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Chapter 1: Introduction to Control Systems
Objectives

In this chapter we describe a general process for designing a control system.

A control system consisting of interconnected components is designed to achieve a
desired purpose. To understand the purpose of a control system, it is useful to
examine examples of control systems through the course of history. These early
systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for
improving manufacturing processes, the efficiency of energy use, advanced
automobile control, including rapid transit, among others.

We also discuss the notion of a design gap. The gap exists between the complex
physical system under investigation and the model used in the control system
synthesis.

The iterative nature of design allows us to handle the design gap effectively while
accomplishing necessary tradeoffs in complexity, performance, and cost in order to
meet the design specifications.



Introduction

System — An interconnection of elements and devices for a desired purpose.

Control System — An interconnection of components forming a system configuration
that will provide a desired response.

Process — The device, plant, or system
under control. The input and output
relationship represents the cause-and-
effect relationship of the process.
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Process to be controlled.



Introduction

Open-Loop Control Systems
utilize a controller or control

. . —» — —
actuator to obtain the desired
response.

Open-loop control system (without feedback).
Closed-Loop Control Systems —* " ] >
utilizes feedback to compare ‘
the actual output to the -

desired output response.
Closed-loop feedback control system (with feedback).
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Multivariable Control System
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History

Greece (BC) — Float regulator mechanism
Holland (16t Century)— Temperature regulator

Output  § [}
shaft

Watt’s Flyball Governor
(18t century)



History

Water-level float regulator

Float

Valve




History
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Difference

p  Controller

—»

Process

Measurement

device

Closed-loop feedback system.




History

18th Century James Watt’s centrifugal governor for the speed control of a steam
engine.

1920s Minorsky worked on automatic controllers for steering ships.
1930s Nyquist developed a method for analyzing the stability of controlled systems

1940s Frequency response methods made it possible to design linear closed-loop
control systems

1950s Root-locus method due to Evans was fully developed
1960s State space methods, optimal control, adaptive control and
1980s Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control theory
includes such non-engineering systems such as biological, biomedical, economic and
socio-economic systems
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Examples of Modern Control Systems

} Errcit

(a) Automobile
steering control
system.

(b) The driver uses
the difference
between the actual

||.1-;i..1-u and the desired
clirechion . .
et efttavel direction of travel
direction
i to generate a
controlled adjustment
" of the steering wheel.
Desiped direction af tmvel (C) Typlcal d | reCtIOn-

Acctual direction of tmvel

of-travel response.
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Examples of Modern Control Systems

' Fmor Control

device

i ACiAlOr  pe— Process

Sensor i

A necative feedback system block diagram depicting a basic closed-loop control system.
The control device is often called a “controller.”



Examples of Modern Control Systems

A manual control system for regulating the level of fluid in a tank by adjusting the
output valve. The operator views the level of fluid through a port in the side of the tank.



Examples of Modern Control Systems

A three-axis control system for inspecting individual
semiconductor wafers with a highly sensitive camera.



Examples of Modern Control Systems
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Coordinated control system for a boiler-generator.



Examples of Modern Control Systems
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A computer control syslem.



Examples of Modern Control Systems

The Utah/MIT Dextrous Robotic Hand: A dextrous robotic hand having 18 degrees of
freedom, developed as a research tool by the Center for Engineering Design at the
University of Utah and the Artificial Intelligence Laboratory at MIT. It is controlled by
five Motorola 68000 microprocessors and actuated by 36 high-performance
electropneumatic actuators via high-strength polymeric tendons. The hand has three
fingers and a thumb. It uses touch sensors and tendons for control.
{Photograph by Michael Milochik. Courtesy of University of Utah.)



Examples of Modern Control Systems
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A feedback control system model of the national income.




Examples of Modern Control Systems

A laboratory robot used for sample preparation. The robot manipulates small objects,
such as test tubes, and probes in and out of tight places at relatively high speeds [41].
(© Copyright 1993 Hewlett-Packard Company. Reproduced with permission.)



The Future of Control Systems

The Honda P3 humanoid robot. P3 walks, climbs stairs and turmms comers.
Photo courtesy of American Honda Motor, Inc.



The Future of Control Systems
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Future evolution of control systems and robotics.



Control System Design

l. Establish control goals

2. Identify the variables o contral

A Write the specilications
for the variahles

4. Establizh the system configuration
and identify the ac wator

5. Obtain o model of the process, the

actuator, and the sens=or

&, Describe a controller and select
key pammeters Lo be adjustel

7. Optimize the parameters and
analyze the perfommance

IT the performance does nol meet the specifications,
then iterate the configuration and the actuator,

I the performance meeis the
specifications, then finalize the design.

The control system design process.



Physical System
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Design Example

Input angle, 8.(7) ' 50 volts
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Design Example

ELECTRIC SHIP CONCEPT

Vision

Electrically
Reconfigurable

All :
Integrated Ship

Power

Electric
Ship

System

* Technology Increasing Affordability and Military Capability

o + Reduced manning Insertion
+ Electric Drive _ + Automation + Warfighting
+ Reduce # of Prime Capabilities

Movers + Eliminate auxiliary

. systems (steam,
* Fuel savings hydraulics, compressed
* Reduced maintenance  3jy)

Main Power
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Propulsion Motor Prime
Motor Drive Mover

Power Ship.
Conversion Service
Module Power



Design Example

CVN(X) FUTURE AIRCRAFT CARRIER




Design Example

Pitch angle N

e
Aileron J
. deflection up = _
N
Aileron
deflection down

e
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Roll angle

Yaw angle o= |



Design Example

Catenary
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Pantograph
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Design Example

Ballery
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| de
- dc motor

amplifier

(a)
Control device Actuator Process
Desired
. Actual
speed . —
) ' | sped
(vollage)
()

(a) Open-loop (without feedback) control of the speed of a turntable.
(b} Block diagram model.



Design Example

Battery

de
armpli fier

Process

Conirol device Actuator
[desired .
St | Error
(vallage)
Measured speed .
Sensor
(voliage)
i hi

(a) Closed-loop control of the speed of a tuntable.
(b) Block diagram model.
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Design Example

Blood
glucose

Concentration

Insulin

Breakfast Lunch Dinner

Time —

The blood glucose and insulin levels for a healthy person.



Design Example
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(a) Open-loop (without feedback) control and
(b} closed-loop control of blood glucose.



Sequential Design Example

Rolation
of arm
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Acuator
oo

(a) ()]

(a) A disk drive ©1999 Quantum Corporation. All rights reserved.
(b) Diagram of a disk drive.
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Sequential Design Example

Control
device

ASctuabor motor
and read arm

Sensar

i

Closed-loop control system for disk drive.




Mathematical Models of Systems Objectives

We use quantitative mathematical models of physical systems to design and
analyze control systems. The dynamic behavior is generally described by
ordinary differential equations. We will consider a wide range of systems,
including mechanical, hydraulic, and electrical. Since most physical systems are
nonlinear, we will discuss linearization approximations, which allow us to use
Laplace transform methods.

We will then proceed to obtain the input—output relationship for components and
subsystems in the form of transfer functions. The transfer function blocks can be
organized into block diagrams or signal-flow graphs to graphically depict the
interconnections. Block diagrams (and signal-flow graphs) are very convenient
and natural tools for designing and analyzing complicated control systems



Introduction
Six Step Approach to Dynamic System Problems

Define the system and its components

Formulate the mathematical model and list the necessary
assumptions

Write the differential equations describing the model
Solve the equations for the desired output variables
Examine the solutions and the assumptions

If necessary, reanalyze or redesign the system



Differential Equation of Physical Systems

i

(a) (b)

(a) Torsional spring-mass svslem.
(b) Spring element.

Ta(t) = Ts() =0

Ta(t) = Ts(1)

o(t) = og(t) — wa(t)

T(t) = through - variable

angular rate difierence = across-variable



Differential Equation of Physical Systems

Electrical Inductance Describing Equation Energy or Power
L ] . 1 5
TMQML_Ole V21= Ld—l E: —L|
] dt 2
Translational Spring
k 1 1 F2
TJEMQ_.F Vo1 = —-d_F FE=- — —
k dt 2 k
Rotational Spring
£ 2
p 1d 17T
Wl Y Y Y o T 0321:_._1' E- —.
k dt 2 k
Fluid Inertia
!
Q 1
Protl Y Y Y1 pop, Poq = I-d _ 21.0°
’ 21=1—Q E==-1-Q
dt 2



Differential Equation of Physical Systems

Electrical Capacitance

i C
Uzg—.—l }—Q'ﬂ']

Translational Mass

F—wo—M |2

15 o=

constant

Rotational Mass

I—»o— J ° _
P W] =

constant

Fluid Capacitance

Q_.'D_ C_I-' —Q .Ip]
P, —

Thermal Capacitance

g —mwo—C —o
._] 2 .i,‘ | -
constant

: d
I=C.—v
" 21
F = M-d—V2
dt
d
T=J—w
dt °
d
Q=Cq—Pyy
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E=-Jo
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1 2
E= —CrPy
E=C-T,



Differential Equation of Physical Systems

Electrical Resistance

R
U, " NN—p—0y,

Translational Damper
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Rotational Damper
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R
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P= b-c0212
P P
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Differential Equation of Physical Systems

- —- M

w
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{a) (b)

(a) Spring-mass-damper system.

(b) Free-body diagram.

d° d
MLy + 5Ly + ky(®) = 10
dt dt



Differential Equation of Physical Systems

t
%t) + C-j_tv(t) + %.Jo v(t) dt = r(t)

| |+

o —o 1t
RLC circuit. y(t) = K1-e ! -sin(B 1:t+ 0 1)



Differential Equation of Physical Systems

Voltage
vif)

=X, S
—_————

»Time

27/ B;) —m

Typical voltage response for underdamped RLC circuit.



Differential Equation of Physical Systems

Ky:=1 a2:=.5 Po:=10 09 :=2

—(12-'[ .
y(t) :=Ky-e -sm(Bz-t + 62)

Otz't

y1(t) := Ko-e y2(t) :=—-Ko-e




Linear Approximations

Mass
M
] Spring
force

MNonlinear é‘-
spring %
-

(a) (b}

(@) A mass sitting on a nonlinear spring.
(by The spring force versus v.



Linear Approximations

Linear Systems - Necessary condition

Principle of Superposition

Property of Homogeneity

Taylor Series
http://www.maths.abdn.ac.uk/%7Eigc/tch/ma2001/notes/node46.ht

ml


http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node46.html
http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node46.html

Linear Approximations — Example 2.1

—15n

m
M = 200gm g:= 98—2 L :=100cm 90 :=Orad 0 : —TC,T..TC
S

To :=M-g-L:sin(6)
Length L
T,(0) :=M-g-Lsin(0)

To(6) :=M-g-L-cos(80)-(6 — 0g) + To

Mass M
10 | | | | | | |
Pendulum oscillator. B
5 B . —
T1(0) ~
0 —]
T2(0) ‘
_5 e —
- | | | | | | |
10-4 -3 -2 -1 1 2 3 4

Students are encouraged to investigate linear approximation accuracy for different vady



The Laplace Transform

Historical Perspective - Heaviside’s Operators

Origin of Operational Calculus (1887)



Historical Perspective - Heaviside’s Operators
Origin of Operational Calculus (1887)

R L
o Sy R
t T
=2, 1=J1du L
dt P o o
iV Z(p) = R + L:p Expanded in a power series
2 3
-1 H(t) = L -H(t):i-[il(g) -i+(5j -i....]-H(t)
R+ Lp (Rj R{Lp \LJ 2 \L/) 3
Lpl 1+ — p p
L-p
n
iH(t):t—
n n!

(*) Oliver Heaviside: Sage in Solitude, Paul J. Nahin, IEEE Press 1987.



The Laplace Transform

Definition

L(f(1)) = J f(t)-e” St = F(9)
0

Here the complex frequency is S=p + JW

The Laplace Transform exists when

o0
—s-t
JO f(t)-e dt < oo this means that the integral converg



The Laplace Transform

Determine the Laplace transform for the functions

a) fi(t) :=1 for t>0

o0
a@p:J e Slat

- 1.6y 1
0 S
b) o) =e &V
FAQ:J e @D Gy 1[G+ ) = L

0 s+ 1 S+a



The Laplace Transform

Evaluate the laplace transform of the derivative of a function

d (oo d —(s't)
—f(t) | = —f(t)- d
L(dt (t)) m (t)-e t

)

by the use of J udv = u-v—J vdu

0

where y=e U dv = df(t)
and, from which

- —(s-t).
du=-s-e dt and  v=f(1)

we obtain
J udv = O —J f] s 9] gy
0 0

= f(0+) + s-J f-e Yt
0

d
— L‘(d—tf(t)) = s(s)- f(0+) note that the initial condition isincluded in the transforn



The Laplace Transform

Practical Example - Consider the circuit.

..... RO L
The KVL equation is : iy T
B R e SN B

d . B - .

4-i(t) + 2-d—i(t) =0 assume i(0+) =5 A I
t

Applying the Laplace Transform, we have

( (4-i(t) ' 2-g_ti(t)j-e‘ SRR 4-J it)ye” CVat+ 2 [ g—ti(t)-e_ Y4t 0

I : J

41(s) + 2-(s-1(s) = i(0)) =0 4I(s) + 2-s-1(s) — 10= 0

0

transforming backto the time domain, with our present knowledge of

I(s) = s+ 0 Laplace transform, we may say that
t = (0,0.01.2)
6 I
i(t) =5e~ ?Y 4 7\ N
(0
— L _
0 L ———
0 1 2



The Laplace Transform

The Partial-Fraction Expansion (or Heaviside expansion theorem)

Suppose that

s + z1 The partial fraction expansion indicates that F(s) consists of
F(s) =

a sum of terms, each of which is a factor of the denominator.
The values of K1 and K2 are determined by combining the
individual fractions by means of the lowest common

(s + pl)-(s + p2)

denominator and comparing the resultant numerator
or
coefficients with those of the coefficients of the numerator

K1 K2 before separation in different terms.
F ( S ) — +
s + pl s + p2

Evaluation of Ki in the manner just described requires the simultaneous solution of n equations.
An alternative method is to multiply both sides of the equation by (s + pi) then setting s= - pi, the
right-hand side is zero except for Ki so that

+ pi)-(s + z1 _
G - (s + pi)-(s + z1) s=-pi
(s + p1) + (s + p2)




The Laplace Transform

Property Time Domain Frequency Domée
e (S'T)-F(s)
1. Time delay ft—T)-u(t-T)
1
_.F(E)
2. Time scaling f(at) a \a
3. Frequency differentiationt.f(t) —d—F(s)
ds
- - (a't)
4. Frequency shifting f(t)-e F(s + a)
. f(t) °°
5. Frequency Integration —= F(s) ds
t 0
6. Initial-value Theorem Lin(f(t)) = f(0) Lin(s-F(s))
t->0 s-> infinite
7. Final-value Theorem  Lin(f(t)) Lin(s-F(s))
t -> infinite s>0




The Laplace Transform

Useful Transform Pairs



An s-plane plot of the poles and zeros of Y(s).

The Laplace Transform

I_\ _______ -'f.‘:"'uﬁ"*"f] — & :
AN
Consider the mass-spring-damper system o= cus—';\i\\ .
l *
o
: Yy iy 0
Y(s) = (Ms + b)-yo equation 2.2: 2y £
Ms2 + bs + k i

| o _
_..,mhl'\‘_.] —_ E:I-'_

The locus of roots as 7 varies with vn constant.

(S * %j(yo) (s +2Gop)

S) =
V) 2 b k 2 2
S + M-s+ﬁ S + 200, + o

[2 F< s

sl = —((;con) +o,y6 -1 K b £
C _—
5 2 (=1 (>

52 = (G op) - oqyC -1 ;

/ 0
(=1
Roots . 2
sl = _(g.mn) + jogyl-6
Real
Real repeated >
Imaginary (conjugates) S2 = —(C;-con) —jopy1-C

Complex (conjugates)



The Laplace Transform

(1)
A

[
-, /
N,
T,
Ty
by
S
Ty
/\ /\ e
/\ /""\ P’ p Time
: \/ \./ — >
- \
'F..-'
“_r"'
-
rFa

ANy

Underdamped case

f— —_— 4 -
<“e” 4 envelope

Response of the spring-mass-damper svstem.



