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FOURIER TRANSFORM
Introduction

Joseph Fourier Jean-Baptiste Joseph Fourier (21% March 1768 — 16"
May1830)was a French mathematician and physicist bom

in Auxerre and best known for imtiating the investigation
of Fourter series, which eventually developed into Fourier

analysis and harmonic analysis, and their applications to problems

of heat transfer and vibrations. The Founer transform and Fourier's

law of conduction are also named in his honour.  Joseph

Fourier introduced the transformin his study of heat transfer,
where Gaussian functions appear as solutions of the heat equation.

In the study of Fourier series, complicated but periodic
functions are written as the sum of simple waves mathematically represented by sine and cosine
functions. The Fourier transform is an extension of the Fourier series that results when the
period of the represented function 15 lengthened and allowed to approach infinity. Fourier
Transform maps a time series (eg. audio samples) into the series of frequencies (their amplitudes
and phases) that composed the time series. Inverse Fourier Transform maps the series of
frequencies (therr amplitudes and phases) back into the corresponding time series. The two
functions are nverses of each other. Shortly, The Fourier Transform 1s a mathematical technique
that transforms a function of time, f(f), to a function of frequency, Fis).



Applications

o The Fourier transform has many applications, in fact any field of physical science that
uses smusoidal signals, such as engineering, physics, applied mathematics, and
chemustry, will make use of Fourier series and Fourier transforms. Here are some
examples from physics, engineering, and signal processing.

. Communication
. Astronomy

. Geology

. Optics

Fourter Transforms helps to analyze spectrum of the signals, helps in find the response of
the LTI systems. (Continuous Time Fourier Transforms is for Analog signals and
Discrete time Fourier Transforms 1s for discrete signals)

Discrete Fourter Transforms are helpful in Digital signal processing for making
convolution and many other signal manipulation.
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Propertics of 'ourier ranstforms

1. |Lincarity property
1T £{s) and (A0 are the Fonrier fransforms of fix) and ofx), then
Flafixy + ba(x)| aF | flxy]| + BF]eix)|

2. shifting proporty

IT 4 1] = i) then Mgz a) =& M[Ax0] =" Hix)



3. Changeof scale property

If F[f(x)] = F(s) then F[flax)] = LF (i) where a= 0
a

a
4. Shifting in s
If F{f{x)] = F(s) then F(e ™fx)) = F(s+a)

5. Modulation Property

If F(f(x)) = F(s) then F[cos axf (x)] = % |[F(s+a)+F(s - a)]
6. Fourier transform of Derivative

If F[fix)] = F(s) and derivative f '(x) 1s continuous, absolutely integrable on (-oo.
), then FIf '(x)] = - (1s) F(s) if f{x) = 0asx — £ 0

7. Derivative of transform

CWAd"F(s)
dh;'”

If Ff(x)] = F(s) . then F(x" fix))= (-7)



Definition: Convolution of two functions.

The convolution of two functions f{x) and g(x) 1s defined as

1 o
f(l’)*g(.v)sz_ | f()g(x—1)dt

—00

PROBLEMS
B . , |x[=a © SN §
Problem 1. Find the Fourier transform of /(x) = 0. [x|>a Hence evaluate | ds.
X|>=d 0 A)

\/;? i f(x)e™dx

Solution: Fourter transform of f{x) 15 F(f(x)) =

| @
= — [ ™
N2 -a
| a

[ (cos sx+ism sx)dx

1 ¢ . .
[ cos sx dx (..sm sx 1s an odd fi.)

N27T -a




S ? COS 5X dx
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F(s)=

|5I

By mverse Fourier transforms,

L

J2r

1 = |2 smas _
- I 1/ =2 (COS sx —7 sI sx) ds
N2T = VT A}

f(x)=—— | F(s)e™ds

S s S as

I = . _
= — | COS s5x ds sm sx is odd
T —x S Ay



2= (smnas
fix)y=—| (H m]m:‘a sx ds
7T 0 S
Puta=1,x=0
T e e
flO)==] ==ds
To S
/4 © S §
—x1=] > ds (. f(x)=l—a<x<=a)
2 0o s
L] Plas=Z
0 s 2

Definition: If the fourier transform of f(x) 1s equal to f(s) then the function f(x) 1s called

self-reciprocal. 1.e. F(f{x)) = 1(s)

™
et

.

Problem 2: Find the Fourier transform ofe " . Hence prove that e * 1s self-reciprocal

with respect to Fourier Transforms.



Solution:

f(x)e™dx

8'_"3

FLf(x)] = %

a—
H

— j E—{ﬂ' X~ )+:5xd

1."23' —0o
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— jj? E—faﬁxi_;'sx](h_ N 1)
\ 2;’ —x (

2a

is : g2
=(‘H_ | ] tad e

Substitute (2) m (1). we get

Consider a*x? —isx = (ax)” —2(ax) (is) (2 ] _(EJ
a
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Put a = L."ﬁ' (3)

V2

F[E_xz 2] — E—sl 2
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-.e " '“1s self-reciprocal with respect to Fourier Transform.
Problem 3: State and Prove convolution theorem on Fourier transform.
Solution:

Statement: If F(s) and G(s) are Fourier transform of f{x) and g(x) respectively, Then the
Fourier transform of the convolutions of f{x) and g(x) 1s the product of ther Fourier

transforms.

Le. FL£(x)* g(x)] = FLF (x)]F[g(x)] = F(s)G(s)
Proof:

F(f*g) = —— [ (f*g)(x)e™ dx

f(Hg(x—0dt ™ dx

T g(x—1) e dxdt

l
2z -
-——7 =1
e
Vor
1

T g(x—1)e™ rh‘]ds‘



[ f(OF(g(x—1)d

- a\—~
*4‘ =

?; f() " F(g)dr [ f(gx—1)=e"F(g(1)]

_ L ° ist , . .
= ol e aGs) [ F(g)=GG)

F(f*g)=F(s).G(5s). [ F(f (1)) = F(5)].

—x°, |x|<a

2
. . . . a
Problem 4: Find the Fourier transform of f(x)= { and hence evaluate

0, | x|>a

o

dt

) © (smf—7COSt
() | . ]n’r
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Solutions:

Fouriter transform of f{x) 1s

LT £(x).eax

Ffe) = ——




[ F(x)edx

27 =

F(f(x)) =

0+ T (a’ —.TE)EFSI(?{T—FO:‘

T (a® —x7)(cos sx +i sin x) dx}

| —iT

[ (a® —x)cos sx dx [ (a® —x*)sm sx is an odd ﬁ;r.]
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2 [ SI 5Y COS 5X SI1 SY
= [~ (a® —x ){ J (= 21}( ]H’*‘J[ ﬂ
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2| sm as —ascosas
F(s) =2.|— : (1)
g s
By mverse Fourler transforms.
, | o
f(x)=—= [ F(s)e™dx
N2 o
1 = 2 ( sm as —ascosas .
= | 2.]— . (cossx —7 sm sx) ds
N2T - T S
2 ® sm as —ascosas : :
f(x)=— 3 COS sx dx (the second term 1s on odd function)
A —m A}
42 sm as — as Cosas
flx)y=—/| 3 COS sx dx
T s
Puta=1
. 2 ;
4= Sms—s5COSsS I-x".|x|=1
f(x)=—] 3 COS sx dx f(x)=
To S 0 x|=1




Putx=20

3
To 5 =1

f(ﬂ)_i]c SI § — § COS § " {f(ﬂ)l—ﬂ}

4® SmMs—s5COSS

ds
EHESS
© S 7 —7COS? T .
[ dt = 1 | by changing s —t]
0 -

Using Parseval’s identify

I IFG) P ds=] | /(0 dv

—oc

2
x 2 (sm as —ascosas © . |
f [2 —( 3 ﬂ ds= [ |a®—x"|" dx
. —mo

—o a 5

. 2
T S({sms—5coss

; J ds = } (1-x>)dx(puta=1)
a

o T\ 5

Sm § — 5 COS S

g:ﬂ 2 1
X — | ( : J ds =2[ (1-x)dx
To _ 0

S
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T o 5

-

i (5111 s*—scc:ss*} d;:ixz(ijzi
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1-|x], |x|<1
Problem 5: Find the Fourier transform of f(x) :{ xl ] ~and hence find the

0, x|z
oo oo 4
value of (1)j s f drt. (ii) [ 51114 Lar.
0 t
Solution:
b

The Fourier transform of F(f(x)) = T f(x)e" ™ dx

Jar o

—— | (I-]| x|) (cos sx +7sm sx)dx

J2ra



The Fourier transform of F(f(x)) = ey

\/— [ f(x)e

= L [ (I=| x]) (cossx +ism sx)dx
21 -1
1

1
= I-|x]) cossxydx[...(1—| x|)sm sxis an odd fn.
T _Il( | x ) [ (=] x]) Jn]

S sx COS 5Y "ll
Jz—{“‘”( Jeof =% i3
_ 2 {_msx_l_ 1}

27 s7 s

F(s) :\/g[l—c;)s.s} (0
/4 A

(i) By mverse Fouriter transform

fixy = F(s)e™ ds

H'___"E

I
f



ﬁ‘_‘
::_"i

R
- VT

| —coss
2

1—(:05.5

|5I

} (cos sx —ism sx)ds (by (1))

}L[)‘-. sx ds (Second term 1s odd)

Jix)= ET (&J COS sx ds
0 &

Putx=20
2= (1—cos,

0= 1- 0=~ ] [ Cf”]ds
To 5
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(i)  Usmg Parseval’s identity.

