

COURSE CODE & TITLE – 19ECE14 / WIRELESS COMMUNICATION

Presentation by Mrs.V.Hema AP-ECE

History of wireless communication

- Guglielmo Marconi invented the wireless telegraph in 1896
 - Communication by encoding alphanumeric characters in analog signal
 - Sent telegraphic signals across the Atlantic Ocean
- 1914 first voice communication over radio waves
- Communications satellites launched in 1960s
- Advances in wireless technology
 - Radio, television, mobile telephone, communication satellites
- More recently
 - Satellite communications, wireless networking, cellular technology

Types of wireless communication

Electromagnetic radiation spectrum

Wavelength of Some Technologies

• GSM Phones:

- frequency $\sim = 900 \text{ Mhz}$
- wavelength $\sim = 33$ cm
- PCS Phones
 - frequency $\sim = 1.8$ Ghz
 - wavelength $\sim = 17.5$ cm
- Bluetooth:
 - frequency $\sim = 2.4 \text{Gz}$
 - wavelength $\sim = 12.5$ cm

Wireless applications (services)

Advantages and disadvantages of wireless communication

- advantages:
 - mobility
 - a wireless communication network is a solution in areas where cables are impossible to install (e.g. hazardous areas, long distances etc.)
 - easier to maintain
- disadvantages:
 - has security vulnerabilities
 - high costs for setting the infrastructure
 - unlike wired comm., wireless comm. is influenced by physical obstructions, climatic conditions, interference from other wireless devices

Cellular telephone

- Started as a replacement to the wired telephone
- Early generations offered voice and limited data
- Current third and fourth generation systems
 - Voice
 - Texting
 - Social networking
 - Mobile apps
 - Mobile Web
 - Mobile commerce
 - Video streaming

Wireless Impact

- Profound
- Shrinks the world
- Always on
- Always connected
- Changes the way people communicate
 - Social networking
- Converged global wireless network

Figure 1.1 Some Milestones in Wireless Communications

Global cellular network

- Growth
 - 11 million users in 1990
 - Over 7 billion today
- Mobile devices
 - Convenient
 - Location aware
 - Only economical form of communications in some places

Global cellular network

- Generations
 - 1G Analog
 - 2G Digital voice
 - Voice services with some moderate rate data services
 - 3G Packet networks
 - Universal Mobile Phone Service (UMTS)
 - CDMA2000
 - 4G New wireless approach (OFDM)
 - Higher spectral efficiency
 - 100 Mbps for high mobility users
 - 1 Gbps for low mobility access
 - Long Term Evolution (LTE) and LTE-Advanced

Mobile device revolution

- Originally just mobile phones
- Today's devices
 - Multi-megabit Internet access
 - Mobile apps
 - High megapixel digital cameras
 - Access to multiple types of wireless networks
 - Wi-Fi, Bluetooth, 3G, and 4G
 - Several on-board sensors
- Key to how many people interact with the world around them

Mobile device revolution

- Better use of spectrum
- Decreased costs
- Limited displays and input capabilities
- Tablets provide balance between smartphones and PCs
- Long distance
 - Cellular 3G and 4G
- Local areas
 - Wi-Fi
- Short distance
 - Bluetooth, ZigBee

Future trends

- LTE-Advanced and gigabit Wi-Fi now being deployed
- Machine-to-machine communications
 - The "Internet of Things"
 - Devices interact with each other
 - Healthcare, disaster recovery, energy savings, security and surveillance, environmental awareness, education, manufacturing, and many others
 - Information dissemination
 - Data mining and decision support
 - Automated adaptation and control
 - Home sensors collaborate with home appliances, HVAC systems, lighting systems, electric vehicle charging stations, and utility companies.
 - Eventually could interact in their own forms of social networking

Future trends

- Machine-to-machine communications
 - 100-fold increase in the number of devices
 - Type of communication would involve many short messages
 - Control applications will have real-time delay requirements
 - Much more stringent than for human interaction

