rejected by the filter is called the stop band.
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The most common types of ideal frequency-selective filters are the
following.

Ideal Low-Pass Filter:

An ideal low-pass filter (LPF) is specified by

l lo| <,

0 w|>a,

The frequency wcis called the cutoff frequency.
Ideal High-Pass Filter:

An ideal high-pass filter (HPF) is specified by

0 0| <aw,
1 ]w|3‘-‘m¢.

[H(w)l=

H(w)|=

128
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EMS

Kleal Bandpass Filter:
An ideal bandpass filter (BPF) is specified by

| 0, <ol <o,

|H(w)| =

0 otherwise

Ideal Bandstop Filter:
An ideal bandstop filter (BSF) is specified by

0 w, <lwl <o,

H(w) = .
otherwise

129
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The following figures shows the magnitude responses of ideal filters

|H{w)l |H(w)l

(a)

1H{w)l

G

EY

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)Ideal High-Pass Filter
©Ideal BandpassFilter (d) deal Bandstop Filter
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Causality and Stability

h(t) =0, t<O0
o Causality : It does not respond before the excitation is applied
o Stability

= The output signal is bounded for all bounded input signals
(BIBO)
x(1) <M forallt

NOE ‘ j Zh(r)x(t—r)dr

. h(T)x(t — r)dr‘ < i Ih(r)x(t - r)}dz' .
J.'"‘ | I"' ly(0)| < MJ‘_J’?(T)'(IT

=M | |h(r)dr
= An LTI system to be stable”

2 The impulse response h(t) must be absolutely integrable

—1 The necessary and sufficient condition for BIBO stability of a linear
time-invariant systefn |a(¢)dt <o (2.100)




SGNAL TRANSMISSON THROUGH UNEAR SYSTEMS

132

|Paley-Wiener Criterion

a The frequency-domaii W
equivalent of the
causality requirement o)
J' o f )I o | | 8 ,
1+ f>
[H N
JH(A
/—\ WMJ—\

IB'-/B

Ficunrs 2,22 s of the definition of system bandwidth
(@) Low-pass system. "H B.md-pn“ system
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Spectral Density

= The spectral density of a signal characterizes the distribution
of the signal’s energy or power in the frequency domain.

= This concept is particularly important when considering
filtering in communication systems while evaluating the signal
and noise at the filter output.

= The energy spectral density (ESD) or the power spectral
density (PSD) is used in the evaluation.
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’ Energy Spectral Density (ESD)

= Energy spectral density describes the signal energy per unit
bandwidth measured in joules/hertz.

= Represented as y,(f), the squared magnitude spectrum

v (=X
= According to Parseval’s theorem, the energy of x(t):

E, = [x*()dt= [|X(DF df

-

» Therefore: ®

» The Energy spectral density is symmetrical in frequency about
origin and total energy of the signal x(t) can be expressed as:

E, =2[y, () df

0
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I Power Spectral Density (PSD)

= The power spectral density (PSD) function G (f) of the
periodic signal x(7) is a real, even, and nonnegative function of
frequency that gives the distribution of the power of x(7) in the
frequency domain.

= PSD is represented as:

Gx(f) = Z |C|1|2§(f —nﬂ))

» Whereas the average power of a periodic signal x(t) is

represented as: r " o )
P,=— [ x*®dt = |C,P
7;) —T5/2 n=-wo

= Using PSD, the average normalized power of a real-valued
signal is represented as:

P = TGx(f)df =2TGx(f)df
—c0 O
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We know that for a continuous-time LTI system with impulse response h(t), the output y(t)of
the system to the complex exponential input of the form estis,

y(1) =T(e") = H(s)e"

x

Definition: H(s)= [ h(n)ed

The function H(s) is referred to as the Laplace transform of h(t). For a general continuous-
time signal x(t), the Laplace transform X(s) is defined as,

X(s}=fx(r)e-“ di

= C

The variable sis generally complex-valued and is expressed as,

S=0+]w
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Laplace transform of x(t)

X(8) = [* aft)e *dt

Substitute s= 0 + jw in above equation.