@

TIF@Pds=[ [f@)] dv

i [ 5(1 CDSSJTrfsr (=] x])*dx

2
2T as=] amlxran
"'??._I B ;

2
oo —_ q 1 5
47 [1 TS“J ds =2 (1—x)*dx
JT 0 0
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ds = ;Lea‘rzs.fZ._da‘:?'
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e :E () dr:_]i F(s)? ds

Fourier Sine and Cosine Transform

Infinite Fourier Sme Transform of f(x) 1s denoted by F<{f(x)] and 1s defined as

U ()=F(s)= =] f(sinstdx



Inverse Fourier Sine Transform is

F()=FF.(s)]=|>] F.(s)sin sx ds
0

The Fourier cosine Integral of f{x) m (0,20) 1s

Fl /(0] =Fo()= = f(x)cossv ds

This 1s known as Infinite Fourier Cosine Transform of {(x).

The Inverse Fourier Cosine Transform is
r 2%
J(x)=F"[F.(s)]= —I F.(s)cos sx ds
T

Properties of Fourier Sine and Cosine Transforms
1. Linearity Property

(1) Felaflx) +bg(x)] = aF[fix)] + bF:[gx)]

(1)  Filafix) + be(x)] = aF; [fix)] + bF;[g(x)] where « and b are constants.



(1)

(11)

(iii)

(v

Modulation property

If F. [fix)]= F:[s] and F; [f(x)]= F[s]. then

F[f(x) cos ax] = %[FC (s+a)+FE.(s—a)]
Fs[f(x) cos ax]= %[P5 (s+a)+F.(s—a)]
F [fix) smax] = % | Fi(s+a) — Fs(s-a)]

Fi[fix) s ax] = % [Fe(s—a) — Fe(s+a)]
Change of Scale Property
. 1 _(s) . y 1 _(s) .
() Felflax)]=" F| > | #a-0 (i) FL/ ()] =—Fi| ;] if a>0

Differentiation of sine and cosine transform



(1) Fe[xf(x)]= [1r s (s)] = —S[Fs(f (x))]

} e g g d )
(i) FLf (0] =~ LFe(9)] == LFe(f ()]

5. Identities

If F.(s) and G.(s) are the Fourier cosime transforms and Fi(s) and Gs(s) are the Fourier sine

transforms of f{x) and g(x) respectively then

i) [ F(x)g(x)dx = [ F.(5)G.(s)ds

o

11) J. _/'(_r)g(_r}cir=J. F.(s)G, (s)ds
0

0

iii)

o

(%) (h‘zz |F.(s)? rfs:E | F.(s) ]2 ds

Problem 1: Find the Fourier cosine and sine transformation of f{x) = ™, = 0. Hence

© xsma x T ©  cosxt _
deduce that | —dy=—e . and | ———dt= A
0o 14+x7 2 0 a’+t’ Zn




Problem 1: Find the Fourier cosine and sine transformation of flx) = e™, a> 0. Hence

© xS o x T o ©  Ccosxt T _
deduce that | ———dv="¢"" and | ——dr=—e"
0o 1+ 2 0 a +t 2a

Solution:
. . . , 2®
The Fourier cosine transform is F.[ /(x)]=,/—[ f(x)cossxdx
To

= F.le™]=,|—] e cossxdx
To

- E_HI *
=.|—| —5—5 (—acossx +ssin sx)
Tlda +3S5

0




@x

2] e®
—| ——— (—asm sx —scossx)
wla +s .

[ 2 1 _
\'W[O a’ +5“2(D_9)} ‘U'IE'HE+3

2 s
7 \s?+d?

By inverse Sine transform, we get

76 = 2T F.(s)sin sx dx
]

f —1 sSm sx ds
+

§ S SX
f(x)___l- —1d-S
L0 +da”

5 SH SX
—ds

2 ®
S(x)=—] = 3
To S +a



T T §SM SY
Ef(r} =[ ———ds

0§ +4a

T _, ®© SSIDsy
—e =[] ——ds
2 0 ST +a

Puta=1.x=a

T _, © S§SI sy
—e =| ———ds
2 0o s +1

Replace ‘s’ by “x” and ‘X’ by ‘s’

© xS SX T _,
[ ——dx=—e
0o I+x 2

Usmg Fourier mverse cosmne transform,

fix)= e ™ = ET F_(s)cossxds
To

2= (2 a
= —I o COSs 85X dﬁ'
A0 Tla +s



2a ™ COSSX
= — —ds
T o a +s

2a*= Ccosxt

=— [ ———5dt (Replace ‘s’ by ‘t’)
T o a +t

= cosxt T o_

| w———=di=—ce e

0 a” +t 2a

cosx, UO<x<a

Problem 2: Find the Fourier cosine transform of f(x) = { 0 §
, xX=a

Solution:

F.(f(x))= E :I f(x)cos sx dx = \/E ? COS X COS sxdx

0

2 a (5 i AP
= |27 [cos(a +1)x+cos(s —1)x }d‘r
T o 2

_ l_ [Sin( s +1)x N s s — 1}1}“

1."{2.?1" s+1 s—1 0



1 [Sil]( s+1)a . sm( s —1)a

. provided s= 1.s= — 1.
27 s+1 s—1

Problem3: Using Parseval’s Identity calculate

L ®) | dx

0 (a”+x7)° o (X +a’)

;__,H

()

Solution: (a) By Parseval’s identity.

0
I 2a’ :jf ds

2a 7 o a’+s’

1e. T , i S [Replace. s by x]




(b) By Parseval’s identity.

[ 1@ de=] |F.(f(x)] ds
0 0

2

T (e‘““'}!d.*rzgaf [ > EJ ds

0 7O

2 “2ax |*
x S T| e T 1
je] —————ds== =" x
0o (a+s57) 2|-2a|, 2 2a

s

4

| - al —dx = z [Replace, s by x]
0o (a”+x7) da
Problem 4. Evaluate (H]T 5 : > dx (b) jl
o (x"+D)(x"+4) 0

cosime and sme transform.

Solution: (a) Let flx) = ™ and g(x) = ™

F (e7")= %I e cos sx dx

2

x>

(.*qr2 -|-ﬁ'2}(.TE +bz)

dx . using Fourler



21 e™ )
\/7{ (— can+asmav)}
s*+1
0
SeEat
57 +1
2

F, ({4‘2"') =

)
- als?+4

e " cos sx dx

O

S|

] S(@g(ds = | E(/()F.(g(x)ds

4 = ds

H

f ds 7 e ]
o (s2+D)(s2+4) 4| -3 |

p Jrfs (from (1) & (2))

—[ — = ds
To (s +1)s"+4)

3]

(D

()



(b)

[et

T 3 a > i [Replace s to x]
0 (x"+D(x"+4) 12

» 2
To find | !

2 zh o ax.
0o (x“+a )Nx"+b7)

f(x)=e ™, g(x)=e™

2 . 2 s )
F(f(x)=,=] e™sinsx dv=,|—| 54— J
0 TS +a

2= B - 2 A \
F (g(x)=,—] e "smsxdx= —[ 5 QJ
o a\s"+b

I f(r)g(r}dx':z F.[f(x)].E.[g(x)]ds From (1) and (2)

® @ .2
J- E_M{?_bx dx = E J- : ’;5 2 : s
0 7o (s +a )(s +D7)

(1)

)



ienfc x drziﬂm:L[Re lace s to x]
S0 a4 2| =(a+b)|  2a+b) " T

2
-

Problem 5. Find the Fourier Cosine Transform of e?_'rz and hence Show that xe * is self-

reciprocal with respect to Fourier sine transform.
Solution

The Fourier Cosine Transform of f(x) is

F, [f':"}] = EJ. f(x)cos sxdx
0

21 > _p2
—.—.EJ ¢ CcoSssxdx
T 2 <0

x- E:’x‘c d.f{’

[
- m _mi.




2
RPof ¢ * Je
27

1 Som ()
RPof ¢ * |e' ' d

27

1 s
=———RPof e * Jﬂ dy

N2

—C

1 o=
RPof e ¢ EJE‘-‘ dy
N2 5 '

1 5
=—=—=R.Pof e *2

N2

7 5
X" HE+—

O b, 8

e dy=

=y

]

o




[ f .
A2
- d -x
Result: F|xe? |=——F,|e?
ds
—."‘E: —.'iz
But Flle*® |=e 2
—12 —.':T2
d :
Flxe? |=——|e?
ds
—.\'3 :
e — 28
2
—.'f:
=se 2

xe ? isself reciprocal with respect to sine transform



/-Transforms and Difference Equations

Definition:

Let {f(n) }be a sequence defined for n = 0,%1, 2,43, ...then the Z-transform of f(n)is defined
as Z{f(n)} =%2-_.f(n)z @ = F(z) which is known as two sided or Bilateral Z-transform of

f(n).

If f(n) =0 forn < 0, then the Z-transform reduces to one sided or Unilateral Z-transform and is
defined as Z{f(n)} =% _,f(n)z™ = F(z).

Z-transform for discrete values of t:

If the function f(t) is defined at discrete values of t, where t =nT, n =0,1,2,3,...% T being the
sampling period, then Z{f(t)} =% _,f(nT)z " =F(z).

Z-transform of standard functions:

1. z{an}=i1f|z|::|a|

Proof: By the definition Z{f(n)} = X _,f(n)z™®

- - a\n a (a2
o=y erene Y @ 1o e @

n=0 n=0



Note:

=

(i) Whena=1, Z{1} =—

2—1

(i) When a = -1, Z{(—-1)"}=—

41

2. Z(k) =ki

Proof: By definition Z{f(n)} = ., f(n)z™

o o 1?!-
WM

n=0 n=0
2 1 1

1+-+(2) +---‘=k[1—§]- e

z
(z—1)2

Z{k} =k

3.Z{n} =
Proof: By definition Z{f(n)} = 32, f(n)z™™

Z{n} = EE:DHE_“‘=§+ 2@: +3 e)g + .



1[1 1]‘Z 1[:5—1]‘2
oz zl Tzl z

2

1:1+2(§)+3G) b

2.’2 ]_ Z
(z—-1)2] (z-1)?