Future networks Future trends

- 1000-fold increase in data traffic by 2020
- 5G Not defined but envisioned by 2020
- Technologies
 - Network densification many small cells
 - Device-centric architectures focus on what a device needs
 - Massive multiple-input multiple-output (MIMO) 10s or 100s of antennas
 - To focus antenna beams toward intended devices
 - Millimeter wave (mmWave) frequencies in the 30 GHz to 300 GHz bands
 - Have much available bandwidth.
 - But require more transmit power and have higher attenuation due to obstructions
 - Native support for machine to machine communication
 - Sustained low data rates, massive number of devices, and very low delays.

The trouble with wireless

- Wireless is convenient and less expensive, but not perfect
- Limitations and political and technical difficulties inhibit wireless technologies
- Wireless channel
 - Line-of-sight is best but not required
 - Signals can still be received
 - Transmission through objects
 - Reflections off of objects
 - Scattering of signals
 - Diffraction around edges of objects

The trouble with wireless

- Wireless channel
 - Reflections can cause multiple copies of the signal to arrive
 - At different times and attenuations
 - Creates the problem of *multipath fading*
 - Signals add together to degrade the final signal
 - Noise
 - Interference from other users
 - Doppler spread caused by movement

- Modulation use a signal format to send as many bits as possible
- Error control coding add extra bits so errors are detected/corrected.
- Adaptive modulation and coding dynamically adjust modulation and coding to current channel conditions.
- Equalization counteract the multipath effects of the channel.
- Multiple-input multiple-output systems use multiple antennas
 - Point signals strongly in certain directions
 - Send parallel streams of data.
- Direct sequence spread spectrum expand the signal bandwidth
- Orthogonal frequency division multiplexing break a signal into many lower rate bit streams
 - Each is less susceptible to multipath problems.

Political difficulties

- Between companies
 - Need common standards so products interoperate
 - Some areas have well agreed-upon standards
 - Wi-Fi, LTE
 - Not true for Internet of Things technologies
- Spectrum regulations
 - Governments dictate how spectrum is used
 - Many different types of uses and users
 - Some frequencies have somewhat restrictive bandwidths and power levels
 - Others have much more bandwidth available

Electromagnetic Signal

- Function of time
- Can also be expressed as a function of frequency
 - Signal consists of components of different frequencies

TRA NS MIS SIO N FU ND

Time-Domain Concepts

- Analog signal signal intensity varies in a smooth fashion over time
 - No breaks or discontinuities in the signal
- Digital signal signal intensity maintains a constant level for some period of time and then changes to another constant level
- Periodic signal analog or digital signal pattern that repeats over time

$$s(t+T) = s(t) \quad -\infty < t < +\infty$$

• where *T* is the period of the signal

N FU

TRA

MIS SIO

Frequency-Domain Concepts

- Fundamental frequency when all frequency components of a signal are integer multiples of one frequency, it's referred to as the fundamental frequency
- Spectrum range of frequencies that a signal contains
- Absolute bandwidth width of the spectrum of a signal
- Effective bandwidth (or just bandwidth) -narrow band of frequencies that most of the signal's energy is contained in TRA MIS

NS

SIO N FU ND ΔN

TRANSMISSION FUNDAMENTALS 2-25

Frequency-Domain Concepts

- Any electromagnetic signal can be shown to consist of a collection of periodic analog signals (sine waves) at different amplitudes, frequencies, and phases
- The period of the total signal is equal to the period of the fundamental frequency

TRA NS MIS SIO N FU ND

Relationship between Data Rate and Bandwidth

- The greater the bandwidth, the higher the information-carrying capacity
- Conclusions
 - Any digital waveform will have infinite bandwidth
 - BUT the transmission system will limit the bandwidth that can be transmitted
 - AND, for any given medium, the greater the bandwidth transmitted, the greater the cost
 - HOWEVER, limiting the bandwidth creates distortions