— X(o+ jw) = fozo z(t)e (Tt gt
= |7 [e(t)e 7 ]e ¥ dt
. X(8) = F.Tla(t)e?].
X(8)=Xlw) fors=jw
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Vet
~
OTE OF 75,(\
non for g
b
=
THA ¥©
10 200,

,\. .,,04’
s B Ao
> = i <
o X
)
L]

We know that
X(8) = F.T[z(t)e

5 a(t)e ® = F.TYX(S)] = F.T [X(0 + jw)]
=37 [* X(o+ jw)e™ dw
z(t) = 5= [7 X(o+ jw)e ! dw
=L [% X(o+ ju)e#do,
Here, 0+ jw =8
jdw = ds — dw = ds/j

() = o [ X(s)etds... ..
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Conditions for Existence of Laplace Transform:
Dirichlet's conditions are used to define the existence of Laplace transform. i.e.
The function f has finite number of maxima and minima.

There must be finite number of discontinuities in the signal f ,in the given interval of
time.

It must be absolutely integrable in the given interval of time. i.e. Jx f(8)]dt < o0
Ihitial and Final Value Theorems .

Ifthe Laplace transform of an unknown function x(t) is known, then it is possible to determine
the initial and the final values of that unknown signal i.e. x(t) at t=0* and t=oo.

Initial Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the initial value of x(t) is
given by 2(0") = lim SX(S)

§-400
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Final Value Theorem

140

Statement: If x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is

given by, g(00) = lim SX()

S0

Properties of Laplace transform:
The properties of Laplace transform are:
Linearity Property
L. T
If () «—— X(s)

& 3(t) s ¥ (5)

Then linearity property states that

ax(t) 4 by(t) <=5 aX(s) + bY(s)
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o LT
Time Shifting Property If z(t) «— X(s)
Then time shifting property states that

2(t — o) €2 et X{(s)

If () ] X(s)

Frequency Shifting Property Then frequency shifting property states that

L.T
et 2(t) —— X(s— sp)

If z(t) <—I£+ X(s)

Then time reversal property states that

Time Reversal Property

2(—1) e X(—3)
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Time Scaling Property | ) LT, v

Then time scaling property states that

z(at) +— L X(2)

|a|

Differentiation and Integration Properties

The integration property states that

[z(t)dt < LX(s)

[If-.. [z(t)dt Pl —X(s)

LT
If z(t) +— X(s)
Then differentiation property states that

dz(t) L.T
990 &5 5. X ()

dz(t) LT "
= ) ¢ > (s)™. X(s)
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Multiplication and Convolution Properties
L.T
If z(t) +— X(s)

and y(t) ——s ¥(s)

Then multiplication property states that

z(t). y(t) <L°T\ lj X(s)*Y(s)

, ‘
27

The convolution property states that

2(£) % y(t) e—s X(3).Y(s)
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The range variation of o for which the Laplace transform converges is called region of
convergence.

Properties of ROC of Laplace Transform SMpting: @ S-plane

ROC contains strip lines parallel to jw axis in s-plane. \ g

it

/

P

If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane.

If x(t) isa right sided sequence then ROC : Re{s} >0o.
If x(t) isa left sided sequence then ROC : Re{s} <0oo.
If x(t) isa two sided sequence then ROC isthe combination of two regions.




LAPLACE TRANSHFORM

Example 1: Find the Laplace transform and ROC of x(t)=e— at u(t) x(t)=e—3tu(t)

L.T[z(t)] = L.Tle —2 u(t)] = <L

Re > —a
ROC : Res >> —a

/

/
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Example 2: Find the Laplace transform and ROC of x(t)=e at u(—t) x(t)=eatu(-t)

L. T(x(t)] = L. T[e™u(t)] = o=
Res < a
ROC : Res < a
S-plane
joo > il
/;
/// >
/ a O
//
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Example 3: Find the Laplace transform and ROC of x(t)=e —at u(t)+e at u(-t)

XQ)=eut)+eRu-t) | 1)) = L. Tleotu(t) + ertu(—t)] = e

For ﬁ;Re{s} > —a

For S_%Re{s} <a

S-plane

0 T O

Referring to the above diagram, combination region lies from —a to a. Hence, ROC:
—a <Res<a SUB:ES UNIT:2
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Causality and Stability
For a system to be causal, all poles of its transfer function must be right half of s-plane.