B |

|

z
(z—1)2

t 2= a2)

Proof: By the definition Z{f(n)} = X _,f(n)z™™

~Z{n} =

oo

=2 =2al) =150 50 -

n=0 n=1

= —log (1 —i) = —103(3—;1) [ log(1 —x) = — [x+'§+§+ m]

5. 2) = 100 (5)

Proof: By the definition Z{f(n)} = X, -, f(n)z™™



Proof: By the definition Z{f(n)} = 37,

1) w1 _ w110
= =2y =t
n! n! n!\z
n=0 n=0
1 1
2 =<
n!

f(n)z™=

+1(1)+1
11\z/ " 2!

(

2

1
_)4.
4

1

3!

G

) +

3



Proof: By the definition Z{f(n)} = %, _,f(n)z™

a3 e 3 =2e2(E) 43(3)

n=0 n=0

_ %[1 +2 (%) +3 (%)2 + ]
=20 _') =15 ) =

zlz—cosf) zsind
8. Z{cosn#} = Zriops; and Z{sinnb} = ErR—y
Proof: Let a = e'?
n = Ig =
We know that Z{ﬂ }— —a = Z{(E ) } glﬁ' z—(cosB+isinf)

Z

Z{(cosB + isinB8)™} = (z — cos) — isind

z[(z —cosB) +isinf]  z(z —cos6B) + izsind
((z— casﬂ))z +cinlg 2z°— 2zcos@ + cos?6 + sin®6

Z{cosnB + isinnB} =

z(z — cos@) + izsin® z(z — cos@) _ zsing

Z B +iZisinng; = -
{cosnB} + 1Z{sinn6)] — 2zcos6 + 1 22— 2zcosB+ 1 22— 2zcosB + 1




Equate the real and imaginary parts on both sides, we get

z(z — cos6)
z% — 2zcos8 + 1

Z{cosnB} =

zsing
z?2 — 2zcos68 + 1

Z{sinnf} =

Note: When @ = E

k-3
=241

2{eomz) = 2 ana 2 s -

zlz—coshd)
z2—-2zcoshf+1

9. Z{coshn@} =
Proof: Z{coshn8} = Z {h} = -Z{(EE) +(e7?) }
1r z z—e ¥ +z—¢f
E[z—e_ _g] 2|{z—efz—e9)

z(z — cosh8)
z2 — 2zcosh8 + 1

z Zz—(eg+e'gJ
72 —z(ef + e~ 15"']+1

-2

zsinhd

10. Z{sinhn8} = PR E—

Enﬂ_ﬂ —nb
Proof: Z{sinhné} = z{f}



_1[ z Z ]_E z—e f —z 46"
C2lz—e? z—e7fl 2((z—-ef)(z—e77)

z [Eg + E‘EJ
2|z —z(e? v ) +1

B zsinh@
22 —2zcoshf +1

11. Z-Transform of unit step function:

By the definition Z{f(n)} =X, f(n)z™®

s Ziu(n)} = Zu(ﬂ)z n—Zi z =i C)n

n=0 n=0 n=0
1. (1 Nt -1tz
=1+—+(;) +em=|1—-=| = —
z z z z—1
z
& Z{u(n)} =
z—1

-4

Note: Z{u(n — k)} = z7%Z{u(n)} = z-k;

>
Unit step function is denoted by u(n) and is defined by u(n) = EJ}{E:: < g



Properties of Z-transform:

1. Linearity property
If Z{f(n)} = F(z) andZ{g(n)} = G(z) then Z[af(n) £ bg(n)] = aZ{f(n)} + bZ{g(n)}

Proof: By the definition Z{f(n)} = X, _,f(n)z™™
Z{laf(n) £ bg(n)]} = z laf(n) £ bg(n)]z™" = az fn)zm+ bz g(n)z™
n=0 n=0 n=0

= aZ{f(n)} £ bZ{g(n)} = aF (z) + bG(z)
2. Damping Rule
If Z{f(n)} = F(z),then Z{a"f(n)}=F (E)

Proof: By the definition Z{f(n)} = X, _,f(n)z™®

s =3 e =3 o0 ()" =# ()
n=0 n=0

Note: Z{a " f(n)} = F(az)



3. Differentiation in Z-domain
If Z{f(n)} = F(2) then Z{nf(n)} = —z—[F(2)]
Proof: By the definition F(z) = Z{f(n)} =X, _,f(n) z™®

Differentiate w.r.t. z on both sides we get,

o

~IF(2)] = Zﬂf(n)(—n) 22 1=771y —nf(n)z®

n=0

ES

= —EZ;HJ’(H} 27"

L.1]

—2%[1’(2)] = Z nf(n)z™™

n=>0

+ Znf() =~z [F )]
4. Time shifting property
If Z{f(n)} = F(z), then

(i) Z{fin—k)} =z"*F(z)
iy Z{ftn+k)}=z%[F(2) — £(0) — fF(Dz = f(2)z72 — oo — f(k — 1)z~ (k1]



Proof: By the definition Z{f(n)} =X -, f(n)z™™
2{fn -0} =) fln-k)z™

Putn—k = m=}ﬂ—m+k

Z{f(n —k)} = Z Fm) z—(m+K) = 7k 2 Flm)z—m = z—¥ Z Flm)z—m

m=—kK m=—k
~ Z{f(n—k)} =z"*F(z)
Now

Z{fn+1)} = ) fln+k)z
n=0
Putnt+k=m=n=m-—=k

Z{f(n + &)} = z £m) z—(m= = 2 Z f(m)z—™

m=kK
=z [Z flm)z™ + Z fm)z™™ — Z f(m)z‘“‘]
m—ﬂ
= z¥ Z fim)z™ — Z f(m) z‘“"‘
m=0 m=0




s Z{fln+ 1)} = 2*[F(2) - £(0) — F(Dz7t = F(D)z72 — e — f(k — 1)z~ (D]
Note:
Z{f(t + kT)} = Z{fpsi} = 28[F(2) = £(0) — F(Dz71 = f(2)z72 — o = f(k — 1)z~ D]

Problems:

(n+1)(n+2)

1. Find the Z-transform of 5

2
Solution: z{@} - z{” *i’””} - %[Z[n2}+ 3z{n) + 22{1)]

1
2

z(z+1)+3 z +3 z]
(z—1)3 (z—1)2 z—1

i
nin+1)

2. Find the Z-transform of

i
nin+1)

Solution: Let f(n) =

) ) 1 _4 B Aln+1)+Bn
By partial fraction iD= m + 1 it D)

=1=An+1)+ Bn



Whenn=-1=B=-landn=0=A=1
el gl ol
"nin+1) n n+1 nn+1)) n+1

= lr:lg(Z i 1) - zlng(z i 1) =(1- z)lng(zi 1)

3. Find the Z-transform of 3
(n+1)(n+2)
I __ n¥3
Solution: Let f(n) = i Dt 2)
_ : n+3 A B Aln+2)+B(n+1)
By partial fraction (n#1)(n+2) n+1 n+2  (n+1in+2)

=2n4+3=An+ 2)+B(n+ 1)

Whenn=-2=B=1andn=-1=2A=1

. 2n+3 _1+1=}{ 2n +3 1
"m+1)n+2) n+1 n+2 n+1n+2)

Z
z—1

=zlcg(zi1)+zzlng( —7

}

7{

)—z=(22+z)lng( = )—z




Find the Z-transform of ab™ + 2n.

-
(z—1)7

Solution: Z{ab™ + 2n} = aZ{b"} + 2Z{n} = ai+ 2

1, forn=k

Find the Z-transform of f(n) = {0 otherwise

Solution: By the definition Z{f(n)} = X -, f(n) z™

2} = 1.7 =

Find the Z- transform of f(n — 5)

Solution: We know that Z{f(ﬂ —k)}=z"%F(z)

2 Z{f(n -5} =z75Z{f(n)} =275 (since f(n) is a unit step function)

Find the Z- transform of 2"&(n — 3)
Solution: We know that Z{g(n —k)} =z7% = !

=i

»Z{2"8(n - 3)} = [z72z{6(n)}]__z

= Llal = (since &(n)is a unit impulse function)

|

3’5

H?’H
o
SR

)



i
(n+2)!

8. Find the Z-transform of

1
(n+2)!

Solution: Let f(n + 2) = = f(n) =f

By shifting theorem
Z{fin + 0} = z%[F(@) — £(0) — F(D)z~1 — F(2z~% — - — f(k — 1)z~ 1]

= Z{f(n + 2)} = z2[F(2) — F(0) — F(1)z1]

1
-1

F@ =z{rm} =z{ -} = ¢

n!