ALS

TRA

NS

MIS SIO N FU ND

Data Communication Terms

- Data entities that convey meaning, or information
- Signals electric or electromagnetic representations of data

TRA NS MIS SIO N FU ND

• Transmission - communication of data by the propagation and processing of signals

Examples of Analog and Digital Data

- Analog
 - Video
 - Audio
- Digital
 - Text
 - Integers

TRA NS MIS SIO N FU

ND

AM

ALS 2-

Analog Signals

- A continuously varying electromagnetic wave that may be propagated over a variety of media, depending on frequency
- Examples of media:
 - Copper wire media (twisted pair and coaxial cable)
 - Fiber optic cable
 - Atmosphere or space propagation
- Analog signals can propagate analog and digital TRA data

ALS

SIO N FU ND

Digital Signals

- A sequence of voltage pulses that may be transmitted over a copper wire medium
- Generally cheaper than analog signaling
- Less susceptible to noise interference
- Suffer more from attenuation
- Digital signals can propagate analog and digital data

TRA NS MIS SIO N FU ND

Reasons for Choosing Data and • Digital data, Signal Combinations

- Equipment for encoding is less expensive than digital-toanalog equipment
- Analog data, digital signal
 - Conversion permits use of modern digital transmission and switching equipment
- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - Examples include optical fiber and satellite
- Analog data, analog signal
 - Analog data easily converted to analog signal

TRA

NS MIS SIO N FU ND

TRANSMISSION FUNDAMENTALS 2-34

Analog Transmission

- Transmit analog signals without regard to content
- Attenuation limits length of transmission link
- Cascaded amplifiers boost signal's energy for longer distances but cause distortion
 - Analog data can tolerate distortion
 - Introduces errors in digital data

ALS

TRA

MIS SIO N FU ND

Digital Transmission

- Concerned with the content of the signal
- Attenuation endangers integrity of data
- Digital Signal
 - Repeaters achieve greater distance
 - Repeaters recover the signal and retransmit
- Analog signal carrying digital data
 - Retransmission device recovers the digital data from analog signal
 - Generates new, clean analog signal

ALS

MIS

SIO N FU ND
About Channel Capacity

- Impairments, such as noise, limit data rate that can be achieved
- For digital data, to what extent do impairments limit data rate?
- Channel Capacity the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

FU ND AIVI

TRA NS MIS SIO N

Concepts Related to Channel Capacity

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1

ALS

TRA

NS MIS

SIO N FU ND

Classifications of Transmission Media

- Transmission Medium
 - Physical path between transmitter and receiver
- Guided Media
 - Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber
- Unguided Media
 - Provides means of transmission but does not guide electromagnetic signals

• Usually referred to as wireless transmission	TRA
e stanty referred to as whereas transmission	NS
• E.g., atmosphere, outer space	MIS
L.g., aunosphere, outer space	SIO
	N
	FU
	ND

ALS

AIV

Unguided Media

- Transmission and reception are achieved by means of an antenna
- Configurations for wireless transmission
 - Directional
 - Omnidirectional

ALS 2-

TRA NS MIS SIO N FU ND

TRANSMISSION FUNDAMENTALS 2-41

General Frequency Ranges

- Microwave frequency range
 - 1 GHz to 40 GHz
 - Directional beams possible
 - Suitable for point-to-point transmission
 - Used for satellite communications
- Radio frequency range
 - 30 MHz to 1 GHz
 - Suitable for omnidirectional applications
- Infrared frequency range
 - Roughly, $3x10^{11}$ to $2x10^{14}$ Hz
 - Useful in local point-to-point multipoint applications within confined areas

FU ND

Terrestrial Microwave

- Description of common microwave antenna
 - Parabolic "dish", 3 m in diameter
 - Fixed rigidly and focuses a narrow beam
 - Achieves line-of-sight transmission to receiving antenna
 - Located at substantial heights above ground level
- Applications

• Long haul telecommunications service	TRA
	NS MIS
 Short point-to-point links between buildings 	SIO
	N
	FU
	ND