A system is said to be stable when all poles of its transfer function lay on the left half of s-

plane.

jw
A

poles
KA
o

jw
A

poles

KK >
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A system is said to be unstable when at least one pole of its transfer function is shifted to the
right half of s-plane.

jw
A
poles
XK K—
A system is said to be marginally stable when at least one pole of its transfer function lies on
the jw axis of s-plane jo
A
poles X

KK >
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LAPLACE TRANSFORMS OF SOME COMMON SIGNALS
Unit Inpulse Function o( t):

/[5(:)][ (e 'di=1  alls
Unit Step Function u(t):

2lufn)] = | u(t)edr=[ e

0*

=’9‘ Re(s) > 0

where 0% =lim, _ (0 +¢).
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Some Laplace Transforms Pairs:

(1) X(s) ~  ROC
S(t) 1 All 5
1
() — Re(s)>0
5
1
—u(—1) — Re(s) <0
5
1
() 37 Re(s) >0
k!
t5ulr) ey Re(s) >0
1
e ) Re(s) > —Rela)
s+a
1
l—e™ g —1) Re(s) < —Re(a) |
T s+ a
1
te " u(t) e Em— Re(s) > — Rela)
(s +a)
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Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful
mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as
Z.Tle(n)] = X(2) = Bt (n)2"

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

1.Tla(n)| = X(2) = L3 a{n)2 "

n=|

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does

not exist. SUBLES

UNIT:2
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Concept of Z-Transform and Ihverse Z-Transform
Z-transform of a discrete time signal x(n) can be represented with X(Z), and itisdefined as

X(Z) =322 ol1t)Z ™ ce v (1)
If Z = re“ then equation 1 becomes
X(rew) =32 _ x(n)[re?] ™
=X% . a(n)[r e >
X(re™) = X(Z) = F.T[z(n)r ... ... (2)
The above equation represents the relation between Fourier transform and Z-transform

X(2)| = F.Tlz(n))]

z=eM
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Inverse Z-tansform:  X(re#) = F. T[z(n)r—"]
z(n)r—n = F.T-Y[X(re/]
z(n) = " F. T [X(re?))
— L [ X(reiw)ein duw

= o [X(relw)[re™]"dw... ... (3)

Substitute re = z.
dz = jre’dw = jzdw
dw = %z‘ldz

Substitute in equation 3.

3 = z(n)= %fX(z)z"%z‘ldz = #ij(z)z“‘ldz

T

X(2) = Z z(n)z™"

n=-00

z(n) = L/ X(2)z" 1dz
2779
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Z-Transform has following properties:
Linearity Property:

Z.T
If z(n) +— X(Z)
Z.T
and y(n) +— Y(2)
Then linearity property states that

az(n) +by(n) &= a X(2) + bY(2)
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Time Shifting Property:

If 2(n) ¢ X(2)

Then Time shifting property states that

x(n —m) &5 2 mX(Z)

Multiplication by Exponential Sequence Property:
Z.T
If (n) +— X(Z)

Then multiplication by an exponential sequence property states that

a" . z(n) ﬁ% X(Z/a)
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Time Reversal Property:

Z.T
If z(n) +— X(2)
Then time reversal property states that

z(—n) ﬂ) X(1/2)

Differentiation in Z-Domain OR Multiplication by n Property:

f 2(n) e X(2)

Then multiplication by n or differentiation in z-domain property states that

: 2T . 1.d*X(2)
k _ 11k k
n*z(n) +— [-1]*2 —
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Convolution Property: If z(n) oy (Z)
Z.T
and y(n) +— Y(2)

Then convolution property states that

z(n) * y(n) £ X(2).Y(2)

Correlation Property: -
If z(n) +— X(2)

and y(n) & Y(2)

Then correlation property states that

z(n) ® y(n) —— X(2).Y(Z 1)
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Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.
Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

13(0) = lim;; 0 X(Z)

This is used to find the initial value of the signal without taking inverse z-transform
Final Value Theorem
For a causal signal x(n), the final value theorem states that

x(00) = lim, ,; (2 — 1| X(2)

This is used to find the final value of the signal without taking inverse z-transform
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Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence
of z- transform.
Properties of ROC of Z-Transforms
ROC of z-transform isindicated with circle in z-plane.
ROC does not contain any poles.