Z{ﬁ} = g [e% —1-— z'll

9. Find the Z-transform of r"cosnfé and r*sinn@

Solution: We know that
z(z — cos8)

ZicosnB; =
¢ } z? —2zcos8+ 1

By damping rule Z{a®f(n)}=F (’:)

z(z — cos8) } B % (; - ‘5"53)

2 _ - 2
z<— 2zcosf + 1 == (g) —2§casﬁ+1

Z{r"cosn@} = {



z(z — rcos@)

L2t g} =
trcoans z2 — 2zrcos8 + r?

zsinf

Also Zisinnf} =
{ } z2=2zcos8+1

z
L zsing Fsmﬂ’
Z{r"sinng} = {— — T2
— 2zcos@ + 1) .= (E) —2Z 058+ 1
r r =
zrsing

L Zirtsinng; =
{ ) z2 — 2zrcosf + 1

10. Find the Z-transform of n conn&

Solution: We know that
z(z — cos6)

Zicosnf; = —
[ } z=—2zcosf + 1

By the property of Z-transform Z{nf{(n)} = —zi [F(2)]

Z{n cosnB} = —

d z(z — cos8)
E }

2dz|z2 - 2zcos0 + 1

B (z2 — 2zcos8 + 1) (2z — cos58) — (22 — zcos56)(2z — 2co056)
=7c (z? — 2zcosB + 1)°



z(z%cos6 — 2z + cos6)

A g5 = =
tn cosnf} (z2 — 2zcos6 + 1)2

11. Find the Z-transform of sin? (?)

Solution:

3;:112 (E) _ 1—r:nsE(?J _ 1—r;ns(?‘]
4 2 2

nir
1—cos|—=

z{sin’ ("f)} .y . ), - % [z{1} - z{cos (?)}]

1]z z2
T 2lz—1 z24+1

Theorems on Z-transform

1. First Shifting Theorem

If Z{f(t)} = F(z) then Z{e %' f(t)} = F(ze%T)



Proof: By the definition of Z-transform Z{f(t)} =% -, f(nT)z™"

= Z{eTf (1)} = Z e T f(nT)z™" = Z f(nT) (ze®T)™

n=0
~ Z{e T f(t)} = F(ze®")

Note: Z{e® f(t)} =F (sﬂ_T

2. Second Shifting theorem
If Z{f (t)} = F(2) then Z{f(t + T} = z{F(z) — f(0)}

Proof: By the definition of Z-transform Z{f(t)} = %, —, f(nT) z™®
~Z{f(t+T)} = i faT+T)z ™= i f(ln+1)Nz™
n=0 n=0
Put nt1=m Z{f(t +T)} =30, f(mT)z"m D =2¥3%__ f(mT)z™™
=z [i f(mT)z™ —f (0)‘ = z{F(z) — f(0)}
m=1

3. Initial Value theorem

If Z{f(n)} = F(2),then £(0) = lim,_.. F(2)



Proof: By the definition F(z) = Z{f(n)} = X _,f(n)z™™

f( 1) f(i)

=fO)+f( Dz +f(2)z7%+---=F(0) +

Taking limit as z — oo on both sides

}E‘;F(z) =f(0O)+0+--

= f(0) =lim... F(2)
4. Final Value Theorem
If Z{f(n)} = F(z),then lim,_. f(n) = lim_,,(z — 1) F(2)

Proof: By the definition F(z) = Z{f(n)} = Xo_,f(n)z™™

Z{fn+ 1)~ f) = ) [Fln+1) - f@)] 27
n=0
= z{F(z) —f(0)}—F(2) =X JJf(n+1) — f(n)] z™™
(z — 1F(2) — zF(0) = Z [F(n + 1) — F(n)] 2=
n=0

Taking limit z = 1 on both sides



liml(z = DF(2) = 2f(0)] = lim ) [f(n+1) = f(m)] 27

n=0

lim(z — 1) F(z) = £(0) = f(1) = f(0) + F(2) = f(1) + f(3) = F(2) + - f(e0)
Li_:tg(z —1)F(z) = f(e0) = lim f(n)
~ lim f(n) = Li_t}}(z —1) F(z)

Convolution of sequences

The convolution of two sequences {f(n)} and {g(n)} is defined as

fn) x gn) = X3-o fk) g(n — k)
5. Convolution Theorem
if Z{f(n)} = F(z) and Z{g(n)} = G(z),then Z{f (n) x g(n)} = F(z) G(z)
Proof: By the definition F(z) = Z{f(n)} =%, _,f(n) z™"
Z{f(n) + g(w)} = ) [f(n) x g(w)] 2™

= Y=o hn=of (k) g(n — k) z™™ ( By the definition of convolution)



By changing the order of summation

2 x g} = ) () ) gln—R)z™
k=0 n=0

= Z fl) Z{gn—k)} = Z flk) z7%6(z) = F(2)G(2)
k=0 k=0

Problems:

1. Find the Z-transform of
(i) f(t) =e™=*
(i) f(t) =e°*
(iii) £(t) = cosat
(iv) f(t) = sinat

Solution:

(1) By first shifting property Z{e~2t f(t)} = F(zeqT)

s~ Z{e et (1)} = Z{l}z—ize“? = [ : ]

z—1 T

E‘_‘EEE



zeﬂT

ze®?T —1

(2) Zle* (D} =Z{1},. . = [i]s-,—g-f

s
EET 2
= E =
EET

-1 z-—e%T

(3) By the definition Z{f(t)} =X, f(nT)z™

~ Z{cosat} = Z cosanTz ™™ = Z cosn{aT)z™™

n=0 n=0

z(z — cosaT)
-~ z2 —2zcosaT + 1

(4) Z{sinat} =¥ sinanTz™™ =} sinn(aT)z ™

zsinal

- z2 —2zcosaT + 1

2. Find the Z-transform of sin(t+T)

Solution: Let f(t + T) = sin (¢t + T) implies f(t) = sint

By second shifting theorem Z{f(t + T)} = z[F(z) — F(0)]



zsinT
z2 —2zcosT+ 1

f(0) =sin0 = 0and F(z) = Z{f(t)} = Z{sint} =

Z{sin (¢ + T} zsinT 0 z%sinT
s~ Z1sin =z — 0| =
z2 —2zcosT+ 1 z2 — 2zcosT+ 1

3. Find the Z-transform of (t + T)e~(¢*T

Solution:

Let f(t + T) = sin (t + T) implies f(t) = te™*

By second shifting theorem Z{f(t + T)} = z[F(z) — f(0)]

f(0) =0e® =0and F(z) = Z{f(t)} = Z{te™*} = Z{t}___T
3 Tz ] B Tzel
Clz-DAH__ v (zeT—1)2

T T T 2T
“Z{E+ Der ) =2 l(ze;i e ”] =G D

. . age -1
4. Find the initial value of F(z) = Yy

Solution:

By initial value theorem f(0) = lim._.. F(z)



I Z
T ez —1D(z-2)

= lim
2(1——)(1——)
If F(z) = ,find f(0)and f(oo)

1-0.25z-3’
Solution: By initial value theorem f(0) = lim__,.. F(z)

-1

(0) 1 + =z _
F0)=lm 052 =
By final value theorem, f(eoo) = lim__,(z — 1) F(z) = lim_._,(z— 1) Hfz:l 0

2z%+3z+14
=

Solution: By initial value theorem f(0) = lim_._,.. F(z)

6. IfF(z) = ,find f(2)and f(3)

222 43z+14 (2+3 14)
= lim z-1)* 51»1-133.:
(1=

~f(0)=0



F) = lim [(F(2) — £(0))]

3, 14
.2z +3z+14 3[2+g+;f
= lim z ;— = limz 3
Z—+00 (2—1) E—oo 4( 1
Z 1—5)

~f()=0

f(2) = lim [22(F(2) - £(0) — f(1)z7)]

3 14

_ 2z2+3z+14 [2+g+gz

= lim z?2 3 = limz* 3
Z—+o0 (3—1) Z—+00 4 1
z (1——)
z

~f(2) =2
£3) = lm [23(F(z) — F(0) = F(Dz"1 = f(2)z"2)]

o .(22°+3z+14 2
= AT S

. 2z%+ 323 +14z2 —-22z*+8z3—-12z2+8z-2
z¢(z—-1)*

= limz

- oo



o |2z%+432% + 1422 —22% +82° — 1222+ 82— 2
=limz 5 3
z—a z%(z—-1)
2 0B 2
_ 1123+ 2z2 +8z-2] L e s
= lim z3 o m = limz® 3
LS Rl T
! z
~f(3)=11

The Inverse Z-Transform

If Z[f (n)] = F(Z) then Z~1F(Z) = f(n) is called inverse Z-transform of F(Z)
Example:
Z[a"] = =-z-1 [_ — on
Methods of finding inverse Z-transforms:

Method of partial fraction
Method of residues

Long division method
Convolution method

RN



Partial Fraction Method:

. . 10
1. Find the inverse Z-transform of " =
z==—3z+2
Solution:
10z 10z

F(Z):zz—3z+2 - (z—-1)(z-2)

F(z) 10z 3 10z
10z z2-3z+2 (z—-1)(z-2)

1 A B

(:;'—1)(3—2)= :—:—1+E—2

1=A(z—-2)+B(z—1)
Putz=1 A=1

Putz=2 B=1
F(z) -1 N 1
10z z—-1 z-2

F()—_102+ 10z
A= 1772

i 222 2[5




z

— 1021 [ 1] +10Z°1 [

=

z_

3-1[ —10(D)"+ 10(2)*, n=0

10z ]
z2—-3z42]
Method of Residues

To find inverse Z- transform using residue theorem
If Z[f(n)] = F(Z), then f(n) which gives the inverse Z-transform of F(Z) is obtained from the

following result f(n) = ﬁ I.EH_IF (2) dz

Where C is the closed contour which encloses all the poles of the integrand.
By Residue theorem,

Iz”_lF (2) dz = 2mi|sum of residuesof =" F(z)atits pofe;f]
C
Substituting (2) in (1)

1. Find the inverse Z — transform of ——
(z—1)(z-2]

- ___ 1 _ 7-1
Solution: Let F(z) = {z—l}(z—z}f(n) =Z"1F(Z)

il

-

z"F(2) = -
() (z—-1(z-2)




The poles are z= 1, z= 2 ( simple poles)
f(n)= sum of the residues z"'F (z) at its

n

—

lesResiz" F(z)),, =lm(z -1 S ==
poles ES{ ( )}-— :—:E( )(:—l)(J—Q) 0
Resiz" " F(z){_, =lim(z-2 A =2

S{ ( )}z—_ 3_111( )(:—1)(:—2)

f(n)= sum of the residues =" F (z) at its poles

=2"—()".  n=0

Convolution Method:
: . =2 : .
1. Find the inverse Z-transform of oo Using convolution theorem.
Solution:

By convolution theorem Z " {F(z) » G(z)} = Z"HF(z)}Z71{G(2) }

-

z {(z i‘a]:}= z- {zi a’'z i a}




- =gl =)

=gt xq”®
n n mn n
=Zf{k)g(ﬂ — k) =Za"a“"‘ =Z a®™ = Q"Z 1=(n+1)a"
k=0 k=0 k=0 k=0
1 z?
~Z” =(n+1)a™
(z—a)? ( )
2
Find the inverse Z-transform of == using convolution theorem.
(2z-1)(4z+1)
Solution:

By convolution theorem Z={F(z) * G(2)} = Z HF(2)}Z71{G(2)}

Z—i{ e } =2~ i —z1]_= =
2z- D@z +1) 8(z-2) @+ D) (2-2) (+7)

Z Z

z—l
(z-3) (z+7)

=z 1



I
,a-"—"-u

1

6 ()
-y rwat-0=3 () () =

S L4 D D4 et (-2)7)

[1 —([—2)n+s

1-(-2)

&
Cill e S RE)

{(23 1)(4z+1)} 3 3\2

“ 2/1
L2

;

1
4

)

] [Sincea+ ar+ar®+ard+---.

e+l




Difference Equations:

A difference equation is a relation between the differences of an unknown function at
one or more general values of the argument.