ALS

Satellite Microwave

- Description of communication satellite
 - Microwave relay station
 - Used to link two or more ground-based microwave transmitter/receivers
 - Receives transmissions on one frequency band (uplink), amplifies or repeats the signal, and transmits it on another frequency (downlink)

• Applications

• Television distribution

• Long-distance telephone transmission	
--	--

• Private business networks

ALS

TRA NS MIS

> SIO N FU ND

Broadcast Radio

- Description of broadcast radio antennas
 - Omnidirectional
 - Antennas not required to be dish-shaped
 - Antennas need not be rigidly mounted to a precise alignment
- Applications
 - Broadcast radio
 - VHF and part of the UHF band; 30 MHZ to 1GHz
 - Covers FM radio and UHF and VHF television

ALS

TRA

MIS SIO N FU ND

Multiplexing

- Capacity of transmission medium usually exceeds capacity required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium

TRA NS MIS SIO N FU ND

ALS

• More efficient use of transmission medium

1 link, *n* channels

2.11 Multiplexing

Reasons for Widespread Use of Multiplexing

- Cost per kbps of transmission facility declines with an increase in the data rate
- Cost of transmission and receiving equipment declines with increased data rate
- Most individual data communicating devices require relatively modest data rate support

ALS

NS MIS SIO N FU

Multiplexing Techniques

- Frequency-division multiplexing (FDM)
 - Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
- Time-division multiplexing (TDM)
 - Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal

SIO N FU ND

ALS

TRANSMISSION FUNDAMENTALS 2-50

Spectrum considerations

- Controlled by regulatory bodies
 - Carrier frequency
 - Signal Power
 - Multiple Access Scheme
 - Divide into time slots –Time Division Multiple Access (TDMA)
 - Divide into frequency bands Frequency Division Multiple Access (FDMA)
 - Different signal encodings Code Division Multiple Access (CDMA)

Spectrum considerations

- Federal Communications Commission (FCC) in the United States regulates spectrum
 - Military
 - Broadcasting
 - Public Safety
 - Mobile
 - Amateur
 - Government exclusive, non-government exclusive, or both
 - Many other categories

Spectrum considerations

- Industrial, Scientific, and Medical (ISM) bands
 - Can be used without a license
 - As long as power and spread spectrum regulations are followed
- ISM bands are used for
 - WLANs
 - Wireless Personal Area networks
 - Internet of Things

Propagation Modes

- Ground-wave propagation
- Sky-wave propagation
- Line-of-sight propagation

5.1 Wireless Propagation Modes

Ground Wave Propagation

- Follows contour of the earth
- Can propagate considerable distances
- Frequencies up to 2 MHz
- Example
 - AM radio

Sky Wave Propagation

- Signal reflected from ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Reflection effect caused by refraction
- Examples
 - Amateur radio
 - CB radio

Line-of-Sight Propagation

- Transmitting and receiving antennas must be within line of sight
 - Satellite communication signal above 30 MHz not reflected by ionosphere
 - Ground communication antennas within *effective* line of site due to refraction
- Refraction bending of microwaves by the atmosphere
 - Velocity of electromagnetic wave is a function of the density of the medium
 - When wave changes medium, speed changes
 - Wave bends at the boundary between mediums

Five basic propagation mechanisms

- 1. Free-space propagation
- 2. Transmission
 - Through a medium
 - Refraction occurs at boundaries
- 3. Reflections
 - Waves impinge upon surfaces that are large compared to the signal wavelength
- 4. Diffraction
 - Secondary waves behind objects with sharp edges
- 5. Scattering
 - Interactions between small objects or rough surfaces

antennas

- An antenna is an electrical conductor or system of conductors
 - Transmission radiates electromagnetic energy into space
 - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception

Radiation Patterns

- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section
- Beam width (or half-power beam width)
 - Measure of directivity of antenna
- Reception pattern
 - Receiving antenna's equivalent to radiation pattern
- Sidelobes
 - Extra energy in directions outside the mainlobe
- Nulls
 - Very low energy in between mainlobe and sidelobes