Ifx(n) isa finite duration causal sequence or right sided sequence, then the ROC is entire z-plane except at z

=0.
If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except
at z =0,

If x(n) isa infinite duration causal sequence, ROC is exterior of the circle with radius a.
ie.|z] >a.
If x(n) is a infinite duration anti-causal sequence, ROC isinterior of the circle with radius
a.i.e.|z| <a.
f x(n) isa finite duration two sided sequence, then the ROC is entire z7PFeexcept at z 2NRR2z = oo,
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Example 1: Find z-transformand ROC of a " u[n]+a ~"u[-n-1] a"u[n]+a~"u[-n—1]
Z.Tla"uln]] + Z.Tla"ul-n - 1]] = 7% + 2

a

1
ROC: |zl > a ROC:|z|<Z

The plot of ROC has two conditions asa >1and a <1, as we do not know a.

- A -
unit circle unit circle

In this case, there isno combination ROC.
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>
>

unit circle

f unit circle
/| ,a<i 1/a>1
/ \
> >
/ 1/8
/ \

Here, the combination of ROC is from a<|z|<1/a

Hence for this problem, z-transform is possible when a < 1.
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Causality and Stability
Causality condition for discrete time LTIsystems is as follows:
A discrete time LIIsystem iscausal when,

RO C isoutside the outermost pole.

In The transfer function H[Z], the order of numerator cannot be grater than the order of
denominator.

Stability Condition for Discrete Time LTI Systems:
A discrete time LTIsystem isstable when
its system function H[Z] include unit circle |z|=1.
all poles of the transfer function lay inside the unit circle |z|=1.




Property Sequence Transform ROC
x[n] X(z2) R
x,[n) X,(z) R,
x,[n) X(2) R,
Linearity a,x,[n]+a,x,[n) a, X(z)+a,X,(z) R'DR,NR,
Time shifting x[ln —n,) z="0X(z) R'ORN{0<|z]| <o}
L
Multiplication by z zhx[n) X( ;—-) R' =|z,/R
0
Multiplication by e/ e/ x(n) X(e /oz) R =R
1 1
Time reversal x{ —n] X( —) R' = —
b4 R
. dx(z)
Multiplication by n nx[n) -z = R'=R
" 1
Accumulation Y. x[n] l_z“X(Z) R'DRn{lzI>1)
k= — o i
Convolution x,[n)* x,[n] X(z)X,(2) R'DR,NR,
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Inverse Z transform:

Three different methods are:
Partial fraction method
Power series method
Long division method

Partial fraction method:
o Incase of L1 systems, commonly encountered form of z-transform is

B(z

X(z) = g

1{2)
bytbyz by
- a) + Jll—l P JNZ’N

X(z)

Usually M < N
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o If M > N then use long division method and express X{z) in the form

o -
X(z) = ;Z'u fiz "+ —‘4(2)

n— s

where B(z) now has the order one less than the denominator polyvno-

mial and use partial fraction method ro find Ztransform

e |The inverse z—transform of the terms in the summation are obtained

from the transforim pair and time shift property

1 «—=— 3[rn]

Zz—o

Sl — ;]

1

e If X(=z) is expressed as ratio of polynomials in z instead of z—' then

convert into the polynomial of z !

e Convert the denominator into product of fArst-order terms

1 - AT

Dy + H1 = —+ e oo + DpAr=z
20 nﬂl(l — dgz 1)

X(z) =

where dyg are the poles of X{ =)
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For distinct poles

e For all distinct poles, the X(z) can be written as

N Ay

X(2) =
(2) k;(l—dkzl)

e Depending on ROC, the inverse z-transform associated with each term

is then determined by using the appropriate transform pair

e We get
2 Ay

1—(‘1/‘-2".

4“ dk)”u[n]
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e For each term the relationship between the ROC associated with X(2)
and each pole determines whether the righit-sided or left sided inverse

transform is selected

For Repeated poles
e If pole d; is repeated r times. then there are r terms in the partial-

fraction expansion associated with that pole

Ay Ajg A;,
1 —diz1" (1 —dyz—1)2"" "7~ (1 — sz 1)

e Here also. the ROC of X (z) determines whether the right or left sided
inverse mransform is chosen.

z A
(l — iz -l)ln‘

(4% 1)...(n+m—1)
(rr2— 1)!

A ()™ ul ) with ROC |z = d;
e Ifthe ROC is of the form |z| < )}, the left-sided inverse z-transform is

chosen, ie.

A
(I —az1)y™’°

{rn+1)...(n+ m— 1)

— 62 (rrz— 1)!