The Transfer Function of Linear Systems

+ o ATAVAY v o+
e
— O . O —
An RC network.
1
Vl(S) = (R —+ a)'I(S) Zl(S) =
1 Z5(s) = =
Vo(s) = (&)-I(s) < ~ Cs
1
V2(s) _ Ts _ Z>(s)
Vi(s) L 1 Za(s) + Zo(s)



The Transfer Function of Linear Systems

Example 2.2
d d )
—y() + 4=y(t) + 3y(t) = 21()
dt dt
initial Conditions: Y(0) = 1 j_y(O) -0
t

The Laplace transform yields:

I(t)

(sz-Y(s) - s-y(O)) +4-(s-Y(s) = y(0)) + 3Y(s) = 2R(s)

Since R(s)=1/sand y(0)=1, we obtain:

Y(s) = (s +4) . 2

(32 + 45 + 3) s-(52 + 45 + 3)

1

-1

The partial fraction expansion yields.
2

3 ! 2
Y(s):{ L, { Lo, ]+i
(s+1) (s+3 (s+1) (s+3 S

Therefore the transient response is.

3 .+ 1 .3 1 2
y(t) = R Y T e i
2 2 3 3

The steady-state response is.

lim (1) é

t—o



The Transfer Function of Linear Systems

Inverting
: o
input node + Noniny

erting _l_DuLpuL node
input node by

\
iyt

The ideal op-amp

0|
»
|

An inverting amplifier operating with ideal conditions.



The Transfer Function of Linear Systems

3
e = k
— | Friction -
| = Friction by % i
L ®
G
Friction by |_Jj
M, ’ 1
(a) (h)

(a) Two-mass mechanical system. (b) Two-node electric circuil
analog Cl =M1, C2=M2. L = I/k, R1 = 1/bl, R2 = [/b2.



The Transfer Function of Linear Systems

Armature

f[ Stator

‘ winding

Rotor windings

Brush .
Ly .
Shaft
f' Brush
-~ Commutator
Inertia = J Bearings
Friction = b Inertia
lovad
[oad
() (h)

A dc motor (a) wiring diagram
and (b) sketch.



The Transfer Function of Linear Systems

Alnico leld magnets Tronless low-inducianoe armature
tor ugh power/weight ratio
Machined solid copper comumuaio

Loex-lite brashes 2
for extended brush hite

1K1:1a JISh shape
for armarture 1negrity

Lifetime lubricared bearings

Custom shalts avallabie
for critical design cniternia

Wire windings embedded in cpoxy
gives high diclecinc strength

Cast alunnnum housing

for tull environmental protecion

I'lat xhape for « Forced ventilation optional
cotnpuch contrgurations or increasad performances:

A pancake de motor with a flat-wound armature and a permanent

magnet rotor. These motors are capable of providing high torque

with a low rotor inertia. A typical mechanical time constant is in
the range of 15 ms. (Courtesy of Mavilor Motors.)



The Transfer Function of Linear Systems

(I) — Kf' if Armature

c[ Stator
s winding
qi R

i

T = Kp-Keig(t)-ig(t)

Rotor windings
field controled motor - Lapalce Tra !sfc

T(s) = (Kl- Kf-la)-lf(s)

Brush
i

Shaft

_ ] ] Brush
Vf(s) = (Rf + I—f S) If(S) jf Commutator
Tm(s) = TL(S) + Td(s) | | ?m::nzzj.h Inertia e

load
T, (s) = 3-5°-0(s) + b-5-0(s) ot
rearranging equations (&) (b)
T(s) = T(s) — Ty(s)
T(S) = Ky 1(S) Td(s) =0
V1(s
I(s) = —1S) 0(s) _ “m

Rf —+ Lf'S

Vi(s)  s-(ds + b)-(Lgs + Ry)



The Transfer Function of Linear Systems

Field l Load | Specd
| Hs) EYI. A 11 I IC I

LCNPRRCII SN ECA T N
Rt Ly + Js+ b 5

Block diagram model of field-controlled dc motor.



The Transfer Function of Linear Systems

Armature Speed
' H.'H wls)
ol e

Back emf

Armature-controlled dc motor.



The Transfer Function of Linear Systems

Armature Speed
N N Ky [109) - M%}F ] mﬂh
_ R+ L T Is+ b
K, M
Back emf




The Transfer Function of Linear Systems

S04

300 Bevond present

200 Steel state of the art
mills

100 May be
70 | hydrostatic

— ig drives
= 30 Cl‘:mn.i:s and
_g' E ].ID]E-tS Eaﬂgg .;jf'
] conventional
= 10 electrohydraulic
= 7 control
19 5 Machine tools
) 4
= 3
= '2 Antennas
| Robots
Usually electromechanical
actuation
Auto

engine control

Level control

© o000
b L Jaln =) —

5 7 10 20 30 4050 70 100 200 300 500 1 OO
400 TOO

Reciprocal of response time

Range of control response time and power to load
tor electromechanical and electrohvdraulic devices.



The Transfer Function of Linear Systems
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The Transfer Function of Linear Systems

> Vy(s) RyRyCs+1)
+ + Vis) Ry

o

Q|

Vas) —~(RyCys+1)(RyCos+1)

V(s) R{C,s

o

@ |




The Transfer Function of Linear Systems

J. b

@D O K

Vie(s) s:(Is +b) (Ls +Ry)

0(s) Km

Vis)  s{(Ra+Lgs) (Is+b)+KyKpy]




The Transfer Function of Linear Systems

D@

Reference

field

0(s) _ Km
V.(s) B s(r-s + 1)
.
~(b-m)

m = dope of linearizec
torque-speed curve
(normally negative)

K
Vo(s) ReRyq

Vo(s) (S-’CC+ 1)-(S-Iq + 1)
Le Lq
R. Rq
For the unloaded case:

id = 0 ‘L'C= 'Cq

0.0% <1.<0.5
V12= Vq V34= Vd

To =



The Transfer Function of Linear Systems

Return -

Pressure —
>

Piston

sourcee

Return [

M. b

Giear |

[.oad

J'J"l'lr ]

Y(s) _ K

X(s)  s(Ms + B)
A-k 2

= X B=|b+ A—)

Kp Kp
d d

k =—d =—J0

" dx e

g =g(x,P) = flow

A = area of piston

Gear Ratio = n = N1/Nc
Ny-0, = N;-0,

9,_ = n'em



The Transfer Function of Linear Systems

7
L battery

-+

Error
0

voltage

V,(s) R R,

Vi(s) R Ri+R,

R, 0

Vi(s) = ks(01(s) - 0(s))
Vo (s) = Ks:OgrrofS)

Vba ttery

ks =

emax



The Transfer Function of Linear Systems

—D+
Shaft VZ(S) = Kt(D(S) = KtSO(S)
_
K; = constant
—D_
Va(8) ~ Ka
V4(s) s+l
+ o—— ——0o +
Ro = output resistance
— 0] —© — Co = output capacitance

T= R0°CO t<1s

and isoften negligibl
for controlleramplifie



The Transfer Function of Linear Systems

Frame

C

i v

ﬁm

Lﬁq 1

P |
=

A ——

‘L Heater ‘L

%(t) = y(t) — %in(1)

Xo(8) —s*

Xin() 2 (b, k
M M

For low frequency oscillations, wheray < o,

Xo(j“D) _ 032
Xin(j'@) ) X

M
T(s) 1

q(s) 1
Ct'S + (QS + Ej

T=T,- T, =temperature difference due to thermal proc

C, = thermal capacitance

Q = fluid flow rate = constant

S = gpecific heat of water

R; = thermal resistance of insulation

q(s) = rate of heat flow of heating element



The Transfer Function of Linear Systems




Block Diagram Models

K Output
— G(5) = = : >
S(Js+ D) Ls+ Ry)
Block diagram of dc motor.
[nputs Outputs
: >
System
g >

General block representation of two-input, two-output system.



Block Diagram Models

Block diagram of interconnected system.



Block Diagram Models

Original Diagram Equivalent Diagram

—» Gi(5) ] Gyls) —» —» GG, —»




Block Diagram Models

Original Diagram Equivalent Diagram
X, X, X,
— > —

X, ‘
.‘_

Original Diagram Equivalent Diagram

X, X, X, X,




Block Diagram Models

Original Diagram Equivalent Diagram
.Y] "‘.] -+ :":3
— > > —
-+
X,
——
Original Diagram Equivalent Diagram
k] + .)(2 Xl "‘,q
e —
+




Block Diagram Models

Input + Output

G(s) * -

(5)

Negative feedback control system.



Block Diagram Models

Example 2.7

——

+ . -
. G

H,

Hy




Block Diagram Models Example 2.7

—
H, "
G, [
+ + A +
» — G e » G- » G, >
- +
H, fv
H; |

- + X
g ( .(5_' - | &g,
¥ o : | 1- G.G,H, >

L 3

[ : G-.G:‘G
e > P 4
: | — GQGJH|+G:G-\H:
v
Cryralra
_lr.z i |ty

I - G_}GJH|+G:G\H: +G|G:GFGJH1‘

(ch (d)

»
»



Signal-Flow Graph Models

G(s)

O > O

Signal-flow graph of the dc motor.

For complex systems, the block diagram method can become
difficult to complete. By using the signal-flow graph model, the
reduction procedure (used in the block diagram method) is not
necessary to determine the relationship between system

variables.



Signal-Flow Graph Models

P

P
Ggg (%)

Signal-flow graph of interconnected system.

Y1(S) = Gy1(8)-Ri(s) + Gia(s)-Ro(s)

Ya(8) = Gp(8)-Ru(S) + Gpa(5)-Rals)



Signal-Flow Graph Models

a
1
O >
1 a2
1
O >
tly9
Signal-flow graph of two algebraic equations. all'Xl + a12'X2 + I‘l = Xl

doq-Xp + Ao Xo + I = X



Signal-Flow Graph Models

Example 2.8

Two-path interacting system.

Y(s) [G1:G2G3G,(1-L3—Ly)| +[G5GeG7Gg(1-Ly— Ly

R(S) B 1—L1—L2—L3—L4+ Ll'L3+ Ll'L4+ L2'L3+ L2°L4



Signal-Flow Graph Models

Example 2.10

The signal-flow graph of the armature-controlled dc motor.

Y(s) G1:GG3Gy
R(S) B 1+ G2'G3'H2—G3'G4'H1+ Gl'GZ'G3'G4'H3




Signal-Flow Graph Models

(O
Multiple-loop system.
Y(S) ~ Pl + PZ'AZ + P3
R(s) A
gEacgegegeneyes Py = GGy GG P3= GGy G- Gy Gg

A=1-(L+Lh+Lls+Ly+Lls+Leg+ Ly+ Lg) + (Lyly + Lsly + LarLy)

A1:A3:1 A2:1—L5:1+G4°H4



Desigh Examples

Assumptions Mathematical

model
4 4 Math Computer
analysis simulation
Model
responses
Augment the l Prediction
system structure
Modify tl Expected
odity the responses of
system parameters physical system

Analvysis and design using a system model.



Design E |
esign Examples —
» ) I e B controlled I
T armplifier )
mokor
Sensor
Ll
#
1 "le|
| e = 26| o Ky ' .
i o= 1.5 " Bt Los ; Ji+ b v
R
<
< Ry
j_ £y,
K (e
)]
E:I_I.'.I L,-||,'-'| tr-:l.'-l
I o | 10 % ] N
A0 ? 5+ 1 | 25+ 0, v
0.1
()

()

Speed control of an electric traction motor.



Design Examples

Accelerometer

7

A

Spring

= I

Jet engine

-

Case

Levitated test sled M_

Guide rail

An accelerometer mounted on a jet-engine test sled.



Design Examples

3.0

3 4
Time (sec)

6

Accelerometer response.




Design Examples

Hand/gripper-assembly
Forearm casting

Upper
arm
casting

Shoulder

ko Elbow and wrist Unner
assembly - PPt
! motor printed .
. . bl arm
et assembly COover

circuit assemhbly

Rl motor

» Rail and car

Exploded view of the ORCA robot showing the components [ 15].
(Source: © Copyright 1993 Hewlett-Packard Company. Reproduced with permission.)



Design Examples

i
K
-

=
D

(a)

(b)

(a) Ladder network
and (b) its signal-flow graph.



BLOCK DIAGRAM REDUCTION
OF MULTIPLE SYSTEMS




Components of a block diagram for a linear, time-invariant system

R(s) C(s) R(s) G(s) C(s)
Input Output
Signals System
(a) (b)

Ri(s) +8 C(s) = Ri(s) + Ry(s) ~ Ra(5) R(s)
Pa R(s) R(s)_
Rz(‘/ Rs(s) | Re)_

Summing junction Pickoff point

(¢) (d)




G, (s)

a. Cascaded subsystems;
b. equivalent transfer function

Xo(s) = Xi(s) =
G(s)R(s) GH(5)G1(s)R(s)
> G(s) > G3(s)
(a)
R(s) C(s)
— G3(5)Gr(s)Gq(s) —

C(s) =
G3(5) G(s) G1(s)R(s)

-

(b)



R(s)

R(s)

—1 G3(5)

a. Parallel subsystems;
b. equivalent transfer function

X1(s) = R(3)G(s)

X)(5) = R)Gals) * s

+

C(s) = [$G1(5) £ G(s) + G5 (DIRG)

+
X3(s) = R(s) G5 (s)
(a)

C(s)

e wl +G(s) £ Gy(s) £ Ga(s)

(b)



a. Feedback control system;
b. simplified model;
c. equivalent transfer function

Input
transducer Controller Plant
R(s) + E(s) C(s)
— Gi(s) [ ) Gay(s) = G3(s) >
Input - Actuating Output
signal
(error)
Hy(s) [=— Hi(s) =
Feedback Output
transducer
(a)
Plant and
controller
R(s) + E( C(
(s) (s) G(s) ()
Input Actuating Output
signal
(error)
H(s) [=
Feedback
(b)
R(s) G(s) C(s)
_— -
Input | 1 £ G(s)H(s) | Output

(¢



Block diagram algebra for summing junctions

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction

R(s) + ) C(s)_ - R(s) ) + g C(s)
¥ 1T
X(s) G
A
@ X(s)
R(s) 6 + g C(s) - R(s) + 6 C(s)
1T ¥
A(s) 1
G(s)

(b)



Block diagram algebra for pickoff points

equivalent forms for moving a block
a. to the left past a pickoff point;
b. to the right past a pickoff point

R(s) G(s) R(s) G(s)
1 G(s) -
R(s) R(s) R o ” R(s)
- = " 6o
R(s) » R(s)
= ™ G
(a)
R(s) G(s) o R(s) G(s)
e - S -
R(s) R(s)G(s) __ R(s) R(s) G(s)
—»= G(s) e — > G(s) ————
R(s) G(s) R(s) G(s)
e I s - G(S) -

(b)



Block diagram reduction via familiar forms for Example

Problem: Reduce the block diagram shown in figure to a single transfer
function




Block diagram reduction via familiar forms for Example Cont.

Steps in solving Example
a. collapse summing junctions;
b. form equivalent cascaded
system in the forward path
C. form equivalent parallel
system in the feedback
path;
d. form equivalent feedback system and
multiply by cascadedG,(s)

RS 6 B PP O,
Hi (s) fe——
Hi(s) fa——
Hs(5) ||
(a)
R(: (.
RS G () —f—@—. G+(s) Ga(s) ©),
Hy(s)— Hy(s) + Hs(s)
(b)
RGs) G1(5)Go(5) G () C(s)

L+ G3(5) Go(s) [ H1(s) = Hy(s) + H3(s)]

(c)



Block diagram reduction by moving blocks Example

Problem: Reduce the block diagram shown in figure to a single transfer function

R(s) + @ Vi(s)

Gy(s)

Gy(s)

C(s) .

Ve(s)

H(s)

Hy(s)




Steps in the block diagram reduction for Example

a)Move G,(s) to the left past of
pickoff point to create parallel
subsystems, and reduce the
feedback system of G;(s) and Hs(s)

b)Reduce parallel pair of 1/G,(s)
and unity, and push G4(s) to the
right past summing junction

c)Collapse the summing junctions,
add the 2 feedback elements, and
combine the last 2 cascade blocks

d)Reduce the feedback system to
the left

e) finally, Multiple the 2 cascade
blocks and obtain final result.