Example:

1. ¥Yn+z2 —Vn+1 T ¥n =205

2. Qglps1+agu, =g(n)
Formation of difference equation

. . . T
1. Form a difference equation given y,, = cosn—

Solution:
Given y, =cosn—.............. (1)
YVniq = cosln + 1); = CGS'(;—F ?) = —51‘11?
Vp+1 = _51—?1? .................... (2)
(n+=m 'rr_l_nrr) niT
Vniz = —Sin = —sin|—+— )= —cos—
SnEl 2 2 2 2



Vn+2 = —Vn (By(1)
s Vnt2 + Vn = U

2. Form a difference equation given u,, = :—zln(n +1)

Solution:

Givenu, =inn+1)=2+2 ... (1)

Upyy = EEL 4 B T I 2)

2 yr = ':”TE”: TP ‘f o T 3)
(3)-(2) gives Upss— Uy =n+2............. (4)
(2)-(1)gives u,,sq — U, =n+1..............(9)

(4) — (5) gives u,+2 — 2u,+q4 +u, = 1 which is the required difference equation.



1. Solve

'mez T 6V + 9y, = 2" given yp = ¥y = 0 using Z-transform.

Solution:
Given ¥n+2 + 6¥u+1 + 9y, =27

Taking Z-transform on both sides,

Z{ Yns2} + 6Z{ yns1} + 9Z{y,} = Z{ 2"}

22¥(2) — z2y(0) — zy(1) + 6[z¥(2) — zy(0)] + 9¥(2) = ——

22¥(2) + 62¥(2) + 9¥(2) = ——

z—2
z
Y(z)[z2 +6z+9] =——
z—2
z
¥(z) = (z—-2)(z +3)2
Y

Y@ 1

z (z—2)(z+3)?

_ _ A B c

By partial fraction oD eiar ooz Tz T Torae

z—2



1=A(z+3)*+B(z—-2)(z+3)+C(z-2)
Put z=-3 = C=—- Put z=2 = A=—
ut z =- =—7 Putz= =2
Equate the co-efficient of z on both sides, we get

A+B=0=2F=—-4A=——

¥iz) _ 1
z  (z-2)(z+3)  z-2 z+3

Equation (1) becomes

1 =z 1 =z 1 z
25z—2 25z+3 5(z+3)°2

R
= yn) = zsz -2 zsz +3 EZ (z+3)2

Y(z) =

1 1 1
=y(n) =52 ()" =5z (=3)" + g n(=3)



Fourier Series

Contents - Fourier series — Euler’s formula — Dinichlet’s conditions — Fourier series for a
periodic function — Parseval’s identity (without proof) — Half range cosine series and sine
series — simple problems — Harmonic Analysis.

Periodic Functions

A function f(x) 1s said to be periodic, if and only 1if f(x + L) = f(x) 1s true for some value
ol L and for all values of x. The smallest value of L for which this equation 1s true for every
value of x will be called the period of the function.

A graph ol periodic function f(x) that has period L exhibits the same pattern every L units
along the x — axas, so that f(x + L) = f(x) for every value of x. If we know what the
function looks like over one complete period, we can thus sketch a graph of the function
over a wider interval of x (that may contain many periods). For example, sinx and cosx are
peniodic with period 2w and tanx has penod m.

TEE e e e e T R e e e




Dirichlet’s Conditions
(1) f(x) 1s single valued and finite 1n (¢, ¢ + 2m)

(11) f(x) 1s continuous or piecewise continuous with finite number of finite
discontinuties in (¢, c + 2m)

(m)  f(x) has a finite number of maxima and minima in (c,c + 2m)

Note 1: These conditions are not necessary but only sufficient for the existence of Fourier
Series.

Note 2: It f(x) satishies Dinchlet’s conditions and f(x) 1s defined in (—oo, c0), then f(x)
has to be penodic of peniodicity 2m for the existence of Fourier series of period 2m.

Note 3: If f(x) satisfies Dirichlet’s conditions and f(x) 1s defined in (¢, ¢ + 2m), then f(x)
need not be periodic for the existence of Fourier series of period 2.

Note 4: If x = a 15 a point of continuity of f(x), then the value of Fourier series at x = a 13
f(a). If x = a 15 a point of discontinuity of f(x), then the value of Fourier series at x = a

18 % |f(a +) + f(a —)]. In other words, specifying a particular value of x = a in a Fourier
series, gives a series of constants that should equal f(a). However, if f(x) 1s discontinuous

at this value of x, then the series converges to a value that 15 half-way between the two
possible function values.



Fourier Series

Periodic functions occur frequently in engineering problems. Such periodic functions are
often complicated. Therefore, 1t 15 desirable to represent these in terms of the simple

periodic functions of sine and cosine. A development of a given periodic function into a
series of sines and cosines was studied by the French physicist and mathematician Joseph
Fourier (1768-1830). The series of sines and cosines was named after him.

If f(x) 1s a periodic function with period 2m defined in (¢, ¢ + 2m) and the Dirichlet’s
conditions are satisfied, then f(x) can be expanded as a Fourier series of the form

ﬂ B d
flx) = ED + Z(ﬂn cosnx + b,, sinnx)
n=1

where the Fourier coefficients ay, a,, and b, are calculate using Euler’s formula.

Euler’s Formula

c+2m

(1) ap ==L f()dx
(2) a, = ij;“ﬂ f(x) cosnxdx

C+27

(3) by == [ f (x) sinnxdx



Standard Integrals

1. [e™sinbx dx = ﬂfﬂ}z lasinbx — bcosbx]|
2. [e®™cosbx dx = —1p? |acosbx + bsinbx]

3. Bernoullr’s generalized formula of integration by parts
Juvdx = uv; —u'vytu"vy —u'"vy + -
Trigonometric results

1. sinnm =0, 1f n1s an integer

2. cosnm = (—1)", ifn1s an integer
Example 1

Obtain the Fourier series of the following function defined in (0, 2m).

f(z) = z, O<ae<w
Y'=Y 7. wm<ax<2r. and has period 27

Solution.

STEFP ONE
1 2T 1 T i 29
iy = — fle)de = —f flz)dx + —f flxz)dz
0 Tt

ﬂ. t: .TIF |



_f adxr + —f T - da
e 0 rn T
2]t
— — —
L2 g T ax
— '[]) —+ (EW — 1".")

|
o |
s,
t».:«ﬂb;

— — == 1T
2
. ST
1.2, L = —
] >
STEP TWO
1 2w
By = — flx)cosnxzdx
T Jo
= —f :rcmsﬂ.;t:d;r+—f - cosnrdr
i 0 i s

111 . , —cosnr |
= —=|—1msinnmTr—0-sinmn0 ]| — =
T | n i) =

+ —(sin n27 — sin nr)
=



gy

_ 1 [1 (0—0) + (c=zm - mz”)} +2(0-0)
'L TL m ! T

1

= (cosnm — 1),

2T

2
Py y Tl odd
| Wy, ==
0

y T EVEI.

STEFP THREE

bﬂ —

Sl g

We now have

where

2
f(x)sinnxdx
Jo
i g 1 2
/ x sin nedxr + — f 7 - sin nr dx
< [} w T
1| f —7cosnm sinmnxe]™ 1
= — -+l | - | —s— — —(cos 2nmT — cos i)
iy T ) - T
1 _—ﬂ'[—l}” sin nw — sin 0 1
= — — (1L —(—1)"
iy i Ll ( o ) ] ?;r,{ ( ")
1 Te ]' e
— —_ = (—1)"™ + 0 — — (1 — (—1)™)
n T
i -
Fle) = ?D + E [ cos e + b, sin i)
e—1

2 —=5= , n odd

__ e _ 0 , T even - 1
ap = s gy = { 2 s by = ——



Even and Odd Functions
The function fix) 15 said to be even, 1f {{-x) = f(x).
The function fix) 15 said to be odd, 1f f{-x) = -f{x).