5.2 Antenna Radiation Patterns

Attenuation

- Strength of signal falls off with distance over transmission medium
- Attenuation factors for unguided media:
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error
 - Attenuation is greater at higher frequencies, causing distortion

Models Derived from Empirical Measurements

- Need to design systems based on empirical data applied to a particular environment
 - To determine power levels, tower heights, height of mobile antennas
- Okumura developed a model, later refined by Hata
 - Detailed measurement and analysis of the Tokyo area
 - Among the best accuracy in a wide variety of situations
- Predicts path loss for typical environments
 - Urban
 - Small, medium sized city
 - Large city
 - Suburban
 - Rural

Categories of Noise

- Thermal Noise
- Intermodulation noise
- Crosstalk
- Impulse Noise

Thermal Noise

- Thermal noise due to agitation of electrons
- Present in all electronic devices and transmission media
- Cannot be eliminated
- Function of temperature
- Particularly significant for satellite communication

- Intermodulations Terminology Is with different frequencies share the same medium
 - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
- Crosstalk unwanted coupling between signal paths
- Impulse noise irregular pulses or noise spikes
 - Short duration and of relatively high amplitude
 - Caused by external electromagnetic disturbances, or faults and flaws in the communications system

Other Impairments

- Atmospheric absorption water vapor and oxygen contribute to attenuation
- Multipath obstacles reflect signals so that multiple copies with varying delays are received
- Refraction bending of radio waves as they propagate through the atmosphere

The Effects of Multipath Propagation

- Reflection, diffraction, and scattering
- Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit
- Rapid signal fluctuations
 - Over a few centimeters

5.5 Sketch of Three Important Propagation Mechanisms

Types of Fading

- Large-scale fading
 - Signal variations over large distances
 - Path loss L_{dB} as we have seen already
 - Shadowing
- Statistical variations
 - Rayleigh fading
 - Ricean fading

Types of fading

- Doppler Spread
 - Frequency fluctuations caused by movement
 - Coherence time T_c characterizes Doppler shift
 - How long a channel remains the same
 - Coherence time $T_c >> T_b$ bit time \rightarrow slow fading
 - The channel does not change during the bit time
 - Otherwise *fast fading*
- Example 6.11: $T_c = 70$ ms, bit rate $r_b = 100$ kbs
 - Bit time $T_{k} = 1/100 \times 10^{3} = 10 \ \mu s$
 - $T_c >> T_b$? 70 ms >> 10 µs?
 - True, so slow fading
Types of fading

- Multipath fading
 - Multiple signals arrive at the receiver
 - Coherence bandwidth B_c characterizes multipath
 - Bandwidth over which the channel response remains relatively constant
 - Related to delay spread, the spread in time of the arrivals of multipath signals
 - Signal bandwidth B_s is proportional to the bit rate
 - If $B_c >> B_s$, then *flat fading*
 - The signal bandwidth fits well within the channel bandwidth
 - Otherwise, frequency selective fading
- Example 6.11: $B_c = 150$ kHz, bit rate $r_b = 100$ kbs
 - Assume signal bandwidth $B_s \approx r_b$, $B_s = 100 \ kHz$.
 - $B_c >> B_s$? 150 kHz >> 100 kHz?
 - Using a factor of 10 for ">>", 150 kHz is not more than 10 ×100 kHz
 - False, so frequency selective fading

Channel correction Mechanisms

- Forward error correction
- Adaptive equalization
- Adaptive modulation and coding
- Diversity techniques and MIMO
- OFDM
- Spread sprectrum
- Bandwidth expansion

Forward Error Correction

- Transmitter adds error-correcting code to data block
 - Code is a function of the data bits
- Receiver calculates error-correcting code from incoming data bits
 - If calculated code matches incoming code, no error occurred
 - If error-correcting codes don't match, receiver attempts to determine bits in error and correct
- Subject of Chapter 10