1

Gi(s)

Vas) |—k

/).7 £y Ky

Va(s) + V3(s) Gy(5)
V s
7(s) Hy(s)

Gy(s)
+
iéb "

G;(s)

1 + G;5(s)H3(s)

C(s)
e

H(s)
(@)
R(s) + Vi(s) + Va(s) I . G5(s) C(s)
- 71(8) Go(s - 1 ; >
\ \ Gi(5)G2(8) Gs) [ |1+ Gs)Hs0)
Hz(S)
Gy(s)
H](S) -
(b)
R(s Va(s 1 71(s C(s
ks GG |2 ( + )59 ) W
h J Gy(s) NI+ Gs(s)Hs(s)
H(s)
—= "+ H(s
G1(s) 1(s)
(¢)

R(s) G(5)Ga(s) Vi(s) 1 " [ G3(s) ) C(s)
— > 1 >
1 Gz(‘\')Hz(S) 5 G|(S)G2(S)H1(S) (Gz(?) )\1 ax G3(.\')H3(S)

(d)

R(s) G1(5)G3(s)[1+ Ga(s)] C(s)

[1+ Gy(s)Hy(s) + Gi(5)Ga(s)H (s)][1 + G3(5)H3(s)]

(e)



Second-order feedback control system

R(s) + _ K C(s) _
@ s(s +a)

K
s’ +as + K

The closed loop transfer functionis T (S) —

Note K is the amplifier gain, As K varies, the poles move through
the three ranges of operations OD, CD, and UD

O<K<a%/4 system is over damped

K=a2/4 system is critically damped

K>a2/4 system is under damped



Finding transient response Example

R(s) + 8 25 C(S)__
s(s+95)

Problem: For the system shown, find peak time, percent overshot, and settling time.
25

s2+5s +25

Solution: The closed loop transfer functionis T (S) =

®, = N25 =5
26w, =5 so £=0.5

using values for & and @, and equation in chapter 4 we find

T = 4 =0.726 sec

p @, \/l—g“

%0S _ e_gﬂ,ﬁ—e”x 100 =16.303

And

T. = =1.6 sec



Gain design for transient response Example

R(s) + K C (S')h

s(s+3)

Problem: Design the value of gain K, so that the system will respond with a 10%

overshot. T (s) = K
Solution: The closed loop transfer function is s2 155 + K
5
w, =K and 2fw, =5 thus &=
2K

For 10% OS we find 520591

We substitute this value in previous equation to find K=17.9



Signal-flow graph components:

a. system;
b. signal;
c. interconnection of systems and signals




Building signal-flow graphs

a. cascaded system

nodes

b. cascaded system
signal-flow graph;
C. parallel system nodes

d. parallel system

signal-flow graph;
e. feedback system nodes
f. feedback system signal-flow

graph

Gi(s)  Gals)  Gi(s)




Converting a block diagram to a signal-flow graph

Problem: Convert the block diagram to a signal-flow graph.

R(s) + @ Vi(s)

Gy(s)

Gy(s)

G3(s)

Ve(s)

H,(s)

Hy(s)

H;(s)

C(s) .




Converting a block diagram 4o a signal-flow grapho O cw

Vi(s) Va(s) Vi(s) Va(s) Vs(s)
Signal-flow graph development: o o o
. Ve(s) V7(s) Vg(s)
a. signal nodes; @
b. signal-flow graph; |
c. simplified signal-flow graph
R(s) O
1
1 Gi(s) Ga(s) 1 Gi(s)
R(s) O —( - —— U C(s)
Va(s) Vs(s)

—H;(s)

—H(s)
(c)



Mason’s dule - Definitions

Gel(s)

Gi(s) _ Gas) G3(s) _ Gy(s) Gs(s) G7(s)
R(s) O——O—>—0O——O—> > — C(s)
WTQ(S) Vi(s) ] Vo(s) Vi(s)

H(s)

H;(s)

Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at the
same node, following the direction of the signal flow, without passing through any other node more than
once. Gy(s)H,(s), Gy(s)H,(s), G4(s)Gs(s)Hs(s), Gals)Ge(s)H;(s)

Forward-path gain: The product of gains found by traversing a path from input node to output node in
the direction of signal flow. G,(s)G,(s)G5(s)G,(s)Gs(s)G,(s), G,(s)G,(s)G3(s)G,(s)Gs(s)G(s)

Nontouching loops: loops that do not have any nodes in common. G,(s)H,(s) does not touch G,(s)H,(s),
G,(s)Gs(s)H;(s), and G,(s)Ge(s)H;(s)

Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at a
time.

[G,(s)Hy(s)][G4(s)H,(s)], [Ga(s)H1(s)I[Ga(s)Gs(s)Hs(s)], [Gy(s)H(s)][Ga(s)Ge(s)Hs(s)]



Mason’s Rule

The Transfer function. C(s)/ R(s), of a system represented by a signal-flow graph is

G(s)=CO) Zk:TkAk
Where R(s) A

K = number of forward paths
T, = the kth forward-path gain

=1 -, loop gains +—, nontouching-loop gains taken 2 at a time - nontouching-loop
gamsZaken 3 atatime + nontouching-loop gains taken 4 at a time - ...

2

= - __loop gain terms in  that touch the kth forward path. In other words,
Ak is for,med biellmmatmg from A those loop gains that touch the kth forward path.Ak

A



Transfer function via Mason’s rule

Problem: Find the transfer function for the signal flow graph

Solution: O Gis)  Gls) Gl Gals)  Gslo) .
S - - - - - (s

forward path Va(s) V(s) V5 (s) Vi(s)

G,(s)G,(s)G3(s)G,4(s)Gs(s)

Loop gains Hy(s)

G,(s)Ha(s), Ga(s)H,(s), G;(s)Ha(s),
G,(s)G3(5)G4(s)G5(s)Ge(s)G,(s)Gg(s)
Nontouching loops
2at a time
G,(s)H,(s)Ga(s)H,(s)
G,(s)H;(s)G;(s)Ha(s)
G,(S)H(s)G;(s)Ha(s)
3at a time G,(s)H,(s)G,(s)H,(s)G,(s)H,(s)
Now

A= 1-[G2(s)H1(s)+G,(s)H,(s)+G;(s)Ha(s)+ G(S)G3(s)Ga(s)Gs(S)Ge(s)G,(s)Gs(s)] + [Ga(s)Hy(s)Ga(s)H,(s) +
G,(s)H;(s)G7(s)H,(s) + G4(s)H,(s)G,(s)Ha(s)] — [G,(s)H1(s)G4(s)H,(s)G(s)H,(s)]

Ge(s)

Hy(s)

A; = 1-G7(s)Ha(s)

— 171
G ()= [61(506,(5)64(5)Guls)Gs(s)1-Gy s)Hy(s)]
A A



Signal-Flow Graphs of State Equations o o o o o o o

,\',\"3(.5') ,\'?‘(A\') ,\',\'2(,\') ,\':(,\') .\',\'I (s) X I(,\')
U P (a)
r%blem graw Si aI flo%graph for:
1 1 1
. e Q\?(,’v.)_o,\g(.v) 5X5(8) X5 () 5X,(s) X, (s) e
X, =—6X; —2X, +2X,; +5r ®

L

y =-4X, +6X, +9X,

a. place nodes; .
b. interconnect state
variables and
derivatives;
c. form dx1/dt;
d. form dx2/dt

R(s)




Signal-Flow Graphs of State Equations

(continued)
e. form dx; /dt;
f. form output




Alternate Representation: Cascade Form

R(s) 1 1 1 C(s) .

24 ——— - -

st2 | Xs5) | s+3 | X)) | sT4 | X(s)

C(s) _ 24
R() (s+2)(s+3)(s+4)

R(s)




Alternate Representation: Cascade Form

R(s)

[

1
1 g

Ri(s) O—> U Ci(s)
sCi(s)

(a)

XD1:—4X1—|-X2 ¥ =
X, = —3X, + X,

X3 = — 2X 5 + 24r

y =c(t)=x, y =

X +

o O

24




C(s) B Alternatgﬁepresentjtionlgarzﬂlel Fopm . 12
R(s) (s+2)(s+3)(s+4) (s+2) (s+3) (s+4)

0

xmlzz—2x1 +12r
X, = - 3X, — 24r 1
X3 = —4x3+12r :

y =c(t)=X;+X, + X,

2 0 0 (12 ]
X =0 -3 0!X+l-24lr
0 0 4| |12 |

y=[ 1 1]X




Alternate Representation: Parallel Form Repeated roots
C() _ (s+3 2 1 1
R(s) (+1)°(s+2) (s+1)* (s+1) (s+2)

il
X, = X +2r
D2 2

y =c(t)=x,-1/2x, + X,

1 1 0 0
X =0 -1 0!X+l2!r
0 0 -2| |1




Alternate Representation: controller canonical form

G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by ordering the
phase variable in reverse order




Alternate Representation: controller canonical form

System matrices that contain the coefficients of the characteristic polynomial are
called companion matrices to the characteristic polynomial.

Phase-variable form result in lower companion matrix

Controller canonical form results in upper companion matrix



Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2+ 7s + 2)/(s3 + 9s2 + 26s + 24)
= (1/s+7/s2+2/s3)/(1+9/s+26/s2+24/s3)
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]
= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}

1 1 1

s 1 s 1 s 1
R(s) O O——"-_"O——O——"O——Or——O—— C(s)

X5(5) X5(s) X1(s)




Alternate Representation: observer canonical form

O

XD1=—9X1 + X, +r
X, =—206X, + X5+ 1T
O
Xy =—24X, +2r
y :C(t)le
-9 1 0] [1]
X==26 o 1]x +|7]r
24 0 O] | 2]
y=[1 0 0]X

Note that the observer form has A matrix that is transpose of the
controller canonical form, B vector is the transpose of the controller C
vector, and C vector is the transpose of the controller B vector. The 2

forms are called duals.



Feedback control system for Example

R() + < E(5) 100(s + 5) C(s)

(s +2)(s + 3)

Problem Represent the feedback control system
shown in state space. Model the forward transfer
function in cascade form.

Solution first we model the forward transfer
function as in (a), Second we add the feedback
and input paths as shown in (b) complete system.
Write state equations

U
Ll

butc =5x,;+ (X, —3X;)=2X; +X,




Feedback control system for Example

U

X, =—-200x, -102x, +100r
y = c(t) =2x,+X,

o[ 3 L x (o
—200 -102 100

y = [2 1]X



Form Transfer Function Signal-Flow Diagram State Equations

State-space forms for

Phase 1
variable T e
C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)
=ly:2 3/2

Parallel s ==

1 (s+3)
Cascade G+a) (.: +6)
Controller )
canonical e ey L
Observer a3
canonical S ¥




UNIT-II
TIME RESPONSE ANALYSIS



Feedback Control System Characteristics
Objectives

In this chapter we extend the ideas of modeling to include control system
characteristics, such as sensitivity to model uncertainties, steady-state errors,
transient response characteristics to input test signals, and disturbance
rejection. We investigate the important role of the system error signal which we
generally try to minimize.

We will also develop the concept of the sensitivity of a system to a parameter
change, since it is desirable to minimize the effects of unwanted parameter
variation. We then describe the transient performance of a feedback system
and show how this performance can be readily improved. We will also
investigate a design that reduces the impact of disturbance signals.



Open-And Closed-Loop Control Systems

A closed-loop system.

An open-loop (direct) system
operates without feedback and
directly generates the output in
response to an input signal.

A closed-loop system uses a
measurement of the output
signal and a comparison with
the desired output to generate
an error signal that is applied to
the actuator.



Open-And Closed-Loop Control Systems

H(s) = 1
&(s) Ris) i, > ¥s)
Y =T G(s) ‘R ‘
—
E(s) = L -R(s) Error Signal
1+ G(s)

Thus, to reduce the error, the magnitude of

H(s) = 1

_ G(s) .
Y = T A oy )
E(s) = 1 R(s)

1 + H[(s)-G(s)]

Thus, to reduce the error, the magnitude of

|11 + G(s)| =s =1

|1 + G(s) H(s)| = =1



Sensitivity of Control Systems To Parameter Variations

For the closed-loop case if GH(s) > 1

1
Y(s)—rs)-R(s)

G(s) + AG(s)

Open Loop AY (s) = AG(s)-R(s)

Closed Loop

Output affected only by H(s)

(G(s) + AG(s))

Rix) i

Y(s) +AY(s) =

AY (s) =

1+ (G(s) + AG(s) )-H(s)

AG(s)

R(s)

GH(s) > AGH(s)

AG(s)

AY (s) =

(1+ GH(s))2

(14 GH(s) + AGH(s) (1 + GH(s))

‘R{(s)

‘R(s)

The change in the output of the closed system
is reduced by a factor of 1+GH(s)

-' !"ll_l.l



Sensitivity of Control Systems To Parameter Variations

Y (s)
T =
(s) R (5)
@
AT (s) d T d
S T (s) s — T _(d Ta G
o AG (s) d G (d § T
G (s) d G d G
G
T (s) = -

e B e RPN :

S & — ) — ) — )
d T d T (1 + GH )° ©
d G d G (1+ GH )

S & L 1 Sensitivity of the closed-loop to G variations reduced
(1 + GH )
T — GH Sensitivity of the closed-loop to H variations
S H = 11+ 6h ) When GH is large sensitivity approaches 1

Changes in H directly affects the output response



Example 4.1

- — I o {a) Open loop amplifier.
N N R, (b) Amplifier with feedback.
(rain Gain B i-,‘_
—Kh- _K..-l I * K2
B N . . +
M —K,
(al ki +
B
@) pen Ioop Closed |00p Block diagram model of feedback amplifier assuming .“-:.I,, = Ry of the amplifier.
- K.V R2
Vo = KaVin B=— R, = R1+ R2
R1 P
="k K T 1
T=—— SKa =
- 1+ Ky P 1+ Ky P
Ska =1
If Ka is large, the senditivity islow.
4 T 1 — 4
K, =10 B:=0.1 Skg =t+—— =9.99x 10



Control of the Transient Response of Control Systems

i = constant field current

Load

Cpen-loop speed control system (without feedback).

K
S 1
) _ ge -
Va(s) T1'S + 1
where,
K R,-J
Kl m ’Cl :




Control of the Transient Response of Control Systems

{a) Closed-loop speed control system.
(b} Transistorized closed-loop spead control system.

Aomplibier Mlotor
——
.Q ™ Ky » 50

/ T achometer - \

-
+§j
ik Kl
Kagy—
o(s) K aG(s) _ KaKiy _ T1
R(s) 1+ Ka K G(s) - TS+ 1+ KKKy - (1+ Ka'Kt'Kl)




Control of the Transient Response of Control Systems

Closed-1oop

wil)
Kk E

Oipen-loop
(without feedhack)

o1 2 3 4 5 6 7 B 9 1011 12 13 14 15
Time i =econds)

The response of the open-loop and closed-loop speed control system when+ 5 10 and
KK K = 100, The time to reach 98% of the final value for the open-loop and closed-
loop system is 40 seconds and 0.4 second, respectively.



Disturbance Signals In a Feedback Control Systems

R(s)

OJC,

+ | Iix) ] Tal®) ;é Tyls) |
> Jr e It o
Motor back emf K, 5 300
< Es
i:“_ 200 = 7 “*_5}}
E{s) = R{s) — w(s) R(s)=0 = L L S,
_j? 100 =755, o) .
_ 0 10 20 30
E(S} - (ﬂ(S) Meotor torque (N-m)
D
E{s) = —(s) = — Td(s) Td{s)= —
Jg+b+ | Km— i
Ra
1 D D
lim Et)= lim s — (—j g — —w(infinite)
. . )
t — mfinite s=>0 | 1.0 pe | Km— b+ | Km —
Ra Ra



Disturbance Signals In a Feedback Control Systems

Aamplitier

Je + b

K

| .
\ Tachome ber
/ '
+

Closed-loop speed tachometer control system.