If f(x) 1s an even function with period 2 defined in (—m, ), then f(x) can be expanded
as a Fourier cosine series:

Iy -
flx) = E-I_ z a, cosnx
n=1

where the Founer coeflicients ay and a,, are calculated by

(1) ao = =J," f(X)dx
(2) a, = % jﬂﬂ f(x) cosnxdx

If f(x) 1s an odd function with period 2m defined in (—m, ), then f(x) can be expanded as
a Fourier sine series:

f(x)= Z b, sinnx
n=1

where the Fourier coefficient b,, 1s calculated by b, = i j: f(x) sinnxdx



Example 2

Derive the Fourier series of f(x) = x + x* in (—m, ) of periodicity 2w and hence deduce
1 n?

n 6
Solution.
STEP ONE
1r™ (x)d
Ao = = x)dx
0 ﬂ'J_ﬂf
1 (™ 2 d
Ao = — X+ Xx X
0 .ﬂ'_J_“( )
_1p,
_nlz T 3]‘”
_ 1. on? (-m)? |, (- m)?
=2 [ +5 - (= +52)




STEP TWO

1 T
Ay = ;J‘ fF(x)cosnxdx
—IT

1 I
—J- (x + x*)cosnx dx
T —IT

Ay =
:% Cx + %2) (.S'il_ﬂﬂx) — (1 + 2x) (ﬂ} + (2) (—_s;zm)]i
:% 1+ 2m) (S205) — 1 — 2m (£2220)]
17 (—1)™ (—1"
:E_E“( 2 )_'_EH( 2 )]
-+ 13y
= —(—1)
STEP THREE
b, = %L:f{xjsinnxdx
b, = — " (x + x*)sinnx dx

=[x+ () —a + 20 (22 + @ (=)

= _[['ﬂ_- + ﬂ__z)( r:-ﬂ-sﬂ:rl') 4 7 (n‘.‘-ﬂEﬂﬂ) —(—m 4+ ]( E‘GIS‘]"I:?I.') = (E‘r_‘rs:l"l:?'l.')]
1 —(—D»"

=z [z ()]

2
birl — H{_1}n+1

Therefore, the Fourier series 1s of f({x) is given by



a
f(x)= Tﬂ + Z{an cosnx + b,, sinnx)

n=1
f(x)= % + Eﬁ:ﬂ% (—1)" cosnx + f—l(—lj’”l sinnx) (1)
STEP FOUR
Deduction:
The end points of the range are x = w and x = —m. Therefore, the value of Fourier senes at
X = m 15 the average value of f(x) atthe points x =mand x = —m. Hence putx = m in (1),
—1 T = 1
— HE ) == + 4ZF{_1)H COSNT

n=1

+m2) + (—1 + m 2 o
CRLRIGEL0 MU < N

n=1
212 45: 1
e — —
3 n?
=1



| Half-Range Fourier Series

Example 3
| Express f(x) = x(m — x),0 < x < m as a Fourier series of periodicily 211' containing (i)
sine terms only and (11) cosine terms only. Hence deduce, 1 — — + —3 - ; + e = :—: and
2
| é——+—z—4—z+ =n—2,
Solution.
(i) sine series:

Lclf(x)=ib_sinm
|

x(T - x) sin nx dx

Aual ()l

=-§[—f;{(-1)'-ll]

O Sy,

where b, = %




-]
=0 if n is even

~ if n is odd
T

. _8 < 1 : _
- Six "-?: {h_n,mnm 1) x.

Setting x = m”2 which is a point of continuity we get first deduction

(i) cosine series:
- -

Let fi(x)= 2 + ? a, COs nx

m
wihere nn=% { x (m — x) dx
m
2[ = 2| _x
“x) 2 " 3 3

_ 2| _= . _E |l _Z 1401
-l[ = v ﬂz] & g o=y

= D for n odd



=— izfnrncvﬂn

:1:--.1:)———-4 Z :nsmr
ntltﬁ

:{l-x}=§— z ﬁms?m:.
L

Setting x = /2 which is a point of continuity,



Harmonic Analysis

Example 4

Compute the first three harmonics of the Fourier series of f{(x) given by the following table.

X 0 /3 2n/3 T 4n/3 Sn/3 2w
fix) 1.0 1.4 1.9 1.7 1.5 1.2 1.0
Solution.
We will form the table for the convenience of work.
We exclude the last point x = 2m.
x f(x) COs X sin x cos 2x sin 2x cos 3x sin 3x
1.0 1 0 1 0 1 0
/3 1.4 0.5 0.866 -0.5 0.866 -1 0
2n/3 1.9 -0.5 0.866 -0.5 -0.866 1 0
T 1.7 -1 0 1 0 -1 0
4n/3 1.5 -0.5 -0.866 -0.5 0.866 1 0
S5n/3 1.2 0.5 -0_.866 -0.5 -0.866 -1 0




a=263Ax)=1/3(1.0+14+19+17+15+1.2)=29
a1=2/63f(x)cosx=1/6(1+07-095-1.7-0.75+0.6) =-0.37

ax=2/6 } f(x) cos 2x =-0.1

as = 2/6 } f(x) cos 3x = 0.03

b1=2/6 Yf(x)sinx=0.17

by = 2/6 ¥ f{x) sin 2x = -0.06

b3=2/6 Y f(x)sin 3x =10

fix)=145-033cos x—0.1 cos 2x +0.03 cos 3x +0.17 sin x — 0.06 sin 2x



[ APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION 1

One-dimensional wave equation

Let us start with the wave equation. Imagine we have a tensioned guitar string of length L.
Let us only consider vibrations in one direction. Let x denote the position along the string, let
t denote ime, and let y denote the displacement of the string from the rest position. See Fig.
1.

yrl §

Figure 1: Vibrating string of length L, x is the position, v is displacement

Let y(x, t) denote the displacement at point x at time t. The equation governing this setup 1s
the so-called one-dimensional wave equation:

N (1)

ar= dx=

We generally use a more convenient notation for partial derivatives. We write y, instead of

a . . a<y
a_{* and we write v, instead of Py

With this notation the equation that governs this setup 1s the so-called one-dimensional wave
equation, becomes ¥y = A% Vyy

for some constant a > 0. The intuition 1s similar to the heat equation, replacing velocity with
acceleration: the acceleration at a specific point 18 proportional to the second denivative of the
shape of the string. The wave equation i1s an example of a hyperbolic PDE.



Solution of the Wave Equation (by the method of separation of variables)

Let ¥y = X(x).T(t) be a solution of (1), where X(x) is a function of x only T(£) is a
function t only.

fz—- I ..a_.-ll’:: ]
Brz-ﬂ ““darz X'T,

. &T
where ..r = ?*_2 aﬂd T = ? i
Hence (1) becomes, XT"=aX"'T
rl‘ ?"'I‘l 1

' 1 the R.H.S. is a function of
L.H.S. of (2) is a function of x only whe:reas _ .
- y. But x and ¢ are independent variables. Hence (2) is true only if

time ¢ onl

each is equal to a constant.
.X" T i ' 2
2 _ - = — = k (say) where k is any consta
X &T

Hence X" —kX=0and T" -a kT=0 | Ef}
Solutions of these equations depend upon the nature of the value 0

Case 1. Let k = A%, a positive value . ]
Now the equation (3) are X" — A’X=0and 7" - AT =0.
Solving the ordinary differential equations we get,

X=A|fh + BIE- Ax

- Aat
and T=Ce"” + De



Case 2. Let k= — A%, a negative number.
Then the equations (3) are X' +A* X=0and e N'T=0

Solving, we get,
I=A,cmh+ﬂ;5iﬂ1-‘

and r=c1=m1m+ﬂ,5inlm.

Case 3. Let k=0.
Now the equations (3) are i
Then integrating, X = Ay + B3
- T=0C+ D,

~0and T"=0.

P=“1¢“+E.¢“"}(C.ew* ﬂ'lf-u) g 1D
¥=(A, cos Ax + B, sin Ax) (G2 - A
V= (Ayx + B)(Cyt + Ds)



Heat on an insulated wire

Now let us consider with the heat equation. Consider a wire (or a thin metal rod) of length L
that 15 insulated except at the endpoints. Let x denote the position along the wire and let t
denote time. See Figure 2.

temperature u

\
L =x

insulation

Figure 2: Insulated wire

Let u(x,t) denote the temperature at pomnt x at time t. The equation governing this setup 1s
the so-called one-dimensional heat equation:

Ou _ 0%
ot 9a?’

where k > 0 1s a constant (the thermal conductivity of the matenal). That 1s, the change in
heat at a specific point 1s proportional to the second derivative of the heat along the wire. This
makes sense; if at a fixed t the graph of the heat distribution has a maximum (the graph 1s
concave down), then heat flows away from the maximum and vice-versa.

Therefore, the heat equation 1s u, = ku,,



For the heat equation, we must also have some boundary conditions. We assume that the ends
of the wire are either exposed and touching some body of constant heat, or the ends are
insulated. If the ends of the wire are kept at temperature 0, then the conditions are:

(1) u(0,t) = 0and u(L,t) = 0.
[f on the other hand, the ends are also insulated, the conditions are:
(11) U, (0,t) =0and u,.(L,t)=0.

Let us see why that 1s so. If u, 1s positive at some point x0, then at a particular ime, u 15
smaller to the left of x0, and higher to the right of x0. Heat 18 flowing from high heat to low
heat, that 1s to the left. On the other hand 1f ux 1s negative then heat 1s again flowing from
high heat to low heat, that 1s to the right. So when ux 1s zero, that 15 a point through which
heat 15 not flowing. In other words, ux(0,1)=0 means no heat 15 flowing in or out of the wire
at the point x=0.

We have two conditions along the x-axis as there are two derivatives in the x direction. These
side conditions are said to be homogeneous (1.e., u or a derivative of u 1s set to zero). We also
need an mnitial condition—the temperature distribution at time t=0. That 15, u(x,0)={{(x), for
some known function fix).



Solution of heat equation by method of separation of variables

We have to solve the equation

(1)

where k = a* is called the diffusivity of the substance.

Assume a solution of the form u(x,t) = X(x).T(t) where X 15 a function of x and T 15 a
function of t.

Then (1) becomes,
XT' = o’ X"T,

. dX ,_dr
where X ";"I;fn“dT = dr

..:u ‘_T'_'-

Le., = ="

X T —(2)

The LHS 1s a function of x alone and the RHS 1s the function of t alone when x and t are
independent vanables. Equation (2) can be true only 1f each expression 18 equal to a constant.