Overview of Wireless 5-76

Adaptive Equalization

- Can be applied to transmissions that carry analog or digital information
 - Analog voice or video
 - Digital data, digitized voice or video
- Used to combat intersymbol interference
- Involves gathering dispersed symbol energy back into its original time interval
- Techniques
 - Lumped analog circuits
 - Sophisticated digital signal processing algorithms

- Diversity is based on the fact that individual channels experience independent fading events ques
- Space diversity techniques involving physical transmission path, spacing antennas
- Frequency diversity techniques where the signal is spread out over a larger frequency bandwidth or carried on multipl frequency carriers
- Time diversity techniques aimed at spreading the data out over time
- Use of diversity
 - Selection diversity select the best signal
 - Combining diversity combine the signals

MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) ANTENNAS

- Use antenna arrays for
 - Diversity different signals from different antennas
 - Multiple streams parallel data streams
 - Beamforming directional antennas
 - Multi-user MIMO directional beams to multiple simultaneous users
- Modern systems
 - 4×4 (4 transmitter and 4 reciever antennas)
 - 8 × 8
 - Two dimensional arrays of 64 antennas
 - Future: Massive MIMO with many more antennas

Adaptive modulation and coding (AMC)

- The modulation process formats the signal to best transmit bits
 - To overcome noise
 - To transmit as many bits as possible
- Coding detects and corrects errors
- AMC adapts to channel conditions
 - 100's of times per second
 - Measures channel conditions
 - Sends messages between transmitter and receiver to coordinate changes

Bandwidth expansion

- A signal can only provide a limited bps/Hz
 - More bandwidth is needed
- Carrier aggregation
 - Combine multiple channels
 - Example: Fourth-generation LTE combines third-generation carriers

Frequency reuse

- Limit propagation range to an area
- Use the same frequencies again when sufficiently far away
- Use large coverage areas (macro cells) and smaller coverage areas (outdoor picocells or relays and indoor femtocells)
- Millimeter wave (mmWave)
 - Higher carrier frequencies have more bandwidth available
 - 30 to 300 GHz bands with millimeter wavelengths
 - Yet these are expensive to use and have problems with obstructions

Figure 14.14 LTE Carrier Aggregation

signal Encoding Techniques

- Digital data to analog signal
 - Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
 - Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - Phase-shift keying (PSK)
 - Phase of carrier signal shifted

5.10 Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier $s(t) = \begin{cases} A\cos(2\rho f_c t) & binary 1 \\ 0 & binary 0 \end{cases}$

• where the carrier signal is $A\cos(2\pi f_t t)$

Amplitude-Shift Keying

- Susceptible to sudden gain changes
- Inefficient modulation technique
- Used to transmit digital data over optical fiber

Binary Frequency-Shift Keying (BFSK)

• Two binary digits represented by two different frequences $2\rho_{1}the cabinary 1$ frequency $A\cos(2\rho f_{2}t)$ binary 0

• where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts f_d

Binary Frequency-Shift Keying (BFSK)

- Less susceptible to error than ASK
- Used for high-frequency (3 to 30 MHz) radio transmission
- Can be used at higher frequencies on LANs that use coaxial cable

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error $s_i(t) = A\cos 2\rho f_i t$ 1 £ *i* £ *M*

•
$$f_i = f_c + (2i - 1 - M)f_d$$

- f_c = the carrier frequency
- f_d = the difference frequency
- M = number of different signal elements = 2^{L}
- L = number of bits per signal element

Phase-Shift Keying (PSK)

Two-level PSK (BPSK) Uses two f Accos $(2\rho f_c t)$ binary binary 1 $s(t) = \begin{cases} Accos(2\rho f_c t + \rho) & binary 0 \\ Accos(2\rho f_c t) & binary 1 \\ -Accos(2\rho f_c t) & binary 1 \\ binary 0 & binary 0 \end{cases}$