Disturbance Signals In a Feedback Control Systems

Py
Amplifier
} . f .._-; --“l_'\-\. "I._u =1 1
I Ky
Tachometer
K 1 Kb T
m
G1(s) = Ka-— G2(s) = H(s) = Kt + —
Ra (J-s + b) Ka
G(s 300 -
E(S) = —OJ(S) = ( ) Td(S) lil.-: 50 volts
1+ G(s)-G2(s)-H(s) 200 v~ 10 volts
G1G2Hs) > 1 or V=30 vol
0 | | |
0 10 20 30
E(s) = -Td(s) If G1(s)H(s) very large the effect of the disturbal
GI(s)-H(s) can be minimized
G1(s) H(s) = Ka'Km(Kt + E—bj approximately @ since Ka >> Kb
a a

Strive to maintain Ka large and Ra < 2 ohms



Steady-State Error

— G5y — Eo(s) = R(s) — Y(s) = (1 — G(s))-R(s)

+ Ec(s) = (s) H(s) = 1

— R
M Gis) 1+ G(s)

Steady State Error
His)

lim e(t) = lim s-E(s)
t—> 0 s—> 0

For a step unit input

eo(infinite) = lim s-(l—G(s))-E = lim (1-G(0)
s—> 0 S s—> 0

: : ) 1 1 i 1
eC(lnﬁnlte) = lim s-(—)-— = lim (—)
s>0 \1+G(s)/ s s— 0\ 1+ G(0)



The Cost of Feedback

Increased Number of components and Complexity

Loss of Gain

Instability



Design Example: English Channel Boring Machines

+

Gis)
Boring machine
+ E(x) Y [
—»?—» K+ 115
B sy + 1)

Y(s) = T(s)-R(s) + Td(s)-D(s)

Y(s) = K+ 11s ‘R(s) + L -D(s)

82+12-S+K 82+12-S+K




Design Example: English Channel Boring Machines

+ E(x)

K+ 115

Gis)
Boring machine

*_CT?—‘

|
sy + 1)

T

Steady state error for R(s)=1/sand D(s)=0

lim e(t) =

t > infinite

1

1+ —

K+11s | s

le)
~—

S +S

Steady state error for R(s)=0 D(s)=1/s

lim y(t) =

t —» infinite

1

52 +12s + Kj

w |

Study system for different
Values of gain K

T e

The response v(/) o a) a unitinput step /) and (b) a unt
disturbance step input [Xs) 3 1/y for £ = 104,



Transient vs Steady-State

The output of any differential equation can be broken up into two parts,
ea transient part (which decays to zero as t goes to infinity) and
ea steady-state part (which does not decay to zero as t goes to infinity).

y(t) = Yy (1) + Y (1)
imy, (1) =0

Either part might be zero in any particular case.



Prototype systems

15t Order system C(t) + 1 C(t) — kr (t)

T
2nd order system C(t) + Zé/a)nC(t) + C{)ﬁC(t) = kr(t)
Agenda:

transfer function
response to test signals
impulse
step ramp
parabolic
sinusoidal



1st order system C(s) VT

S)= —
Impulse response ( ) R(S) S ]./T

Step response

Ramp response

Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

') =5t),Rs)=1 &7 e

— — 1 T
O=UORE= o =[1-e iy

r(t)=t1(t),R(S)=i, 0=t -T+Te" |1(t)

ramp



1st Order system

Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change with
time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is more
convenient than the arbitrary time scale of seconds, minutes, hours, days, etc, or
fractions thereof.



Transient vs Steady state

Consider the impulse, step, ramp responses computed earlier. Identify the steady
state and the transient parts.



1St O rd er Consider the impulse, step, ramp responses computed
earlier. Identify the steady state and the transient

system parts.
e 6(5)=C0) =y

Ramp response
Relationship between impulse, step and ramp R(S) S+ :I-/T
Relationship between impulse, step and ramp responses

rm=00.Re) =1 Y7 —e

B 1
(1) =10, R(s) = 5 Cyp(t) = [1—e‘t/T ]1(0
r(t) =ti(t), R(s) = i

SZ

Compare steady-state part to input function, transient part to TE

(t) =l -T +Te*T |1(t)

ramp



2nd order system G(s) = Cls) Ko,
R(S) S°+2w S+ w°

Over damped
e (two real distinct roots = two 1st order systems with real poles)
Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped

e(complex conjugate pair of poles, oscillatory behavior, most common)
step response

Cyep (1) =K1 1 \/1 = sm(a)dt+tan (\/1 £ /g))l(t)

c;(1)=K

2%

1=

e " sin (wst) |1(t)




2nd Order System

Prototype parameters:
undamped natural frequency,
damping ratio

Relating problem specific parameters to prototype parameters



Transient vs Steady state

Consider the step, responses computed earlier. Identify the steady state and the
transient parts.



2nd order system G(s) = Cls) Ko,
R(S) S°+2w S+ w°

Over damped
e (two real distinct roots = two 1st order systems with real poles)
Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped

e(complex conjugate pair of poles, oscillatory behavior, most common)
step response

Cyep (1) =K1 1 \/1 = sm(a)dt+tan (\/1 £ /g))l(t)

c;(1)=K

2%

1=

e " sin (wst) |1(t)




Use of Prototypes

Too many examples to cover them all

We cover important prototypes

We develop intuition on the prototypes

We cover how to convert specific examples to prototypes

We transfer our insight, based on the study of the prototypes to the specific
situations.



N

Transient-Response Spedifications

Delay time, t4: The time required for the response to reach half the final value the
very first time.

Rise time, t,: the time required for the response to rise from

10% to 90% (common for overdamped and 1st order systems);

5% to 95%;

or 0% to 100% (common for underdamped systems);

of its final value

Peak time, t,;:

Maximum (percent) overshoot, M,;:

Settling time, t,



Derived relations fog,20%, (1
Order Systems o =Cw,

1 @
t, = z=p L = f =tan 1(_(1)
xR a)d O
2
W «100%

Mp

t =4T=4= 4 f_qr -3 _ 3

S 2 oy T2 5y
o (w, o (w

Allowable M, determines damping ratio.

Settling time then determines undamped natural frequency.

Theory is used to derive relationships between design specifications and prototype
parameters.

Which are related to problem parameters.

See book for details. (Pg. 232)



Higher order system

PFEs have linear denominators.
eeach term with a real pole has a time constant

eeach complex conjugate pair of poles has a damping ratio and an undamped
natural frequency.



Proportional control of plant w
Integrator

1
S(Js+Db)

Ge(s) =Ky, G(s)=



Integral control of Plant w disturbance

G (s)=", 1

G(8) = s(Js +b)




Proportional Control of plant w/o
Integrator

1
Ts+1

G:.(s) =K, G(s)=



Integral control of plant w/o integrator

G (s)=", 1

G(s) =
(5) Ts+1




UNIT-II
STABILITY ANALYSIS IN S- DOMAIN



Chapter 6 — The Stability of Linear Feedback Systems

The issue of ensuring the stability of a closed-loop feedback system is central to
control system design. Knowing that an unstable closed-loop system is generally
of no practical value, we seek methods to help us analyze and design stable
systems. A stable system should exhibit a bounded output if the corresponding
input is bounded. This is known as bounded-input, bounded-output stability
and is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the roots
of the characteristic equation of the system transfer function. The Routh—
Hurwitz method is introduced as a useful tool for assessing system stability. The
technique allows us to compute the number of roots of the characteristic
equation in the right half-plane without actually computing the values of the
roots. Thus we can determine stability without the added computational
burden of determining characteristic root locations. This gives us a design
method for determining values of certain system parameters that will lead to
closed-loop stability. For stable systems we will introduce the notion of relative
stability, which allows us to characterize the degree of stability.



The Concept of Stability

A stable system is a dynamic system with a bounded
response to a bounded input.

Absolute stability is a stable/not stable characterization for a
closed-loop feedback system. Given that a system is stable
we can further characterize the degree of stability, or the
relative stability.



The Concept of Stability

e

(a) Stable

N

i
I

(b) Neutral (¢) Unstable

-

The concept of stability can be
illustrated by a cone placed on
a plane horizontal surface.

A necessary and
sufficient condition for a
feedback system to be
stable is that all the
poles of the system
transfer function have

i
I

negative real parts.

A system is considered marginally stable if only certain bounded
inputs will result in a bounded output.



The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial must
have the same sign and non-zero if all the roots are in the left-hand plane.

These requirements are necessary but not sufficient. If the above

requirements are not met, it is known that the system is unstable. But, if the

requirements are met, we still must investigate the system further to
determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the
stability of linear systems.



The Routh-Hurwitz Stability Criterion

Routh array

S
Sn—l
Sn—2
Sn—3
o
The Routh-Hurwitz criterion o
states that the number of .
roots of q(s) with positive real 0
parts is equal to the number
of changes in sign of the first
column of the Routh array. b,
bn—3
Cn—l

Characteristic equation, q(s) —>a,s" +a_,s" " +a, 8" *+---+as+a,=0

a, 8, a4
R
by b3 b s
Cii Gz Cis
[ J ([ o
[ J ([ ([
o [ ] [ ]
h.s
_ (an 1Xan 2)_an(an—3) _ -1] &,
L A
_ —_1 dp 8y
Ana| yg Gn3
_-lla, a,
b, b,y by

an—2

an—S




The Routh-Hurwitz Stability Criterion
Case One: No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order systemis:

q(s) = a2~32 + a7-S + ag

The Routh array is written as: 2
s*|a, a,

1
ss1a O
w here: S 0 bl O

8189 — (0)-ay

b]_: —ao

ap

Therefore the requirement for a stable second-order systemis
simply that all coefficients be positive or all the coefficients be
negative.



The Routh-Hurwitz Stability Criterion
Case Two: Zeros in the first column while some elements of the row containing a
zero in the first column are nonzero.

if only one element in the array is zero, it may be replaced w ith a small positive
number ¢ that is allow ed to approach zero after completing the array.

q(s) = s+ 25% + 263 4 4s% + 11s + 10

The Routh array is then:

|1 2 11
s*12 4 10
(b, 6 0
s*|c 10 O
s'|d, 0 O
110 0 O
w here:
bﬁw:O:S Cl=4g-2-6=—12 dﬁw:G
2 € € C1

There are two sign changes in the first column due to the large negative number
calculated for cl1. Thus, the systemis unstable because two roots lie in the
right half of the plane.



The Routh-Hurwitz Stability Criterion
Case Three: Zeros in the first column, and the other elements of the row containing
the zero are also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the
origin of the s-plane, such as (s+c)(s-c) or (s+w)(s-j). This case is solved using
the auxiliary poly nomial, U(s), w hich is located in the row above the row containing
the zero entry in the Routh array.

q(s) = $Sr2s%+ 45+ K
3

Routh array: S 1 4
s> | 2 K
st | &K 0
s | K 0

For a stable systemwe require that 0<s <8

For the marginally stable case, K=8, the s*1 row of the Routh array contains all zeros. The
auxiliary plynomial comes fromthe s*2 row.

U(s) = 25% + Ks’ = 2.s% + 8= As? + 4) = 2As + (s - J2)

it can be proven that U(s) is a factor of the characteristic polynomial:

U(s) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q(s) = (s + (s + j2A(s - j-2)



The Routh-Hurwitz Stability Criterion
Case Four: Repeated roots of the characteristic equation on the jw-axis.

With simple roots on the jw-axis, the system will
have a marginally stable behavior. This is not
the case if the roots are repeated. Repeated
roots on the jw-axis will cause the system to be
unstable. Unfortunately, the routh-array will fail
to reveal this instability.



Example 6.4

A completely integrated, six-legged, micro robot system. The six-legeed design provides
maximum dexterity. Legs also provide a unique sensory system for environmental
interaction. It is equipped with a sensor network that includes 150 sensors of 12 different
types. The legs are instrumented so that the robot can determine the lay of the terrain, the
surface texture, hardness, and even color. The gyro-stabilized camera and range finder can
be used for gathering data beyond the robot’s immediate reach. This high-performance
system is able to walk quickly, climb over obstacles, and perform dynamic motions.
(Courtesy of IS Robotics Corporation. )



Example 6.5 Welding control

T Kis + a) I
(s + 1 sty + 2y + 3

Welding head position control.

4 3 2
Using block diagram reduction we find that: 4{s) = 5 + fz” + 115"+ (K + 6)s + Ka

The Routh array is then: g4 1 11 Ka
s° 6 (K +6)
s b, Ka
s' C,
s’ Ka
where: b, = 00— K and C3= oK+ 9 ~ora
6 b3

For the sysem to be stable bothy;and c; must be positive.

Using these equations a relationship can be determined for K ai



The Relative Stability of Feedback Control Systems

It is often necessary to know the

relative damping of each root to
the characteristic equation. &
Relative system stability can be

Jw

b= 15

measured by observing the
relative real part of each root. In
this diagram r2 is relatively more &
stable than the pair of roots
labeled rl.

T
J

|
WD e A e >

One method of determining the relative stability of
each root is to use an axis shift in the s-domain and
then use the Routh array as shown in Example 6.6
of the text.

a



Design Example: Tracked Vehicle Turning Control

Problem statement: Design the turning control for a tracked vehicle
and a so that the system is stable. The system is modeled below.

Track
(8] Ll Le

Thmollle —
:"';ll.'L'I'iI]:_] _..

Piovaasr train

» and controller

Right
—

¥
g i vection of

L Wehicle

[rowel

——»

Difference in track speed

Cantral ler

Poweer train and
vichicle Gis)

5

™ S5+ 20N+ 5

G080
+ (5 + a)
FiE 'l I' +I|jl
) 5
Desiped _ \ /
elire clion
of wming

ib

. Select K



Design Example: Tracked Vehicle Turning Control

The characteristic equation of this system is:
1+ G:G(s)=0
or

K(s + a) _
s(s+ 1)(s +2)(s +5)

Thus,
s(s+D(s+2(s+5 +K(s+a)=0

or
4 3 2

S +8 +16 "+ (K+10s+ Ka=0

To determine a stable region for the system, we establish the Routh arre

s 1 17 Ka
5 8 (K+10) 0
s’ b, Ka
st C,
s? Ka
where
126 — K ba(K + 10) — 8Ka

b, = and Ca =
T g ’ bs



Design Example: Tracked Vehicle Turning Control

s 1 17 Ka
3 8 (K+10) 0
s° b, Ka
s' C,
s’ Ka
where

bs = 1268_ K and Cg =

Therefore,

K< 126
Ka>0

(K + 10)(126 — K) — 64Ka > 0

ba(K + 10) — 8Ka

b3

o

3.0

Stable
region

// Selected K and a

50

=
!

0

100

126

|
1 50



The Root Locus Method

In the preceding chapters we discussed how the performance of a feedback system can be
described in terms of the location of the roots of the characteristic equation in the s-plane. We
know that the response of a closed-loop feedback system can be adjusted to achieve the
desired performance by judicious selection of one or more system parameters. It is very useful
to determine how the roots of the characteristic equation move around the s-plane as we
change one parameter.

The locus of roots in the s-plane can be determined by a graphical method. A graph of the locus
of roots as one system parameter varies is known as a root locus plot. The root locus is a
powerful tool for designing and analyzing feedback control systems and is the main topic of this
chapter. We will discuss practical techniques for obtaining a sketch of a root locus plot by hand.
We also consider computer-generated root locus plots and illustrate their effectiveness in the
design process. The popular PID controller is introduced as a practical controller structure.

We will show that it is possible to use root locus methods for design when two or three
parameters vary. This provides us with the opportunity to design feedback systems with two or
three adjustable parameters. For example the PID controller has three adjustable parameters.
We will also define a measure of sensitivity of a specified root to a small incremental change in
a system parameter.



The Root Locus Method

A0S
‘ 10000 - N []
410057464005 1 TRO00S+2 28000052+ 26000003
Step Gain Scope
Transfer Fen
Foot Locus
5]
_______A(
40+
£

A0 F

0 1 I 1 1 I 1 1 I I
L . | N L [ -5 0 5

Feal Axis




The Root Locus Method

The root locus is a graphical procedure for determining the poles of a closed-loop system
given the poles and zeros of a forward-loop system. Graphically, the locus is the set of
paths in the complex plane traced by the closed-loop poles as the root locus gain is varied
from zero to infinity.

In mathematical terms, given a forward-loop transfer function, KG(s)
where K is the root locus gain, and the corresponding closed-loop transfer function

KGis) A _. |
1 + KG(E) | :\T/ - ') - (B3] r )

the root locus is the set of paths traced by the roots of
1+EKGisj=0

as K varies from zero to infinity. As K changes, the solution to this equation changes.
This equation is called the characteristic equation. This equation defines where the poles
will be located for any value of the root locus gain, K. In other words, it defines the
characteristics of the system behavior for various values of controller gain.