W X' —kX=0,and T' — o’kT=0

.A3)
The nature of solutions of (3) depends upon the values of k.

Case 1. Letk=22% a positive number.

Then (3) becomes,

X"—A’X=0, and T —a®2T=0.
Solving, we get

3 11.:

X=A”+Be™ and T=Ce**".

Case 2. Let .I:=—?|.1, a negative number. Then (3) becomes
X'+A'X =0, and T° + c@A2T = 0.

Solving, we obtain
—I:l-]]..;l
X =A; cos Ax + B, sin Ax, and T = Cye .
Case 3. Letk=0.
Then X” =0 and T = G.
Solving, we arrive at ,
X=Ayx+ By and T= C,.
&Wﬂtmm: solutions of (1) are

—Ax a A
H(I‘ '}={Alfh+ﬂlt } Elf

2,2 ..(I0)
U(x, ) = (A, cos Ax + B, sin Ax) C2 €~

ul(x, t)=(Asx+B3)(xs



Two-Dimensional Heat Flow

When the heat flow 15 along curves instead of along straight lines, all the curves lying
in parallel planes, then the flow 1s called two-dimensional. Let us consider now the flow of
heat 1n a metal plate in the XOY plane. Let the plate be of uniform thickness h, density p,
thermal conductivity k and the specific heat c¢. Since the flow 15 two dimensional, the
temperature at any point of the plate 18 independent of the z-co-ordinate. The heat flow lies in
the XOY plane and 1s zero along the direction normal to the XOY plane.

"f-iu
| D(x y+8y)} -~ C(x+8x, y+8y)
!
| | T
i Ay | B(x+ 8x,y)
0 X

Now, consider a rectangular element ABCD of the plate with sides
ox and dy, the edges being parallel to the coordinates axes, as shown in the
figure. Then the quantity of heat entering the element ABCD per sec. through
the surface AB 1s



Example 1 The vertices of a thin square plate are (0,0),(L,0), (0,0), (L, [). The upper
edge of the square is maintained at an arbitrary temperature given by u(x,[) = f(x).
The other three edges are kept at zero temperature. Find the steady state temperature

~at any point on the plate.

Solution.

s%lhﬂ:i ¥) 15 the temperature at any point (x, y) of the plate in
SI. rl N

'31—“5-1--‘--’i =0
™l 3¢ 3y
mhgund:rycondilinnsm
u(0,y) = 0, forOsy<!
w(lLy) =0, forOsy<|
w(x,0) =0, for0sxs|
ulx, ) = fix), forO<x<|




Solving (1), we get the three possible solutions,

u(x, y) = {Ac"" + E:‘L‘}{Ccns A v+ D sin Ay) el 1)
u(x, ¥) = (A cos Ax + B sin AxNC & + D ¢ "’"} A1)
uix, ¥) = (Ax + B} Cy + D) oo (1IN)

where A, B, C, D are different arbitary constants in each solution.

Now we shall select the solution I1.
ie., u(x,y)=(A cosAx+ B sin Ax)(Ce™ + De'“”] ...{IT)
Using the boundary condition (i) in (I,
A(Ce™ + De ™M)=0,for0O<y<l. -.A=0
Using the condition (i) in (IN
u(l, ) =B sin M (Ce™ + De ™)=0. But B#0;sinA=0
iLe., M= nn

: nmw :
Le A= ~; Where nn is any integer.

L
-

Using (iii) in I1,
u(x, 0) = (C + D)(B sin Ax) =0, for0 < x < .
B#0OHence c+D=0. .. D=-C.

Hence (1) reduces to,

nItX - _ﬂ:l
“(I-}‘]=BC5in"T (E! a2k



PARTIAL DIFFERENTIAL EQUATIONS

This unit covers topics that explain the formation of partial differential equations and the solutions
of special types of first order partial differential equations (PDE).

1 Introduction

A partial differential equation (PDE) 15 one which mvolves one or more partial derivatives.
The order of the lighest derivative 15 called the order of the equation. A partial differential equation
contamns more than one independent vaniable. But, here we shall consider partial differential only
equation two independent vanables x and y so that z = {{x, y). We shall denote

A partial differential equation 1s linear 1f 1t 18 of the first degree in the dependent vanable and
its partial derivatives. If each term of such an equation contains either the dependent vaniable or one
of 1ts derivatives, the equation 15 said to be homogeneous, otherwise it 18 non homogeneous. Partial
differential equations are used to formulate and thus aid the solution of problems involving functions
ol several vanables; such as the propagation of sound or heat, electrostatics, electrodynamucs, flud
flow, and elasticity.



2 Formation of Partial Differential Equations

Partial differential equations can be obtained by the elimination of arbitrary constants or by
the ehhmination of arbitrary functions.

(i) By the elimination of arbitrary constants
Let us consider the function f(x, vy, 2z, a, b )=0 -cccmmmmeeeee (1)
where a & b are arbitrary constants

Differentiating equation (1) partially w.rt x & v, we get

] ]
+ p =0 (2)
X oz
Ch b
+ q =0 (3)
oy Oz

Eliminating a and b from equations (1), (2) and (3), we get a partial differential equation of the first
order of the form f(x, v, z, p,q) = 0.

(ii) By the elimination of arbitrary functions

Let w and v be any two functions which are arbitrary. This relation can be expressed as

u=1f{v) (1)

Differentiating (1) partially w.rt x and vy and ehminating the arbitrary functions from
these relations, we get a PDE of the first order of the form f(x, v, z, p,q ) =0.



Example 1

Eliminate the arbitrary constants aand b from z = ax + by + ab to construct a the PDE.

Solution. Consider z = ax + by + ab (1)

Differentiating (1) partially w.r.t. x and y, we get

-

oz

= a e, p=a (2)
ox
oz

= b e, q =b (3)
oy

Using (2) and (3) in (1), we get, z = px + qy + pq, which is the required PDE.
Example 2

Construct the partial differential equation by eliminating the arbitrary constants a and b from z =
(x*+ a*)(y*+ b*).

Solution. Givenz = ( x*+ a*)(y*+ b*) (1)
Differentiating (1) partially w.r.t x and y, we get
p = 2x (yv*+ b?)
g =2y (x*+ a*)

Substituting the values of p and g in (1), we get, 4xyz = pgq, which 1s the PDE.



3 Solutions of a Partial Differential Equation

A solution or integral of a partial differential equation 15 a relation connecting the dependent
and the independent vanables which satisfies the given differential equation. A partial differential
equation can result both from elimination of arbitrary constants and from elimination of arbitrary
functions. But there 1s a basic difference in the two forms of solutions. A solution containing as many
arbitrary constants as there are independent vanables 1s called a complete integral. Here, the partial
differential equations contain only two independent variables so that the complete integral will
include two constants. The solution obtained by giving particular values to the arbitrary constants in
a complete integral 1s called a particular integral.

Singular Integral

Let f(x,y.zp.gq) =0 (1)

be the partial differential equation whose complete integral is
f(x,y,zab)=0 (2)

where a and b are arbitrary constants.

Differentiating (2) partially w.r.t. a and b, we obtain

5
..... =0 SS— 3
Pa
P
and 00000 e =0 SR (4)
b

The eliminant of a and b from the equations (2), (3) and (4), when 1t exists, 15 called the singular
integral of (1).



General Integral
[n the complete integral (2), put b = F(a), we get
Fixyza Fla))=0  -—— (5)

Differentiating (2), partially w.r.t. a, we get

cé o

The eliminant of a between (5) and (6), 1f 1t exists, 1s called the general integral of (1).

4 Lagrange’s Linear Equation

Equations of the form Pp +Qq =R (1), where P, () and R are functions of
X, ¥,z are known as Lagrange equations. To solve this equation, let us consider the equations u
=aand v = b, where a, b are constants and u, v are functions of x, y, 2.

- - -

cu cu cu
du= dx + dy + — dz
ox cy (ir d
Companng (2) and (3), we have
cu du cu
dx + dy + — dz =10 (3)
ox cy (ird
Similarly, oV oV ov
dx + dy + dz =0 (4)

- -

ox oy i



By cross-multiphication, we have

dx dy dz
ou OV ou oV cu oOov du ov U ov odu  ov
0z Oy oy (2 ox oz oz oOx oy oOx oOx oY
(or)
dx dy dz
T el T ey Gp— (5)
P Q R

Equation (5) represent a pair ol simultaneous equations which are of the first order and of first
degree. Therefore, the two solutions of (5) are u=a and v =b. Thus, f{u, v) = 0 15 the required
solution of (1).

Note:

To solve the Lagrange’s equation, we have to form the subsidiary or auxiliary equations
dx dy dz

p Q R

which can be solved either by the method of grouping or by the method of multipliers.



Example

Find the general soluttonof (mz — ny)p + (nx — lz)g =
Solution.
dx dv d=z
mz- ny B nx - lz B ly - mx
Using the muluphers x, y and z, we get
xdx + ydy + zd=z
each fraction =
T ooxdx +ydy+zdz = 0, wh'i::.:h on integration gives

x/2 + yv'/2 +z°/2 = constant

or :!-;2+3rr3-!-,.1-1 = Cj (1)

Again using the multipliers 1, m and n, we have

Idx + mdy + ndz
cach fraction =

0

=

Ix +my +nz = ¢ (2)

Hence, the required general solution 1s

Dx"+y +z , Ix+ my+nz )= 0

ly — mx.

S ldx +mdy +ndz = 0, which on integration gives



1 Some Special Types of Equations which can be Solved Easily by Methods other than the
General Methods

The first order partial differential equation can be written as f(x, vy, z, p, q) = 0, where p = j—i and

dz . , _ ,
1=3 In this section, we shall solve some standard forms of equations by special methods.