Quadrature Phase-Shift Keying (PSK)

CODING AND ERROR CONTROL

- Error detection codes
 - Detects the presence of an error
- Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data
- Error correction codes, or forward correction codes (FEC)
 - Designed to detect and correct errors

Error Detection Process

• Transmitter

- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits
- Receiver
 - Separates incoming frame into data bits and check bits
 - Calculates check bits from received data bits
 - Compares calculated check bits against received check bits
 - Detected error occurs if mismatch

Overview of Wireless 5-94

Parity Check

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Example, 7-bit character [1110001]
 - Even parity [11100010]
 - Odd parity [11100011]

Cyclic Redundancy Check (CRC)

• Transmitter

- For a *k*-bit block, transmitter generates an (*n-k*)-bit frame check sequence (FCS)
- Resulting frame of *n* bits is exactly divisible by predetermined number
- Receiver
 - Divides incoming frame by predetermined number
 - If no remainder, assumes no error

Wireless Transmission Errors

- Error detection requires retransmission
- Detection inadequate for wireless applications
 - Error rate on wireless link can be high, results in a large number of retransmissions
 - Long propagation delay compared to transmission time

Block Error Correction Codes

• Transmitter

- Forward error correction (FEC) encoder maps each k-bit block into an n-bit block codeword
- Codeword is transmitted; analog for wireless transmission
- Receiver
 - Incoming signal is demodulated
 - Block passed through an FEC decoder

Overview of Wireless 5-99

FEC Decoder Outcomes

- No errors present
 - Codeword produced by decoder matches original codeword
- Decoder detects and corrects bit errors
- Decoder detects but cannot correct bit errors; reports uncorrectable error
- Decoder incorrectly corrects bit errors
 - Error pattern looks like a different block of data was sent
- Decoder detects no bit errors, though errors are present

Block Code Principles

• Hamming distance – for 2 *n*-bit binary sequences, the number of different bits

• E.g., v₁=011011; v₂=110001; d(v1, v₂)=3

- Redundancy ratio of redundant bits to data bits
- Code rate ratio of data bits to total bits
- Coding gain the reduction in the required E_b/N_0 to achieve a specified BER of an error-correcting coded system

Decoding process

Data block	Codeword
00	00000
01	00111
10	11001
11	11110

- Received: 00100
 - Not valid, error is detected
 - Correction?
 - One bit away from 00000
 - Two bits away from 00111
 - Three bits away from 11110
 - Four bits away from 11110
 - Most likely 00000 was sent, assume data was 00
 - But others could have been sent, albeit much less likely

Decoding process

- Received: 01100
 - Two bits from 00000
 - Two bits from 11110
 - No other codes closer
 - Cannot decode. Only know bit errors are detected

Automatic Repeat Request

- Mechanism used in data link control and transport protocols
- Relies on use of an error detection code (such as CRC)
- Flow Control
- Error Control

trol 10-104

Cod ing and Err or Con

Flow Control

- Assures that transmitting entity does not overwhelm a receiving entity with data
- Protocols with flow control mechanism allow multiple PDUs in transit at the same time
- PDUs arrive in same order they're sent
- Sliding-window flow control
 - Transmitter maintains list (window) of sequence numbers allowed to send

Cod

Err

• Receiver maintains list allowed to receive

Source system A

Destination system B

Flow Control

- Reasons for breaking up a block of data before transmitting:
 - Limited buffer size of receiver
 - Retransmission of PDU due to error requires smaller amounts of data to be retransmitted
 - On shared medium, larger PDUs occupy medium for extended period, causing delays at other sending stations

ol 0-08

Cod ing and Err or Con
Error Control

- Mechanisms to detect and correct transmission errors
- Types of errors:
 - Lost PDU : a PDU fails to arrive
 - Damaged PDU : PDU arrives with errors

or Con trol 10-109

Cod ing and Err

Error Control Requirements

- Error detection
 - Receiver detects errors and discards PDUs
- Positive acknowledgement
 - Destination returns acknowledgment of received, errorfree PDUs
- Retransmission after timeout
 - Source retransmits unacknowledged PDU
- Negative acknowledgement and retransmission
 - Destination returns negative acknowledgment to PDUs in Fod error