The Root Locus Method

+ . |
Ris o > ¥is)
£z + 20
E: _|i|h|
K
incrensing
Ly
rl"‘l"r 1‘"-\
m..,_’,-" “mm-'l'
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v e o
-1 & -1l =—guw,
increasing
[J= roots of the
cloged-loop K,
syabam
= polea of the
open-loop
Ay steim K,




The Root Locus Method

r = complex root locations

K = gain vector 1+ KG(s) =0

T

[r.KEriocus sys)




The Root Locus Method

= T T T T
4
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The Root Locus Method
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The Root Locus Method

No matter what we pick K to be, the closed-loop system must always have n poles, where
n is the number of poles of G(s).

The root locus must have n branches, each branch starts at a pole of G(s) and goes to a
zero of G(s).

If G(s) has more poles than zeros (as is often the case), m < n and we say that G(s) has
zeros at infinity. In this case, the limit of G(s) as s -> infinity is zero.

The number of zeros at infinity is n-m, the number of poles minus the number of zeros,
and is the number of branches of the root locus that go to infinity (asymptotes).

Since the root locus is actually the locations of all possible closed loop poles, from the
root locus we can select a gain such that our closed-loop system will perform the way we
want. If any of the selected poles are on the right half plane, the closed-loop system will
be unstable. The poles that are closest to the imaginary axis have the greatest influence on
the closed-loop response, so even though the system has three or four poles, it may still
act like a second or even first order system depending on the location(s) of the dominant

pole(s).



Example Mote: This controller has adjustable gain. Lfter this desizn
‘ 15 bonlt we must anticipate that all values of K will be

used. [t 18 our responsibility to rake sure that none of
. the possible K values will lead to mstabihtsy.

+ _“n‘
--Oirg - | ! L
&5
)

F(s1 = Hizn =1

|

First, we must develop a transfer function for the extive control systern.

F(3) _ (%J E

Fyls) = = =
1+ s 1H( 5 s+ E
(B

Mext, weuse the charactenstic equation of the denoranator to find the roots as
the walue of E. warles. These can then be plotted on a cormplex plane. Hote:
the walue of gain 'K 1z normally found frorn O to +ixdinity

s+E=0 K root .
Jm.l.
1]
1 E = E=0 =
2 — =} ;- -
3
eto..

Mote: becanse all of the roots for all values of K are real negatmee this systern will
always be stable, and it will always tend to have a daraped response. The large the
value of F, the more stable the systern becomes.



Example

MATLAB Example - Plotting the root locus of a transfer function

Consider an open loop system which has a transfer function of
G(s) = (s+7)/s(s+5)(s+15)(s+20)
How do we design a feedback controller for the system by using the root locus method?
Enter the transfer function, and the command to plot the root locus:
num=[1 7];
den=conv(conv ([l 0],[1 5]),conv ([l 15],[1 201));
rlocus(num,den)
axis([-22 3 -15 15])

Irmag Axis

-25 =20 -15 -10 -5 ] 5
Fieal Axis



Graphical
Method

Grven the systemn elements (you should assume negatrve feedback),

Fi(a) = __£ Hia=1

Step 1:(put equation in standard forrm)

|+ () His) = 1+(#
s t+as+

Step 2: (find loci ending at indiraty)

_ 1
)ﬂj 1+K|:5+1:||:.5+2:|

m=0 =n=72 (fromthe poles and zeros of the previous step)

n-m=12 {loci end at ndiratsy)
Step 3: (plot roots)
Joo
A
——x -°
-2 -1

Step & (find asymptotes angles and real axas intersection)

E":-iﬂ = %‘w ke j[|:|,1] J'

B0y = IED°[22|:IIIJ+ 1) _ gge

Bily = IED"I:EEI:I 1+1) _ TI0° —3¢ 3¢ /

Z M=1-2%
W) 5 1]



Graphical

Method step 5 (find the breakout points for the roots)
A=1 B=s+35+2
i d
—A=10 B =12:+43
d3 ds g

Yo

ﬂ%ﬁ)—ﬁ(iﬂ) =0
I(2s+3) - (5 +3s+2907 = 0

2:+3 =10
s =-=15

Note: becanse the loci do not intersect the rmaginary axds, we know the systern will be
stable, so step 6 is not necessary, but we 1t will be done for ustratrve parposes.

Step 6: (find the irmaginary intercepts)
1+ G Hizyi=10

1+E_ 1 =g

52+35+2

S H3s+2+E = 0

Ge)l +ige) +2+E =0

i +3o+2+E =10

m2+m[—3jj+[—2—ﬁij =1

oo Bt «l'rE—Er':lz—dhi—E k) _ 3 SITEIIE _ 3+ AT

[ this case the frequency has an rnagmary value. This reans that there will be no
frecuency that will mtercept the raammary aas.




Root Locus Design GUI (rltool)

The Root Locus Design GUI is an interactive
graphical tool to design compensators using
the root locus method. This GUI plots the
locus of the closed-loop poles as a function of
the compensator gains. You can use this GUI
to add compensator poles and zeros and
analyze how their location affects the root
locus and various time and frequency domain
responses. Click on the various controls on
the GUI to see what they do.

# Root Locus Design: Gservo

S [=] E3

File Tools ‘Windaw Help
Current Compenzatar F m
e [
i i +/] H]
R N S K ™ Grid

i
RN

Bxes zetlings: l l @I 3’f~:||

£ 00 |)r-:3' UE' W ﬂl]

[ Step

[ Impulze [ Bode

[ HWuoguist [ Michols

Feady



rltool1.shtml
rltool2.shtml
rltool3.shtml
rltool3_5.shtml
rltool4.shtml
rltool5.shtml
rltool6.shtml
rltool7.shtml
rltool8.shtml
rltool9.shtml
rltool10.shtml
rltool11.shtml

UNIT-1V
FREQUENCY RESPONSE ANALYSIS



Frequency Response Methods
and Stability

In previous chapters we examined the use of test signals such as a step and a ramp
signal. In this chapter we consider the steady-state response of a system to a sinusoidal
input test signal. We will see that the response of a linear constant coefficient system
to a sinusoidal input signal is an output sinusoidal signal at the same frequency as the
input. However, the magnitude and phase of the output signal differ from those of the
input sinusoidal signal, and the amount of difference is a function of the input
frequency. Thus we will be investigating the steady-state response of the system to a
sinusoidal input as the frequency varies.

We will examine the transfer function G(s) when s =jw and develop methods for
graphically displaying the complex number G(j)as w varies. The Bode plot is one of the
most powerful graphical tools for analyzing and designing control systems, and we will
cover that subject in this chapter. We will also consider polar plots and log magnitude
and phase diagrams. We will develop several time-domain performance measures in
terms of the frequency response of the system as well as introduce the concept of
system bandwidth.



Introduction

The frequency response of a system is defined as the steady-state response of the
system to a sinusoidal input signal. The sinusoid is a unique input signal, and the
resulting output signal for a linear system, as well as signals throughout the system, is

sinusoidal in the steady-state; it differs form the input waveform only in amplitude and
phase.



Frequency Response Plots

Polar Plots

()




Frequency Response Plots R
Polar Plots C
— O & 0 —
1
®:=-1000,-999..1000 j:=y/-1 R:=1 C:=0.01 ol = e
1 :
G((D) e Negativen

(j'gj H 05 \

|
0 05 1

Re(G(w))

Positive®



Frequency Response Plots

Polar Plots
0
—ax10 /'/’ﬂf
»:=0,.1..1000 t:=0.5 K:=10C
K
Gl(co) = i Im(G1(®))-500 [ -

.. 1 —
}(D' J.Q).+ —_
o)

= 997.508 gg I I
-60 =40 =20 0
~ 49875  Re(GL(0) _ g

Polar plot for G( jw) = Kfjw( jot + 1). Note that w = = at the origin.



Frequency Response Plots

Polar Plots Im[G]

Re[(7]
Increasing w g /‘
s

¥ | 1357

Positive w

w10 l

Polar plot for G{ jw) = K/jw( jot + 1). Note that @ = == at the origin.



Frequency Response Plots

Bode Plots — Real Poles

0 ————
Paa ™

= -5
3

—  —10
=

— —15
=
Lo |

—20

(al

o=

E
: \

=]

I
3
=

— 1007

0.1

Bode diagram for G( jw) =

1

w, radfsec

(b)

L/ jor + 1): (a) magnitude plot and (b) phase plot.

=



Frequency Response Plots

Bode Plots — Real Poles

0.1 0.11 :
a)::—,—..lOOO J::-\/—_]_ R:=1 C:=0.01 t:=R-C
T
1
G(o)) _ 1 ol :=— ol =100 (breakfrequency or corner frequency)
jo-t+1 t
> -3dB
-10 —
20-lod |G(w)|)
-30 l |
3

(break frequency or corner frequency)



Frequency Response Plots

Bode Plots — Real Poles

(1)(03) :=—atan ((D-’C)

0 | | |
-05 —
d(w)
_1 - —
- | | |
15 3
01 1 10 100 1-10

(break frequency or corner frequency)



Frequency Response Plots

Bode Plots — Real Poles (Graphical Construction)

0
|
L
= -10
=
=
-]
—20
gl 1 10
107 T T

g

Asvmptotic curve for ( jor + 1) L



Frequency Response Plots

Bode Plots — Real Poles

| 500 ( jew)?
- ap I:_In:.:u-]
g
=2
b P
dB = 0 {jee)™
E
= .
= [ jeek) I
P ' ]
— 180 [ je) =
i1 | 10 100 (.1 10 AN}
e e

Bode diagram for { ._Jm}—‘*‘



Frequency Response Plots

Bode Plots — Real Poles

]
= .
= Asvmplolic
-1 curve
— M
(a)
4]
8
z Linear
=i .neat
- ] . o
545 approximation
E
=
_I_-||-|
0.1
T T
L
ib)

Bode diagram for (1 + jwr) |



Frequency Response Plots

M agnitude: Bode Plots — Real Poles

db(G,®) = 20-log( |G (j-w)|)
Phase shift:

05(G.0) = 22 arg(6(j-0)) - 360-(if(arg(G(j-0)) = 0.1.0))

7T
Assume

K:=2 G(s) =

Next, choose afrequency rangefor the plots (use powers of 10 for convenient plotting):

lowest frequency (in Hz): Ostart = -01  number of points: N := 50
highest frequency (in Hz): ®eng = 100
: Ostart
step size:
( ®end j
range for plot: ..N

range variable: ®j = coem-lo"r Sj == ]-0j



Frequency Response Plots

Bode Plots — Real Poles

range for plot: =0.N range variable: ®j = mend-lo” Sj = ]-Oj
100
20-log(|G(si)|) O Bail ]
0 Ins™
..... -100 -
209 o1 0.1 1 10 100
oj
ps(G., 0 T
SRR RN DR U A N 1 | \\ LLLLE .-
~-180 [ ~l]] Il
----- \_\
0.01 0.1 1 10 100



Frequency Response Plots

Bode Plots — Complex Poles

I'.. = LLLL
I..I. I..I
015
(.20
125
. (]
—10 0’6
I__I_:l:
1.0
— 20
— 30
—40)
il .2 03 04 0506 08 1.0 2 3 4 5 A 510

Bode diagram for G{ jw) = |1 + (2{/w,,) jo + ( jofow,, )= 3
L ' ."il . .|Ij'



Frequency Response Plots

Bode Plots — Complex Poles

— 140

— a0

— 180 ——— =
0.1 02 03 04 0506 08 1.0 2 i 4 5 6 B ID

Bode diagram for G( jew) = [1 + (2{/wy,) jo + ( jola, )] 3



Frequency Response Plots

Bode Plots — Complex Poles

2
©p = oon-\/l—Z-C; ;< 0.707

Mpe ‘G(‘Or)‘ = (2.@\/1_—@2) £ <0.70°




Frequency Response Plots

3.25 1.0
Bode Plots — Complex Poles p >
3.0 0,90
2.75 L1 0,80
2.5 0.70
225 00,60
> M.'*;- ot i
O = COn‘\/ 1-2¢ € < 0.707 2.0 0,50

v

1
Mpo = [ar)| = £ < 0.707"7 04
(2¢41-2) )

(=
1.5 (.30
.25 (.20
L. (.10

.0
0.20 (1.30 (.40 (.50 (.40 (.70

_|'."



Frequency Response Plots

Bode Plots — Complex Poles
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Frequency Response Plots

Bode Plots — Complex Poles

R R
A AAA——
+ o—# 'S W —— O —C +
il
AY Ay
/1 /]
Ri2
— & - o —
s - plane i
—2 =3 —2 -2+ V3 o

T

— g




Performance Specification In the Frequency Domain

R(s)

20log M,

()
—3

T|. dB

L=

20 loe

() i.’F_.i'_l.

“p

(e



Performance Specification In the Frequency Domain

w:=.1,.11.2 K:=2 j:=\/—1
Hw) = i
jo-(jo+ 1)-(jo + 2) BOdel(CO) :=20log( |G(03)|)
20 \\\‘ | | I
\\\
I Open Loop Bode Diagram
Bodel(w) O [~ N-“"'w--.“_‘___ —
-20 ] ] ] -
0 05 1 15 2
T((D) = —G(O)) "
14 G((D) Bodez(m) = 20Iog( |T(co)|)
10 | | I
.;f’"’--’w--’—‘-\\‘\.
opb—"" S _
BodeX ) “‘\.\
~10 - Closed-Loop Bode Diagram ‘\N”“w-\_\‘ ]
-20 l l l
05 1 15 2



Performance Specification In the Frequency Domain

w:=4

) Finding the Resonance Frequenc
Given 9 9 Y

20-log( |T(w)|) = 5.282

wr := Find(w) wr = 0.813

Mpw :=1

Given

20 log(Mpw) = 5.282 Finding Maximum value of the frequency resp«
Mpw :=Find(Mpw) Mpw = 1.837 10 | |

Bode2 )

“10 1~ Closed-Loop Bode Diagram

-20
05 1



Performance Specification In the Frequency Domain

Assume that the system has dominant second-order roo

C:=.1

Given

wow[2c(J1-2)] L

¢ :=Find(¢)
wn :=.1
Given

2
WI = Wn-\ll - 2:C

wn := Find(wn)

Finding the damping factor

10

Bode2 )
_10 —

C=0.284

et

-20

Finding the natural frequency

wn = 0.888

05




Performance Specification In the Frequency Domain

L
o,

1.6
1.5

1.4
1.3

1.1

0.9

0.8
0.7

0.6

Linear approximation
-[n'JH
= —1.19{+ 1.85

-lIl:.l'|lll

Pl

0.6

0.7 08 09 |



40

Performance Specification
In the Frequency Domain I

/
GH1 ) = 5 g /

j-(o-(O.Sj-(o + 1)(]% + lj

20 log |GH|. dB

—30

—40
-270  -225 —180 —135  —90

Phase. degrees



Performance Specification In the Frequency Domain
Example

Metal to be

engraved
Controller

vemotar 1 Position measarement T

x-motor 2 Dresired position

Position measarement

(a)
Controll Motor, screw, and
HniraEEr scribe holder
+ 1
’ K M st Dis 2 >

(ki



Performance Specification In the Frequency Domain
Example



Performance Specification In the Frequency Domain

Example

20
10
o Asymptotic approximation
0 e
~ J
—10 ~ e
R
N
~20 \ —90°
—135°
— 180"
0.1 0.2 0.5 l 2 5 10

hi )



Performance Specification In the Frequency Domain
Example

20 log | T, dB
.I

I
=1

I
L

{:]_Cl

—_ I:}DF'

)]

— 1807

—270° _
0.1 0.2 04 06
i)

0.8

]



Frequency Response Methods Using MATLAB

Gain dB
&n

-100

-150

1071 100 101 10°
Frequency (rad/sec)

-50
, -100
-150

-200

Phase deg

-300 .
1077 10¢ 101 102

Frequency (rad/sec)

10°



Frequency Response Methods Using MATLAB

Gain dB

Phase deg

20

Q

-20
1071

o

10° 107 10° 10°%
Frequency (rad/sec)

-100

-200
107

10" 101 102 10°
Frequency (rad/sec)

User-supplied frequency

(r(s) = .
() = sys {optional)

[Mmag,phase, w]=bhoda(sys,w)



Frequency Response Methods Using MATLAB

n points between 109 and 107

w=logspace!a,b.n)
Logarithmically spaced wector
Example Generate 200 points between 0.1 and 1000,

==We=lodspace(-1,3,2007;

==ladesys, w);

50

— I:I
)
=
=S 50
- 100

-150 -
1071 10 101 107 10

Fregquency (rad/seac)



Frequency Response Methods Using MATLAB

% Bode plot script for Figure 8.22

oy
0

num=5*0.1 1J;

f1=[1 0] f2=[0.5 1]; f3=[1/2500 .6/50 1];

den=conv(f1,conv(f2,i3)):

sys=tf(num.den);
bode(sys)

Compute
0.6
(1 + 0.55)(1 50

]




Frequency Response Methods Using MATLAB

3.5 1
3 _ D8
225 z 0.6
= 2 ¥ 0.4
1.5 0.2
1 0
0 02 04 06 08 0 02 04 06 08
£ £
{a)
zeta=[0.15:0.01:0.7]; zeta ranges from 0.15 to 0.70

Wr_over_wn=sqrt(1-2"zeta."2);
Mp=(2*zeta .” sgrt(1-zeta.”2)).%-1);

subplot(211),plot(zeta, Mp),grid

¥label("\zeta'), vlabel('M_{p\omega}') Generate plots
subplot(212),plot(zeta,wr_over_wn),grid

¥label("\zeta'), ylabel("\omega_r/tomega_n')

(a) The relationship between (M, . w,)and (<, @, ) TOr
i .
a second-order system. (b) MATLAB script.