Type I: f(p. q) = 0. (Equations containing p and g only).
Suppose that z = ax + by +c 1s a solution of the equation f(p, q) = 0,
where {'{a, b)= 0.

Solving this for b, we getb =F (a).

Hence the complete integral 1sz=ax + F(a) y + ¢ (1)
To find the singular integral, differentiate (1) w.r.t. a, we get, 0 = x + yF'(a) (2)

Now, the singular integral 15 obtained by eliminating a and ¢ from (1) and (2), we get 0= 1.
The last equation being absurd, the singular integral does not exist in this case.
To obtain the general integral, let us take ¢ = F(a).
Then, z= ax + F(a) y + F(a) (2)
Differentiating (2) partially w.r.t. a, we get
0=x+F(a).y+F'a) (3)

Elimmating a from (2) and (3), we get the general integral.



Twype Il: Eguations of the form f{xp.q) =0, fiv.p.q) =0 and f{z,p.q)=0. (One of the
%, ¥ and = occurs explicitly)

(1) Letus consider the equation f{x,p.q)= 0.
Since # 15 a function of x and v, we have

i lard
dz = ——eee= dx + - dy
o oy
O dz = pdx + gdy

Assume that g = a@.
Then the given eguation takes the form f (x, p,a) = 0.

Solving, we get p = Fix, a). Therefore, dz = Fix, a) dx + a dy.

(1) Let us consider the eguation fiy, p, q) = 0. Assume that p = a.
Then the equation becomes f{v, a, q) =0 Solving, we get q = F (v, al.
Therefore, dz = adx + F(y.,a) dy.

Integrating, = = ax + 0F{y,a) dy + b, which is a complete Integral.
(1) Let us consider the equation fil=z, p, q) = 0.

Assume that g = ap.

Then the equation becomes F{=, p, ap)i=0
Solving, we get p = Fiz.a). Hence d= = F(z.a) dx + a Fi=, a) dy.

d=
M, —————— =gk 4 ady
I (za)
d=
Integrating, o e - ay + b, which 1s a complete Integral

oy {Z a)

variables



Type I11: fl(x, p) = 2 (v, q). ie, equations in which “z" is absent and the variables are separable.
Let us assume as a trivial solution that fix,p) = g(v.q) = a (say).

Solving for p and q, we get p = F(x, a) and q = G(y, a).

dz fz
But L Y. "3 . |V

X o
Hence dz = pdx + qdy = Fix, a) dx + Giv, a) dy

Therefore, z = oF(x, a) dx + oliy, a) dy + b , which 15 the complete integral of the given equation
containing two constants a and b. The singular and general integrals are found 1n the usual way.

Example 7
Solve pq = xv
Solution.

The given equation can be written as

P L
— T —— = 0 S3Y)
x g
P
Therefore, === = @ implies p=ax
x
¥ ¥
and e | implies q = =--—--
q a

Since dz = pdx + gdwv. we have

v
dez = axdy # ce—e- dv, which on integralion gives.
a
ax” ¥
= ——————t ————+ b



Type IV (Clairaut’s) form

Equation of the type z=px + qv + f (p,g) ====-- {1})15 known as Clairaut's form.
Dnfferentiating (1) partially wrtxand y, we getp=aand gq="h.

Therefore, the complete integral is given by
z=ax + by + f{a,b).
2EQUATIONS REDUCIBLE TO THE STANDARD FORMS
Sometmes, it 15 possible to have non — linear partial differential equations of the first order
which do not belong to any of the four standard forms discussed earlier. By changing the varnables
surtably, we will reduce them into any one of the four standard forms.

Type (I): Equations of the form F{x™ p, v"q) = 0 (or) F (z, x"p, v"q) = 0.

Case{i): If m 'l and n 'l, then put x!"™ =X and }r"“ =%.

oz oz dX oz
NOW, P = e = e e = e ([emi) x 7™
o oxX ox ax
oz Oz
Therefore, xX"p= -=—--(1-m) =(1 —m) P, where P = --eemm-
X aX
oz
Similarly, v"q = (1-n)Q, where Q = -
aY

Hence, the given equation takes the form F(P, Q)= 0 (or) F(z, P, Q)=0.



Casefiij : lif m=1and n= 1, thenput logx=X and logy=Y_
oz oz JX o'z 1

MNOW, P = mmeme = mmmmmes | oo = s e

ox oxX  Ox X x
Oz

Therefore, xp = -—-—-=
ax

Similarly, yq = ()

Type (1I) : Equations of the form F{z"p, z%q) = 0 {or) F{x, z5p) = G(v, z%q).

Case (i) : If k '-1, put Z =z*"",

oL 2rA o'z (i
NOW sccceee = -w = (k+1)2". == (k+1) Z'p.
X oz ox e
1 FEra
Therefore, z'p = —veee  —eeeeee
k+1 P
| e A
Smmilarly, z"q T ——
k+1 oy

Case (ii) z If k=-1, put £ =log z.

oy oZ Oz 1
MNow, ——————= = e e = e P
(e Lo o z=
(ara 1
Simualarly, — — L

oy z



3 Charpit’s Method

This 15 a general method to solve the most general non-linear PDE f(x,v,z,p,g) =0 __ (I} of
order one mvolving two independent vanables. To solve (1), we solve the system of auxihary
equations called Charpit's equations.

dp dq dz de _ dy _df

== )
Ltpfy Nh¥ale -Php—Qfy -H -f3 O (<)

Working rule of Charpit’s Method:

Step 1: Transfer all the terms of the PDE to LHS and denote the entire expression by
flx,y,zp.q) =0

Step 2: Wnite down Charpit's auxiliary equations.

Step 3: Find f,, f,, [, f, and f;. Put them n Step 2 and simplify.

Step 4: Choose two fractions such that the resulting integral 15 a simplest relation involving p or g
or both.

Step 5: Use Step 4 to find p and g and put p and g in the equation dz = pdx + gdy, which on
integration gives the complete integral.



Second and Higher Order Partial Differential Equations
This unit covers the following topics: Partial differential equations of second and higher order,
Classification of linear partial differential equations of second order, Homogeneous and
non-homogeneous equations with constant coefficients, Monge's methods.
1 Classification of linear partial differential equations of second order
The general second order linear PDE has the following form

Ay, + Buyy + Cuyy + Duy, + Euy, + Fu = G, (1)
where the coefficients A, B, C, D, F and the free term G are in general functions of the independent
variables x, v, but do not depend on the unknown function u. The classification of second order linear
PDEs 1s given by the following:
The second order linear PDE (1) 15 called
(1) Hyperbolic, if B2 — 4AC = 0
(ii) Parabolic, if B* —4AC =0

(i1) Elliptic, if B* — 4AC < 0



2 Homogeneous Partial Linear Differential Equations with constant Coefficients.

A homogeneous linear partial differential equation of the n order is of the form

'z "z "z
T o — TR + Cp == =Fxy) e (1)
E:{I'l axﬂ- |a}r ﬁyﬂ
where ¢, ¢) -———- —. Cp are constants and F 1s a function of *x" and ‘y’. It 1s

homogeneous because all its terms contain derivatives of the same order.

Equation (1) can be expressed as

(ccD"+¢, D™D+ ... +¢,D" )z=F(xy)

or f(DD)z=F(xy) = -—— (2),
F &
where, ~—~—~=Dand ——-=D"
ox ay

Asn the case of ordinary linear equations with constant coefficients the complete solution
of (1) consists of two parts, namely, the complementary function and the particular integral.

The complementary function 15 the complete solution of (D, D) z = (-—---- (3), which must contain
n arbitrary functions as the degree of the polynomial f{D, D'). The particular integral 15 the particular
solution of equation (2),



Finding the complementary function

Let us now consider the equation {D, D'y z=F (x, y).
The auxiliary equation of (3) is obtained by replacing Dby mand D by 1.
e, com"+em™ + .. +Cp=0 =meemmee (4)

Solving equation (4) for m, we get n roots. Depending upon the nature of the roots, the
Complementary function 18 wrilten as given below:

Roots of the auxiliary Nature of the Complementary function(C.F)
equation roots
my,my,my ... m, distinct roots £ (yEmpxpHs(vimax) + .+ (v+mgx).
M;=mz;=m, M3, My,.....M, | two equal roots | fi(v+mx)Hxt(y+mx) + f5(y+mx) + ..+
fal y+mpx).
m=m;=..._=m,=m |allequalroots | fi(y+mx)txfy(y+mx)+ x Gly+mx)t ..
+ . fa (v+mx)




Finding the particular Integral

Consider the equation f{ DD)yz=F (%, ¥).
1
Now, the P 1 is given by -=eeee=== F (x,¥)
fiD,D)

Case (i) : When F(xy) =e™"™

|
o T W— ey

f(D.D)

Replacing D by "a’ and D by ‘b’., we have

Pl e™™_  where f(a,b) #0.

Case (ii) : When F(x.¥)=sin{ax + by) (or) cos (ax +bv)

1
Pl= P —— sin (ax+by) or cos (ax+by)
AD*,DD. D7)

Replacing D" =-a*, DD’ * = -ab and D =-b*, we get
1

Pl = --eeeeeeeeeeeeew sin (ax+by) or cos (ax+by) , where fi-a", - ab, -b”) # 0.
ﬂ:—azu = ah3 -b_:'



Case (iii) : When F(x,v) =x"y",

1
PI=-——x"y" = [f(D,D)]" x"y"
fiD.D)

Expand [f(D, D')]" in ascending powers of D or D' and operate on x™ y" term by term.

Case (iv) : When F(x,y) 15 any function of x and y.

R;:suh-t—-—-——-:—-
f(D.D)

into partial fractions considering {(D,D’) as a function of D alone.

Then operate each partial fraction on F(x,y) 1n such a way that

_____ F (xy)= [ F(x,c-mx) dx ,
D-mD

where ¢ 15 replaced by y+mx after integration