Err

Go-back-N ARQ

- Acknowledgments
 - RR = receive ready (no errors occur)
 - REJ = reject (error detected)
- Contingencies
 - Damaged PDU
 - Damaged RR
 - Damaged REJ

Cod ing and Err

trol

112

Coding and Error Control 10-113

HYBRID ARQ

- Hybrid Automatic Repeat Request (HARQ)
 - Neither FEC or ARQ is adequate in practical situations
 - FEC may add unnecessary redundancy
 - ARQ may cause excessive delays from retransmissions
 - HARQ is widely used
 - Uses combination of FEC and ARQ

114

Cod ing

Err or <u>Con</u> trol orthogonal frequency division multiplexing (ofdm)

- OFDM created great expansion in wireless networks
 - Greater efficiency in bps/Hz
- Main air interface in the change from 3G to 4G
 - Also expanded 802.11 rates
- Critical technology for broadband wireless access
 - WiMAX

How OFDM works

- Also called multicarrier modulation
- Start with a data stream of R bps
 - Could be sent with bandwidth Nf_h
 - With bit duration 1/R
- OFDM splits into N parallel data streams
 - Called *subcarriers*
 - Each with bandwidth f_b
 - And data rate R/N (bit time N/R)

Orthogonality

- The spacing of the f_b frequencies allows tight packing of signals
 - Actually with overlap between the signals
 - Signals at spacing of f_b , $2f_b$, $3f_b$, etc.
- The choice of f_b is related to the bit rate to make the signals *orthogonal*
- Traditional FDM makes signals completely avoid frequency overlap
 - OFDM allows overlap which greatly increases capacity

Overview of Wireless 5-118

Benefits of OFDM

- Frequency selective fading only affects some subcarriers
- More importantly, OFDM overcomes intersymbol interference (ISI)
 - ISI is a caused by multipath signals arriving in later bits
 - OFDM bit times are much, much longer (by a factor of N)
 - ISI is dramatically reduced
 - OFDM's long bit times eliminate most of the ISI
 - OFDM also uses a *cyclic prefix* (CP) to overcome the residual ISI
 - Adds additional time to the OFDM symbol before the real data is sent
 - Called the guard interval
 - ISI diminishes before the data starts

OFDMA

- Orthogonal Frequency Division Multiple Access (OFDMA) uses OFDM to share the wireless channel
 - Different users can have different slices of time and different groups of subcarriers
 - Subcarriers are allocated in groups
 - Called subchannels or resource blocks
 - Too much computation to allocate every subcarrier separately
- Single-carrier FDMA (SC-FDMA)
 - Similar structure and performance to OFDMA
 - Lower peak to average power ratio than OFMDA
 - Mobile user benefits battery life, power efficiency, lower cost
 - Good for uplinks
 - Multiple access is not possible
 - At one time, all subcarriers must be dedicated to one user

Spread Spectrum

- Input is fed into a channel encoder
 - Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudonoise, or pseudo-random number generator
- Effect of modulation is to increase bandwidth of signal to be transmitted

Spread Spectrum

- On receiving end, digital sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel decoder to recover data

Frequency Hoping Spread Spectrum (FHSS)

- Signal is broadcast over seemingly random series of radio frequencies
 - A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - Transmitter operates in one channel at a time
 - Bits are transmitted using some encoding scheme
 - At each successive interval, a new carrier frequency is selected

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code bit stream using exclusive-OR (Figure 5.30)

Code-Division Multiple Access (CDMA)

- Basic Principles of CDMA
 - D =rate of data signal
 - Break each bit into k chips
 - Chips are a user-specific fixed pattern
 - Chip data rate of new channel = kD
- Each user encodes with a different spreading code