Frequency Response
Methods Using
MATLAB

Initial gain

K
Compule closed-loop
Update transler Iuncuunﬁ_
K T(5) = — — —
sis+ 1y + 20+ K
Closed-loop Bode diagram
M,
— 10 L
Check = “Frr1roFtc——r1-rdTm
; e . = 0
lime domain specs: —
4 2 0
T =— =
£y = —20
iu
JHI” — I + & Tl | |."-_ i —?[]
=
= e 1 Ly _-I'[]
It =ati=fied, then exit L s, 102
and ] _
conlinue anal ysis. Freq. [radisec]
Determine M, and e, .
Establish relaticnship betwean frequency domain
specs and Hime domain specs.
is 1
3 0.3
2.5 (.5
'4";"{1 2 ':”.-"II':”.-\.- 0.4
1.5 2
1 0
0 (.2 0.4 (.G 0.8 0 n2 0.4 (.64 (.5
£ £

Detenming w, and £



Frequency Response engravel.m
Methods USing num=[K]; den=[1 3 2 KJ; Closed-loop transfer function
MATLAB sys=tf{num,den);

w=logspace(-1,1,4007;

[mag,. phase wl=bode(sys Wi; Closed-loop Bode diagram
[mMp]=maximadg); wr=wil}:

T, Wi

==K=2; engrave

mg =
1.2271
W =
028171
manual step Determine g and £ from Fig. 8.11

using 'I";r.". and ..

==Zeta=0.29; wn=0.28; engravez
s =

15.6740
I:II:I -

38,5979

engravez.m

ts=4/Zetawn
po=100"exp -zeta " pi'sqrt 1-zeta™2))

Check specs and iterate, il necessary.



Bode Plots

Bode plot is the representation of the magnitude and phase of G(j*w) (where
the frequency vector w contains only positive frequencies).

To see the Bode plot of a transfer function, you can use the MATLAB

bode

command. 100

For example,

0 b
bode(50,[19 30 40])
displays the Bode plots for the 10! T }D‘ 107
transfer function: . Frelquem:y (rad 5:9‘3)
50/(s"3+9s"2+30s+40) | 0oroiiie o hlriin

1 ok }r;:‘ o

Frequency (radisec)



(5310 Plant
Gain and Phase Margin (T K — &g -

Let's say that we have the following system:

where K is a variable (constant) gain and G(s) is the plant under consideration.

The gain margin is defined as the change in open loop gain required to make the
system unstable. Systems with greater gain margins can withstand greater changes
in system parameters before becoming unstable in closed loop. Keep in mind that
unity gain in magnitude is equal to a gain of zero in dB.

The phase margin is defined as the change in open loop phase shift required to
make a closed loop system unstable.

The phase margin is the difference in phase between the phase curve and -180 deg
at the point corresponding to the frequency that gives us a gain of 0dB (the gain
cross over frequency, Wgc).

Likewise, the gain margin is the difference between the magnitude curve and 0dB
at the point corresponding to the frequency that gives us a phase of -180 deg (the
phase cross over frequency, Wpc).



Gain and Phase Margin

100

— 100

T

10"

I

__Freauency (fadfseo
i PhRase (|

-180

10

IIII — 1
10 0
Frequency frad}secﬂ



Gain and Phase Margin

We can find the gain and phase margins for a system directly, by using MATLAB.

Just enter the margin command.
This command returns the gain
and phase margins, the gain and 100

Gm=13.26 dB, (w= 5477) Pm=1007 deg ( 848)

phase cross over frequencies, and

a graphical representation of thesex
on the Bode plot. £ 0
(0
margin(50,[1 9 30 40])
-100L
10
(]

o’ 10 107

requency (rad/sec)

Fhase deg
I
oo
-

I
M2
-]
Lo

T

|
e
L]
o

10

10 10f

0
Ilrequemy |radisec)



Gain and Phase Margin

M agnitude:

db(G,®) = 20-log( |G (j-w)|)
Phase shift:

05(G.0) = 22 arg(6(j-0)) - 360-(if(arg(G(j-0)) = 0.1.0))

7T
Assume

K:=2 G(s) =

Next, choose afrequency rangefor the plots (use powers of 10 for convenient plotting):

lowest frequency (in Hz): Ostart = -01  number of points: N := 50
highest frequency (in Hz): ®eng = 100
: Ostart
step size:
( ®end j
range for plot: ..N

range variable: ®j = coem-lo"r Sj == ]-0j



Gain and Phase Margin

Guess forcrossover frequency. we =1
Solve for the gain crossover frequency:

We = root(db(G,(oC),coC) we = 1.193

Calculate thephase margin

pm := ps(G,coC) + 180 pm= 18.265 degrees

Gain Margin

Now usingthe phase angle plot, estimate the frequency at which the phase shift crosses 180 degr
ogm = 1.8

Solve forw at the phase shift point of 180 degrees:
Ogm = root(ps(G ,oogm) + 180,oogm)
owgm = 1.732

Calculate thegain margin

gm = —db(G ,o)gm) gm = 6.021



The Nyquist Stability Criterion

The Nyquist plot allows us also to predict the stability and performance of a closed-loop system by
observing its open-loop behavior. The Nyquist criterion can be used for design purposes regardless of open-
loop stability (Bode design methods assume that the system is stable in open loop). Therefore, we use this
criterion to determine closed-loop stability when the Bode plots display confusing information.

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the open-loop transfer function and w is a
vector of frequencies which encloses the entire right-half plane. In drawing the Nyquist diagram, both
positive and negative frequencies (from zero to infinity) are taken into account. In the illustration below we
represent positive frequencies in red and negative frequencies in green. The frequency vector used in
plotting the Nyquist diagram usually looks like this (if you can imagine the plot stretching out to infinity):

However, if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at those points, and
we must loop around them when we are plotting the contour. Such a contour would look as follows:

j-axis

Jr-axis

Infiniky

Infinity

Real AXis Peal Axis




The Cauchy criterion

The Cauchy criterion (from complex analysis) states that when taking a closed contour in
the complex plane, and mapping it through a complex function G(s), the number of
times that the plot of G(s) encircles the origin is equal to the number of zeros of G(s)
enclosed by the frequency contour minus the number of poles of G(s) enclosed by the
frequency contour. Encirclements of the origin are counted as positive if they are in the
same direction as the original closed contour or negative if they are in the opposite
direction.

When studying feedback controls, we are not as interested in G(s) as in the closed-loop
transfer function:

1 + G(s)
If 1+ G(s) encircles the origin, then G(s) will enclose the point -1.
Since we are interested in the closed-loop stability, we want to know if there are any
closed-loop poles (zeros of 1 + G(s)) in the right-half plane.

Therefore, the behavior of the Nyquist diagram around the -1 point in the real axis is
very important; however, the axis on the standard nyqui st diagram might make it hard

to see what's happening around this point



Gain and Phase Margin

Gain Margin is defined as the change in open-loop gain expressed in decibels (dB), required at 180
degrees of phase shift to make the system unstable. First of all, let's say that we have a system that
is stable if there are no Nyquist encirclements of -1, such as :

50

s"3+9sM"2+30s+40

Looking at the roots, we find that we have no open loop poles in the right half plane and therefore no
closed-loop poles in the right half plane if there are no Nyquist encirclements of -1. Now, how much
can we vary the gain before this system becomes unstable in closed loop?

The open-loop system represented by this plot will become unstable in closed loop if the gain is
increased past a certain boundary.

2 . 5 .

| mag Axis
Lol

Gain Difference
Before CL Instability

—Z —1

Hea?ﬂ}«{is



The Nyquist Stability Criterion

and that the Nyquist diagram can be viewed by typing:
nyquist (50, [193040])

lmag Axis
2

|
2

|
—
M
-

05 1 1.5
Feal Axis



Gain and Phase Margin

Phase margin as the change in open-loop phase shift required at unity gain to make a
closed-loop system unstable.

From our previous example we know that this particular system will be unstable in closed
loop if the Nyquist diagram encircles the -1 point. However, we must also realize that if the
diagram is shifted by theta degrees, it will then touch the -1 point at the negative real axis,
making the system marginally stable in closed loop. Therefore, the angle required to make
this system marginally stable in closed loop is called the phase margin (measured in
degrees). In order to find the point we measure this angle from, we draw a circle with
radius of 1, find the point in the Nyquist diagram with a magnitude of 1 (gain of zero dB),
and measure the phase shift needed for this point to be at an angle of 180 deg.

lmag Axis
2
I

yquist Diagram]

c

Fiea?AHis



The Nyquist Stability Criterion

w :=-100,-99.9..100 ji=+-1 s(W) :=j-w f(w) :=-1

504.6
G(w) :=

s(w)° + 9:5(w)” + 30s(W) + 40

5 I | [ [ I I I

Im(G(w))

Re(G(w))



Consider the Negative Feedback System

Remember from the Cauchy criterion that the number N of times that the plot of G(s)H(s) encircles -1 is
equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequency contour minus the number P
of poles of 1 + G(s)H(s) enclosed by the frequency contour (N = Z - P).

Keeping careful track of open- and closed-loop transfer functions, as well as numerators and
denominators, you should convince yourself that:

° the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function

° the poles of 1 + G(s)H(s) are the poles of the open-loop transfer function.

The Nyquist criterion then states that: 1T
—»Tr—— G -
° P = the number of open-loop (unstable) poles of G(s)H(s) T
[aTalv ]
° N = the number of times the Nyquist diagram encircles -1 S,:r;:,o

° clockwise encirclements of -1 count as positive encirclements
° counter-clockwise (or anti-clockwise) encirclements of -1 count as negative encirclements
° Z = the number of right half-plane (positive, real) poles of the closed-loop system

The important equation which relates these three quantities is:

Z =P + N



The Nyquist Stability Criterion - Application

Knowing the number of right-half plane (unstable) poles in open loop (P), and the
number of encirclements of -1 made by the Nyquist diagram (N), we can determine
the closed-loop stability of the system.

If Z=P + N is a positive, nonzero number, the closed-loop system is unstable.

We can also use the Nyquist diagram to find the range of gains for a closed-loop
unity feedback system to be stable. The system we will test looks like this:

EEAT Flank

— K A Gis) g

where G(s) is :
s™"2 + 10 s + 24

s™2 - 8 s + 15



The Nyquist Stability Criterion

This system has a gain K which can be varied in order to modify the response of the closed-loop
system. However, we will see that we can only vary this gain within certain limits, since we have to
make sure that our closed-loop system will be stable. This is what we will be looking for: the range
of gains that will make this system stable in the closed loop.

The first thing we need to do is find the number of positive real poles in our open-loop transfer
function:

roots([1 -8 15])
ans =
5
3

The poles of the open-loop transfer function are both positive. Therefore, we need two anti-
clockwise (N = -2) encirclements of the Nyquist diagram in order to have a stable closed-loop
system (Z = P + N). If the number of encirclements is less than two or the encirclements are not
anti-clockwise, our system will be unstable.

Let's look at our Nyquist diagram for a gain of 1:

nyquist([ 1 10 24], [ 1 -8 15])

lag Axis

There are two anti-clockwise encirclements of -1.
Therefore, the system is stable for a gain of 1.




The Nyquist Stability Criterion

MathCAD Implementation

w :=-100,-99.9..100 ji=+-1 s(W) :=j-w

s(w)° + 10s(w) + 24

G(w) := > There are two anti-
s(w) —8s(w) + 15 clockwise encirclements of -
1.
y) I I I Therefore, the system is
/\ stable for a gain of 1.
/::,f”"d_d__h__"“h-a‘a . N
Im(G(w)) g N )
—_— O e e S o o o o i " T o o — — —— T — = = = —
O h.\'n rr'rj //
""" \\i“-\‘\__ _._F---""'H /
\ T ///
- I I I
-2 -1 0 1 2

Re(G(w))



The Nyquist Stability Criterion

==NUM=[0.5]; den=[1210.5];
==gys=tfinum,den);
s>y guistisys)

1.0

— 1 point

Imaginary Axis

-0.5

-1.0

-1 -08 -06 -04 02 O 02 04 06 08

Heal Axis



Time-Domain Performance Criteria Specified
In The Frequency Domain

| Constant M circles.
Open and closed-loop frequency responses are related by : M=1 t
M=15 M=07
T(jOJ) = G(jco-) M=2 M =05
1+ G(jo)
1 -1 0 g
Mpw = ; C < 0.707
2.C A1 — o
G((D) = U+j-V M = M(CO) s
M(o) = G(jo) ~ ‘ u+jv | W + V2
= 1+G(joo) B 1+u+ jv -J(1+u)2+v2

Squaring and rearrenging

2
M2 2
u-— + V
2
1- M

which is the equation of a
circle on u-v planwe with a

(L) =

center at




Time-Domain Performance Criteria Specified
In The Frequency Domain

Ju
A A
A :
I
I
”| ———————— e el ey
o I
TN
i |
0 : o I
R I
VF | T 71
© 4 o |
| ol
o
A N B >
.[le m-"l “Ir: v[l'JE “‘I.Iil
Polar plot of G{ je) for two values of a gain (K5 > K). Closed-loop frequency response of T( jow) = G(jw)/1 + G jw).

MNote that I“PE e Kl.



The Nichols Stability Method

Polar Stability Plot - Nicholathcad Implementation

T his examp le makes a polar plot of a transfer function and draws one contour of constant
closed-loop magnitude. To draw the plot, enter a definition for the transfer funGfsh

45000
s-(s+ 2)-(s+ 30)

T he frequency range defined by the next two equations provides a logarithmic frequency scale
running from 1 to 100. You can change this range by editing the definitionsrfand o

G(s) =

m = 0..100 om = 100%M

Now enter a value forM to define the closed-loop magnitude contour that will be plotted.
M:==1.1
Calculate the points on the M -circle:

2
l\/ICm:[IVI - M

M? — 1

2

-exp(2-n -j-.Ol-m)J
M~ -1

T he first plot show&, the contour of constant closed-loop magnitude]



The Nichols Stability Method

The first plot shows, the contour of constant closed-loop magnitude], and the
Nyquist of the open loop system

im (i)
vl (3

Re(G(j-om)), Re(MCr), - 1



The Nichols Stability Method

Laap gain G, in decibels
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Nichols chart. The phase curves for the closed-loop system are shown in color.