(dp) ] —nn— 1] —=

with ROC |z| = d
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Deciding ROC

e The ROC of X(2z) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.

e In aorder to chose the correct inverse z-transform. we must infer the

ROC of each term from the ROC of X(2).
e By comparing the location of each pole with the ROC of X{(2z).

e Chose the right sided inverse transform: if the ROC of X(z) has the

radius greater than that of the pole associated with the given term

e Chose the left sided inverse transform: if the ROC of X(z) has the

radius less than that of the pole associated with the given term
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Partial fraction method
e It can be applied to complex valued poles

o Generally the expansion coefficients are Complex valued

e If the coefficients in X(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will be complex con-

jugate of each other
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e Here we use information other than ROC to get unique inverse trans-

form
e We can use causality, stability and existence of DTFT

e If the signal is known to be causal then right sided inverse transform is

chosen

e [fthe signal is stable, then 1 is absolutely summable and has DTFT

e Stability is equivalent to existence of DTF'T, the ROC includes the unit
circle in the z-plane,. ie. |z = 1

e The inverse z-transform is determined by comparing the poles and the
unit circle

e [fthe pole is inside the unit circle then the right-sided inverse Ztransform
is chosen

e [fthe pole is outside the unit circle then the left-sided inverse z-transform

is chosen
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Power series expansion method

e Lxpress X(z) as a power series in z~' or zas given in z-transform equa-

[ion
e The values of the signal x{n] are then given by coefficient associated

with z—"
e Main disadvantage: limited to one sided signals

e Signals with ROCs of the form |z] > aor |z < a

1

e If the ROC is |z| > a, then express X(z) as a power series in z * and

we get right sided signal

e If the ROC is |z << a, then express X(z) as a power series in zand we

get left sided signal
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I.ong division method:

e Find the Ztmransform of

X (2) =

2+ z

T with ROC

173

e Solution is: use long division method to write X(z) as a power series

in z ! since ROC indicates that x{s] is right sided sequence

e We get

X(z) =2+ 2=

e Compare with ztransform

l—+—2 2—i~—

X(z)=
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x{n| = 26[n| +26[n— 1| +8[n— 2]

-I-%S[n— 3]+

e If we change the ROC to |z| < % then expand X(z) as a power series

in z using long division method

e We get
X(z2) = —2—8z—1622—3223+ ...

e We can write x{n| as

xn| = —20[n| — 8d[n+ 1] — 160[n+ 2]

20(n+ 3| +
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0

X(=2) — & . with ROC all z except |z

e Solution is: use power series expansion for e and is given by

e We can write X (=z) as

ea—:

X (=)

=D ?k
<

>,

k=0

L=t

>,

k=0

k!

(22)%
|

- % k

b S 2

e We can write x{s7] as

Q r72 = 0 or r7is odd

xin] = ' ,
=a31> otherwise
= 5%

<
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Example: A finite sequence x[n Jisdefined as ,,) - (5,3,-2,0,4,- 3)
Find X(z) and its ROC. T

Sol: We know that

® 3

X(z)= ) x[n]z"= ) x[n]z™"

n==-u n= -1
=3[ =22t +x(= 1)z (0] + x[1) 2 +x{2)2 242 [3)
=524 32447703
For z not equal to zero or infinity, each term in X(z) will be finite and consequently X{(z) will

converge. Note that X (z ) includes both positive powers of zand negative powers of z
Thus, from the result we conclude thatthe ROC of X(z)is0 < /zl <m.
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Example: Consider the sequence x[n] = {a" O<n<N-1,a>0

0 otherwise

Find X ( z) and plot the poles and zeros of X(z).
Sol:

X(2)= }:ﬂ )_:(ﬂf') e i =

177

From the above equation we see that thereisa pole of (N - 1)"order at z=0and a pole at
z=a . Since x[n]is a finite sequence and is zero for n <0, the ROC is IZ > 0. The N roots of

the numerator polynomial are at

=N k=], N
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The root at k =0cancels the pole at z=a. The remaining zeros of X (z ) are at

. aglllTk/N)
I, =0t

k=1,..,N-1

The pole-zero plotis shown in the following figure with N=8

Imiz)

(M- Lith e’
order pole ‘

z-plane

" Pole-zero cancel
L1

\
[ ]
©- ¥
I‘I
L1
‘®

-.___a'__.-"

Re(z)
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