The Nichols Stability Method \
18 -
" g 10dB 0548
&
R
|2
G(o)) = ! % _ ~ 1.0 dB
ja)(ja) + 1) -(O.2-j-o) + 1) W
b BT
MpW = 2.5 dB Oy = 0.8 e
340
The closed-loop phase angle 2 48
at oor is equal to -72 degrees andwb = 1.33 = 548
T he closed-loop phase angle atob is equal tc = ~6 0B
-142 degrees ! i
= f%.
Nichols diagram for G(jw) = jw( jo + 1)(0.2jw + 1). Three poi
on curve are shown for e = 0.5, 0.8, and 1.35. respectivety. :
Magnitude of —— = —18 dR
| + (3 \
18
-3dB
-72deg wr=0.8 24

_142 deg =210 — &0 — 150 —120 —0n ]

Loop phase, £ (), in degrees



The Nichols Stability Method

18 -
L |18 0.5 dB
o o
.-'\l\ﬁ
0.64 12
Glo) = > %, 2dB L0 dB
J-o |:(j(0) +j-o+ 1] 3dB 20
f 4B — 30 “a i
Phase Margin = 30 degrees SR i
On the basis of the phase we estimatg := 0.30 ;: § Lu? 1 ~4 B
MpW =9 dB MpW =2.8 O = 088-; GM 1248 —3dB
= ~6 dB
From equation H
= 6 %,
1 Ei K )
Mpw = ¢ =0.18 = : %
261-¢" E g 8| °
12 T §
We are confronted with comflectings G
Magnitude of - “{, = — 18 dB
The apparent conflict is caused by the nature of \
G(jw) which slopes rapidally toward 180 degrees '
line from the 0-dB axis. ~ The designer must use PM
the frequency-domain-time-domain correlation
with caution 24 - |~;<_)| - B o -

Loop phase, £ (G), in degrees
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Examples — Bode and Nyquist

+ 0.5
o >
g 4+ 254+ 5 4+ (0.5

A closed-loop control system example for
Nyquist and Bode with relative stability.



Examples - Bode + 05

34+ 252+ 54+ 0.5

[mad, phase wi=hbode{sys); ar [Grm, PmWeg, Wepl=marding sys);
[Gm, Pm, Weog Wepl=margin{mag, phass wi;

rIﬂl
o I I LN I I | R
i - (iain margin
o -50 Wep
1 1 1 1 L1l 1 1 1 11111
101 10 10
Example Frequancy (rad'sec)
num=[0.5]; den=[1 21 C.5];
I LI I I I TTrrirj

sys=tf{ num,den);

marginisys); Phase margin

.
- [ ] —
U

Fhase deg

Wep

Gm = gain margin (dB) — N, o
Pm = phase margin (deg) 10 100 101
Weg = freq. for phase = — 180 ) ' '

Wep = freq. for gain = 0 dB

Frequency (rad'sec)



Examples - Bode

Gm = 9.5424 ¢lB (at 1 rad/sec) Pm = 42.94 deq. (at 0.64359 rad/sec)
:;_"':' T T T T 1T TT1TT T T 1T T T TT

(ain margin

20k
_4I:I

Magnitude (dE)

A0 F

-an 1 1 I T [ | 1 1 L1 1111
1071 100 101
Frequency (rad/sec)

107 100 10!
Frequency (rad/sec)

num=[0.5]; Open-loop system
den=[12105];

sys=tfinum,den);

Yo Specify frequency range
w=logspace(-1,1,200);

[mag,phase w]=bods{sys,w);

margin{mag,phase,w);



Examples — Bode and Nyquist

Magnituds [dB)

F hazs ideg)

=100

-200

=300

iZm = 95424 dB {at 1 rad’s=c) Pm = 48.54 deq. (at 0.64358 rad’ssc)

2':' T T T T 1T 11 T T T T T T 177

(i}
20
a0 b

60 |

(iain margin

-Bl:l 1 | I I N A T | | | I I N A |

1o 10F
Frequency { md/zac)

10! 1"
Frequency (mdizec)

rum=[0.5]; Cpen-loop system
den=[1210.5];
sys=1f{num cen};

% Specily frequency range
wi=logspacs(-1,1,200);

S

[mag,phazswl=bods{sy= wi;

S

marginimag,phasewl;

Imaginary Axis

Gm =3.0127, Pm =49.2854

G 1
M= nEEE

]

Pm = 49 28

%
num={0.5]; den=[1 2 1 0.5} sys={finum,d&n);

-08 OH6 04 02 O 02 04 08 08
Rezal Axis

% The Myquist plot of
kA
L 05
t Gis) = £ 405" 4+ 5405 Compule gain ancd
[ o phuse margins.
% with gain and phase margin calculation.

[i'nag.pha.se.'.!.']=b-:-de-:53-'5]:

[Gm,Pm, e Wepl=marginimag, phass w];
kS Mzt ploi
nyquistisys);

tide([Gm =" num2strigm),’ Frm =" num2str{Frm]])

Labezl gain and phase
margins on plok,

1




Examples - Nichols

24
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Zain dB
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-12

i
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g |

-180 120 -&0
Fhase (deqg)

0

(e (§) = 8¥s

User-supplied frequency
foptional)

[mag phase, w]=nicholsisys,w)




Examples - Nichols

—

2 =
| |
| ]

Cpertl oop Gain (dB)
r::_: ;
I

<
1
|

¥ | | | | | | |
240 290 200 180 -180 -140 120 100 -80

Cpen-Loop Phass (deg)

Set up to generale
num=[1]; den=[0.2 1.2107; Fig.0.27
sya=tf{num dan};
wi=lcgspace(-1,1 4005,
nicholk{=ys w); Plot Nichaols chart
nigricl and add grid lines.



The Design of Feedback Control Systems

PID

Compensation Networks



Different Types of Feedback Control

On-Off Control

This is the simplest form of control.

Termperature (C)

190

1580

170

160

150

140

130

120

- N
IANIA :
; ~ :
i........I.........I.........ED

Time {3}

Powrer (K%



Proportional Control

A proportional controller attempts to perform better than the On-off type by
applying power in proportion to the difference in temperature between the
measured and the set-point. As the gain is increased the system responds faster
to changes in set-point but becomes progressively underdamped and eventually
unstable. The final temperature lies below the set-point for this system because
some difference is required to keep the heater supplying power.

150

170

160 Increasing gain

Temperature ("C)

150

140 —

0 500 _ 1000 1500
(3




Proportional, Derivative Control

The stability and overshoot problems that arise when a proportional
controller is used at high gain can be mitigated by adding a term
proportional to the time-derivative of the error signal. The value of the
damping can be adjusted to achieve a critically damped response.

174

176

>

174

Temperatre {C

17 Incressing dannping

170

]_E,B 11 | I I | | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | I I |
1] 100 200 300 400 =00
Tiime (=)




Proportional+Integral+Derivative Control

Although PD control deals neatly with the overshoot and ringing
problems associated with proportional control it does not cure the
problem with the steady-state error. Fortunately it is possible to
eliminate this while using relatively low gain by adding an integral term
to the control function which becomes

I?E'IIIIIIIIIIIIIIIIIIIIIIII

174

172

Temperatire (C)

|

170

on

=

Powrer (KW

0 a0 100 150 200 250 300
Time (3}




The Characteristics of P, I, and D controllers

A proportional controller (Kp) will have the effect of reducing the rise time and will
reduce, but never eliminate, the steady-state error.

An integral control (Ki) will have the effect of eliminating the steady-state error, but it
may make the transient response worse.

A derivative control (Kd) will have the effect of increasing the stability of the system,
reducing the overshoot, and improving the transient response.



Proportional Control

By only employing proportional control, a steady state error occurs.

Proportional and Integral Control

The response becomes more oscillatory and needs longer to settle, the error
disappears.

Proportional, Integral and Derivative Control

All design specifications can be reached.



The Characteristics of P, I, and D controllers

CL RESPONSE RISE TIME OVERSHOOT
Kp Decrease Increase
Ki Decrease Increase

Kd Small Change Decrease

SETTLING TIME

Small Change

Increase

Decrease

S-S ERROR

Decrease

Eliminate

Small Change



Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be
improved

Add a proportional control to improve the rise time
Add a derivative control to improve the overshoot

Add an integral control to eliminate the steady-state error

A I S

Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.

Lastly, please keep in mind that you do not need to implement all three controllers
(proportional, derivative, and integral) into a single system, if not necessary. For
example, if a Pl controller gives a good enough response (like the above
example), then you don't need to implement derivative controller to the system.
Keep the controller as simple as possible.



Open-Loop Control - Example

num=1;
den=[1 10 20];
step(num,den)

_—

Displacement ()

((s) =

0.05

1

s% 1 105 + 20

Dpen-Loop step

0.04

0.03 ¢

=
=
[

0.3 1 1.2
Time (sec)


http://www.engin.umich.edu/group/ctm/extras/step.html

Proportional Control - Example

The proportional controller (Kp) reduces the rise time, increases the overshoot, and
reduces the steady-state error.

MATLAB Example
P Kp

T(S) =
52 + 10s + (20+ Kp)

Step Response
From: U(1)
1.4 T T T T T T T T T ‘

Kp=300; i o

num=[Kp]; o

den=[11020+Kp]; ¢ = -

t=0:0.01:2;

step(num,den,t) oot K=300 ‘ K=100
e

I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2

Time (sec.)



Proportional - Derivative - Example
The derivative controller (Kd) reduces both the overshoot and the settling time.

MATLAB Example

Kd-s + Kp

T(S) =
s2 4 (10+ Kd)-s + (20+ Kp)

Step Response

From: U(1)
Kp = 3 OO; 1+ Step Response
From: U(1)
Kd=10;
5 Eo.e‘r 0sl
num=[Kd Kp];
’ “| Kd=10
den=[1 10+Kd 20+Kp]; 2 ol
t=0:0.01:2; 0 02 04 06 ilgme(s‘lac) 1.2 o
| 02 Kd=20
step(num,den,t) y

Time (sec.)



Proportional - Integral - Example

The integral controller (Ki) decreases the rise time, increases both the overshoot and the
settling time, and eliminates the steady-state error

MATLAB Example
Kp-s + Ki

T(S) =
33 + 1052 + (20+ Kp)-s + Ki

Step Response

From: U(1)
Kp=3o; il Step rRriﬁPSPf)e
Ki=70; § :Og 1.2
z;léoc 1

num=[Kp Ki]; | ,

[ p ]’ 04 K|=7O g 608
den=[110 20+Kp Ki]; .. £ fu
t=0:0.01:2; S Ki=100
Ste p( Nnu m’ de n’t) % 02 04 06 08 1 12 14 16 18

Time (sec.)



RLTOOL

Syntax

ritool
rltool(sys)
rltool(sys,comp)

# Root Locus Design: s¥s ;lglﬁl

Filz2 Tools “Window Help

Current Compensator
| ~FleE-F]

. I31ain - _
[ B[S Toan [T ]

i =
|.-'3-.:-ces zettings: ||@|ﬁ" | Z00m; ;:' ,{8} ﬁﬁ ﬂ|
||_ Step [~ Impulze [~ Bode ™ Mypguist [~ Michols |

Ready




RLTOOL

_ioix
File Tools ‘Window Help
Current I:Dnél?aniar?satnr ‘ , -
k= e I ]
|[:-E'| K[:El D[:El %H‘ | G ain I1 J ||_ Grid
L el
Axes settings: [o])|== " 00 }:} }E ,E' ﬂ
[~ Step [ Impulze [ Bode [ Myquist [ Michols

Ready




RLTOOL

+# Root Locus Design: sys = |EI|5|

File Tools Window Help

Current Compenzator

K= s d, i E'
@xﬁj }J E | Gain: IB.EHEE J

‘.-’-‘«:-:es zettings: |@|ﬁ” | Zoom: ﬁ@ﬁ’ﬂ|
‘I_ Step [ Impulse [ Bode [~ Mpquist [~ Michals ‘

Click. the Pole/Zero text to see the Denominator/Mumerator.
Check the Delete box to remove the aszociated poledzern




RLTOOL

4 LTI ¥iewer for Root Locus Design: sys =10 x|

File Tools Help

Michals Charts Myguist Diagrams
. Fram: U1 Frarm: 1]
m S0 ' 4 . .
= i
= =
T 0 =T 2r
o= = =
= = g T +
3 = a0 T C
E £ ;
pr
= -100 s 4 s -
-100 -50 1] -5 1] 5 10
Upen-loop Phase (deq) Real Ax|
nh éje rEllagrg 9 Impulse Response gtep ﬁﬁq&qpse
= Frarm: L1 q
O Frarm: 1] 10
:'é =0
= o a
= -58 = =
= c 5 £
= — 0 =
= -0 K =
P
-100
: 10° T
= 0 0.z 0.4 0 0z 0.4
Freguency (radisec) Time [zec.) Time (sec.)

LTI iewer configuration changed from 4 to 5.




RLTOOL

4 LTI ¥iewer for Rootk Locus Design: sys - O] x|
File Toals Help
Michals Charts Mygquist Diagrams
. Fram: L1 Fram: L1
o a0 - T 1F r . 3
= i
a2
= al o€ 05
4 =
= g~ 0
] f ]

g = sy T e
T E '
p
. -100 : : Ak - . d

-100 1] 100 200 -2 -1 1] 1

Cpen:-Loop Phase (de Real Ax|
o Eh:né]e Iblagr ms (deg) Impulse Hesponse étep Eespnnse
=, . Fram: L1 From: LI
> Fram: U1 10 200
=] a0
=
= 0 Lot et} OF——-"""""""77771
= ~5 E =
= -500 = = =
L. 200 2 = E-EDD
T - T L
= 0 -400
- (]
w200 . -EO0
% 10 0 50 0 50
Frequency (rad/sec) Time (sec.) Time (sec.)

Right-click on any responze plat axez to access the LTI Wiewer controls.




Example - Practice

Consider the following configuration:

_Iof
File Edit “ew Simulation Formak  Tools
IDZE&| s 2y = | &
I 10 ]
FID >
534652 +115+16
step-Input FID Controller Transfer Fond Scope
Ready 126% \ode45 4




Example - Practice

The design a system for the following specifications:

Zero steady state error
Settling time within 5 seconds
Rise time within 2 seconds

Only some overshoot permitted



Lead or Phase-Lead Compensator Using Root Locus

A first-order lead compensator can be designed using the root locus. A lead compensator
in root locus form is given by

(s + 2
G C(S) =
(s+p)
where the magnitude of z is less than the magnitude of p. A phase-lead compensator

tends to shift the root locus toward the left half plane. This results in an improvement in
the system's stability and an increase in the response speed.

When a lead compensator is added to a system, the value of this intersection will be a
larger negative number than it was before. The net number of zeros and poles will be the
same (one zero and one pole are added), but the added pole is a larger negative number
than the added zero. Thus, the result of a lead compensator is that the asymptotes'
intersection is moved further into the left half plane, and the entire root locus will be
shifted to the left. This can increase the region of stability as well as the response speed.



Lead or Phase-Lead Compensator Using Root Locus

In Matlab a phase lead compensator in root locus form is implemented by using the

transfer function in the form
numlead=kc*[1 z];
denlead=[1 p];

and using the conv () function to implement it with the numerator and

denominator of the plant
newnum=conv (num, numlead) ;

newden=conv(den,denlead);



Lead or Phase-Lead Compensator Using Frequency Response

A first-order phase-lead compensator can be designed using the frequency response. A
lead compensator in frequency response form is given by

(1 M OL.T.S) p = 1- Z= i (Dm: m Sln(d)m) = a-1

oc~(1 + r-s) T ot o+1

GC(S) =

In frequency response design, the phase-lead compensator adds positive phase to the

system over the frequency range. A bode plot of a phase-lead compensator looks like the
following

.........................

Gain dB

17aT Vi
Frequency (radlisec)

Phase deg




Lead or Phase-Lead Compensator Using Frequency Response

Additional positive phase increases the phase margin and thus increases the stability of

the system. This type of compensator is designed by determining alfa from the amount

of phase needed to satisfy the phase margin requirements, and determining tal to place
the added phase at the new gain-crossover frequency.

Another effect of the lead compensator can be seen in the magnitude plot. The lead
compensator increases the gain of the system at high frequencies (the amount of this
gain is equal to alfa. This can increase the crossover frequency, which will help to
decrease the rise time and settling time of the system.




Lead or Phase-Lead Compensator Using Frequency Response

In Matlab, a phase lead compensator in frequency response form is
implemented by using the transfer function in the form
numlead=[aT 1];
denlead=[T 1];
and using the conv () function to multiply it by the numerator and
denominator of the plant
newnum=conv (num, numlead) ;
newden=conv(den,denlead);



Lag or Phase-Lag Compensator Using Root Locus

A first-order lag compensator can be designed using the root locus. A lag compensator in root
locus form is given by

S+ Z
G C(S) = ( )
(s +p)
where the magnitude of z is greater than the magnitude of p. A phase-lag compensator tends
to shift the root locus to the right, which is undesirable. For this reason, the pole and zero of a

lag compensator must be placed close together (usually near the origin) so they do not
appreciably change the transient response or stability characteristics of the system.

When a lag compensator is added to a system, the value of this intersection will be a smaller
negative number than it was before. The net number of zeros and poles will be the same (one
zero and one pole are added), but the added pole is a smaller negative number than the
added zero. Thus, the result of a lag compensator is that the asymptotes' intersection is
moved closer to the right half plane, and the entire root locus will be shifted to the right.



Lag or Phase-Lag Compensator Using Root Locus

It was previously stated that that lag controller should only minimally change the
transient response because of its negative effect. If the phase-lag compensator is
not supposed to change the transient response noticeably, what is it good for?
The answer is that a phase-lag compensator can improve the system's steady-state
response. It works in the following manner. At high frequencies, the lag controller
will have unity gain. At low frequencies, the gain will be z0/p0 which is greater
than 1. This factor z/p will multiply the position, velocity, or acceleration constant
(Kp, Kv, or Ka), and the steady-state error will thus decrease by the factor z0/p0.
In Matlab, a phase lead compensator in root locus form is implemented by using
the transfer function in the form

numlag=[1 z];

denlag=[1 p];
and using the conv () function to implement it with the numerator and
denominator of the plant

newnum=conv (num, numlagqg) ;

newden=conv(den,denlag);



Lag or Phase-Lag Compensator using Frequency Response

A first-order phase-lag compensator can be designed using the frequency response. A
lag compensator in frequency response form is given by
(1 + ocmS)

oc-(l + T-S)

G C(S) =

The phase-lag compensator looks similar to a phase-lead compensator, except that a is
now less than 1. The main difference is that the lag compensator adds negative phase
to the system over the specified frequency range, while a lead compensator adds
positive phase over the specified frequency. A bode plot of a phase-lag compensator
looks like the following

Gain dB

T 1aT
Frequency (radizec)

Phase deg

-30




Lag or Phase-Lag Compensator using Frequency Response

In Matlab, a phase-lag compensator in frequency response form is
implemented by using the transfer function in the form
numlead=[a*T 1];
denlead=a* [T 1];
and using the conv () function to implement it with the numerator and
denominator of the plant
newnum=conv (num, numlead) ;
newden=conv (den, denlead) ;



Lead-lag Compensator using either Root Locus or Frequency Response

A lead-lag compensator combines the effects of a lead compensator with those of a lag
compensator. The result is a system with improved transient response, stability and
steady-state error. To implement a lead-lag compensator, first design the lead
compensator to achieve the desired transient response and stability, and then add on a
lag compensator to improve the steady-state response



Exercise - Dominant Pole-Zero Approximations and Compensations

The influence of a particular pole (or pair of complex poles) on the response ismainly determir
by two factors: the real part of the pole and the relative magnitude of the residue at the pole. 1
real part determinesthe rate at which the transient term due to the pole decays, the larger the r
part, the faster the decay. The relative magnitude of the residue determinesthe percentage of
total response due to a particular pole.

Investigate (using Simulink) the impact of a closed-loop negative real pole on the overshoot of
system having complex poles.

2
pr-on

(s + pr)-[s2 + (2-§-oan-s) + o;)nz]

T(S) =

Make prto vary (2, 3, 5) timesthe real part of the complex pole for different valiégs8f 0.5,
0.7)

Investigate (using Simulink) the impact of a closed-loop negative real zero on the overshoot of
system having complex poles.

(s + zr)

|:82 + (Z-C-wn-s) + o)nz]

T(S) =

Make zr to vary (2, 3, 5) times the real part of the complex pole for different valG€8.8f 0.5, 0.7).



Exercise - Lead and Lag Compensation

Investigate (using Matlab and Simulink) the effect of lead and lag compensationson the
systems indicated below. Summarize your observations. Plot the root-locus, bode diagra
and output for a step input before and after the compensations.

Remember

lead compensation: z<p (place zero below the desired root location or to the left of the fi
real poles)

lag compensation: z>p (locate the pole and zero near the origin of the splane)

Lead Compensation (use z=1.33, p=20 and K =15).

b 4
— K > - ..,‘ [ ]
I:I_ Q-’{ P 13 430+ s

=ep Lead Gain Lead Compens. Transfer Fond Soope




Lag Compensation (use z=0.09 , and p=0.015, K=1/6)

4..4.

=tep

o

Lead GGain

a7 . 4 .
Hp 113 HA# 45
Lead Compens Trander Fonl Scope

Summarize your findings



Problem 10.36

Determine a compensator so that the percent overshoot is less than 20% and Kv
(velocity constant) is greater than 8.

Acrobat Reader - [ch10.pdf] [_ =] x]
ﬁ File Edit Document “iew ‘window Help — Iﬁlll

Mes E[OR T |y «» OO0 &L

=

AE signd <7y
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Milling machine table

(@)
G(s)
, + 2 ¥is)
Gols > ¥ Depth of
’ ’ ? P Gl s+ (s +5) P ) =
_ cut
(b)
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Poles and Zeros and Transfer Functions

Transfer Function: A transfer function is defined as the ratio of the Laplace
transform of the output to the input with all initial
conditions equal to zero. Transfer functions are defined
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.

K(s+z)(s+2)..(s+2)

G(s) =
(s+p)s+p,)...(s+p,)

The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles.

wlg



An Example:

Poles, Zeros and the S-Plane

You are given the following transfer function. Show the

poles and zeros in the s-plane.

G(s)= (s+8)(s+14)
s(s+4)(s+10)
1 jo axis
S - plane
origin
o X O X \\4 >
-14 -10 -8 -4 0 O axis

wlg



Poles, Zeros and Bode Plots

Characterization:  Considering the transfer function of the
previous slide. We note that we have 4 different

types of terms in the previous general form:

These are:
K., 1 1 , (s/z+1)
s (s/p +1

Expressing in dB: Given the tranfer function:

K,(jw/z+1)

G(jw)=
W)= G jwl p+1)

20log | G(jw|=20log K, +20log | (jw/z +1)|-20log | jw|—20log | jw/ p +1|

wlg



Poles, Zeros and Bode Plots

Mechanics: We have 4 distinct terms to consider:

20logK,
20log| (jw/z +1) |
-20log|jw|

-20log| (jw/p + 1)

wlg



dB Mag

1 1 1

This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.

o (rad/sec)

Phase
(deg)

wlg



Poles, Zeros and Bode Plots

Mechanics:  The gain term, 20logKj is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted
on semi-log paper is a straight line sloping at
-20dB/decade. It has a magnitude of 0 at w = 1.

20

wlg



Poles, Zeros and Bode Plots

Mechanics: Theterm, - 20log]|(jw/p + 1), is drawn with the
following approximation: If w < p we use the
approximation that —20log|(jw/p + 1 )| = 0 dB,
a flat line on the Bode. If w > p we use the
approximation of —20log(w/p), which slopes at
-20dB/dec starting at w = p. lllustrated below.
It is easy to show that the plot has an error of
-3dBatw=pand-1dBatw=p/2andw =2p.
One can easily make these corrections if it is
appropriate.

N

-20

-40

O =p wlg



Mechanics:

Poles, Zeros and Bode Plots

When we have a term of 20log|(jw/z + 1)| we
approximate it be a straight line of slop 0 dB/dec
when w < z. We approximate it as 20log(w/z)
when w > z, which is a straight line on Bode paper
with a slope of + 20dB/dec. lllustrated below.

N\

20

-20

-40

wlg



Given: . 50,000( jw+10
G(jw)=—2:0000w +10)
(jw+1)( jw-+500)

First: Always, always, always get the poles and zeros in a form such that
the constants are associated with the jw terms. In the above example

we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

6 (jw)—50.000x10(jw/10+1) _ _ 100(jw/10+1)
500( jw+1)(jw/500+1)  (jw+1)(jw/500+1)

Second: When you have neither poles nor zeros at 0, start the Bode
at 20log, K = 20log,,100 = 40 dB in this case.

wlg



Example 1: (continued)

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode.
In this example we first have a pole occurring at 1 which
causes the Bode to break at 1 and slope — 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a
slope of +20 dB/dec which cancels out the — 20 dB/dec,
resulting in a flat line ( 0 db/dec). Finally, we have a
pole that occurs at w = 500 which causes the Bode
to slope down at — 20 dB/dec.

We are now ready to draw the Bode.

Before we draw the Bode we should observe the range
over which the transfer function has active poles and zeros.
This determines the scale we pick for the w (rad/sec)

at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and
experience is the best teacher here. wie



Bode Plot Magnitude for 100(1 + jw/10)/(1 + jw/1)(1 + jw/500)

dB Mag

60

40

20

-20

-60

-60

0.1

10

100
o (rad/sec)

1000

10000

Phase (deg)

wlg



Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example. We place the transfer function

in the form:

5000(s+10)  [5000s+50000]
(s+1)(s+500) [s*+501s+500]

The Matlab Program

num = [5000 50000];
den =[1 501 500];
Bode (num,den)

In the following slide, the resulting magnitude and phase plots (exact)
are shown in light color (blue). The approximate plot for the magnitude
(Bode) is shown in heavy lines (red). We see the 3 dB errors at the

corner frequencies.

wlg



Phase (deg); Magnitude (dB)

To: Y (1)

-100
10

40

30

20 |

10 |

Bode Diagrams

From: U(1)

1 10 100 500

-80 F

100(1+ jw/10)

Bode for: G(jw) =

(L+ jw)(L+ jw/500)

10 10" 10°

Frequency (rad/sec)

wlg



Comment:

lllustration:

Phase for Bode Plots

Generally, the phase for a Bode plot is not as easy to draw

or approximate as the magnitude. In this course we will use
an analytical method for determining the phase if we want to
make a sketch of the phase.

Consider the transfer function of the previous example.
We express the angle as follows:

ZG(jw)=tan"(w/10)—tan"(w/1)—tan"(w/500)

We are essentially taking the angle of each pole and zero.
Each of these are expressed as the tan-i(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine
a good idea of what is happening to the phase.

wlg



Bode Plots

Example 2:  Given the transfer function. Plot the Bode magnitude.

~100(1+ 5/10)
s(1+s/100)’

Consider first only the two terms of
100
jw

G(s)

Which, when expressed in dB, are; 20log100 — 20 logw.
This is plotted below.

| The ........................... iS
* [l 200b/dec a tentative line we use
dB 20 I N until we encounter the
THI first pole(s) or zero(s)
° [ not at the origin.
-20
wlg

1 o (rad/sec)



Bode Plots

Example 2: (continued) The completed plot is shown below.

G(s) :100(1+ s/10)
s(1+ s/100)°
60 1 1 1 1 1 1
\\
\\\-ZOdb/dec
40
\\
20 b
dB Mag 0 -40 db/dec Phase (deg)
N
N
\ G(s) :100(1+ s/10)
-40 \ s(1+s/100)
-60
0.1 1 10 100 1000

wlg
o (rad/sec)



Bode Plots

Example 3: \
. 3
Given: G(s)=— 830(1+ _JW) > 20l0g80 = 38 dB
(jw)°(1+ jw/20)

60

dB Mag 40
-40 dB/dec

20 .,

0

-20

0.1 1 10 100 wig
o (rad/sec)



Bode Plots

Example 4:

10(1— jw/2)
(1+ j0.025wW)(L+ jw/500)2

1

Given: G(jw)=

1 1 1
60

40

20

dB Mag 0

-20

-40

60
0.1 1 2 10 100 1000

o (rad/sec)

/dec

Phase (deg)

Sort of a low
pass filter

wlg



Bode Plots

Given: (1+ jw/30)* (1+ jw/100)’
)= ‘

G
- ( 1+ jw/2)*(1+ jw/1700)°
1 1 1 1 1 1
60
40
20
dB Mag 0
\ /
\ 40 dB/dec Y
20 \ Y
// + 40 dB/dec
-40
NI
-60
0.1 1 10 100 1000

o (rad/sec)

Phase (deg)

Sort of a low

pass filter

wlg



Bode Plots

Given: problem 11.15 text

640(jw +1)(0.01jw+1) _64(jw +1)(0.01jw +1)

H(jw)=
(w) (jw)*(jw+10) (jw)*(0.1jw+1)
T T TTII

\V' -40dB/dec

* -20db/dec
N
20 \‘
\ -40dB/dec
dB mag 0

-20
\\ -20dB/dec

-40 E

0.01 0.1 1 10 100 1000 wlig



Bode Plots

Design Problem: I Design a G(s) that has the following Bode plot.

dB mag

40

20

-40dB/dec

30dB
/
+40 dB/dec
|
)%
|
?
I
30
0.1 10 100

o rad/sec



Bode Plots

Procedure: | The two break frequencies need to be found.

Recall:

#dec = log,,[w,/w,]

Then we have:

(#dec)( 40dB/dec) = 30 dB

log,,[w,/30] =0.75 > w, = 5.33 rad/sec

log,,[w,/900] (-40dB/dec) = - 30dB

This gives w, = 5060 rad/sec

wlg



Bode Plots

Procedure: |

G(s)— (Lt 3537 (L+ 5/5060)°
(1+s/30)°(1+s/900)°
Clearing: 6o B 5.3)2(s + 5060)>
(s +30)*(s +900)*

Use Matlab and conv:

N1= (82 +10.6s + 28.1) N2= (S2 +10120s + 2.56xe7)
N1=[110.6 28.1] N2 = [1 10120 2.56e+7]
N = conv(N1,N2)
1 1.86e+3 2.58e+7 2.73e+8 7.222e+8

s4 g3 52 sl s0

wlg



Bode Plots

| Procedure: | The final G(s) is given by;

)= (s*+10130.6s° + 2.571e’s” + 2.716e’s + 7.194¢”)

G(s
( (s*+1860s’ +9.189¢e’s” + 5.022e’s + 7.29¢")

We now want to test the filter. We will check it at ® = 5.3 rad/sec
And o = 164. At ® = 5.3 the filter has a gain of 6 dB or about 2.
At o = 164 the filter has a gain of 30 dB or about 31.6.

Testing:

We will check this out using MATLAB and particularly, Simulink.

wlg



Matlab (Simulink) Model:

> o1
Scopel Scope
s44+10103.65342.571e+7s24+2.716e85+7.194e8
s4+1860s 3+9.189e552+5.022e7s+7.29e8
Sine Wave

Transfer Fcn

— ir ®_> ! — out

Clock
ToWorkspaceZ ToWorkspace]

To Workspace

wlg



Frequency response of a band pass filter
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Produced from Matlab Simulink




Filter Response for and Input of 70 rad/sec

W]
=

Input and Output
—_— —_— kJ
= = = (]

Fu
=

)
=

Produced from Matlab Simulink
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Required:

68

30

dB

Reverse Bode Plot

From the partial Bode diagram, determine the transfer function

(Assume a minimum phase system)

Not to scale

-20 db/dec

1 110 850

wlg



Required:

100 dB ......................

O —

Reverse Bode Plot

From the partial Bode diagram, determine the transfer function

-40 dB/dec

-20 dB/dec

(Assume a minimum phase system)

Not to scale

-20 dB/dec

10 dB .....

-40 dB/dec

0.

5

40

w (rad/sec)

300

wlg



Polar Plot



Introduction

The polar plot of sinusoidal transfer function G(jo) is a plot of the
magnitude of G(jw) verses the phase angle of G(jw) on polar coordinates
as o Is varied from zero to infinity.

Therefore it is the locus of as o Is varied from zero to infinity.
As : :
So it is the plot of vector Il ¢Rkdtom zero to infinity

G( @) £G(j) = Me
Me 4@



Introduction conti...

In the polar plot the magnitude of G(jw) is plotted as the distance from the
origin while phase angle is measured from positive real axis.

+ angle is taken for anticlockwise direction.

Polar plot is also known as Nyquist Plot.



Steps to draw Polar Plot

Step 1. Determine the T.F G(s)

Step 2: Put s=jo in the G(s)

Step 3: At ©®=0 & w=0o0 find by &

Step 4: At ®=0 & o= find by & ) _ i :
Step 5: Rationalize the function G(jo) and se&@éljﬁl)% real and!)@ﬂi@‘d&% parts"m Gj)

W—>0

Step 6: Put Re [G(jo) ]=0, determine the frequengy at which plat intersects the Im axis_an
calculate intersection value by putting the aba¥ é@ﬁted fre g}gﬁ@%ﬁj@(j@) Im LSG?JS)

W—>0



Steps to draw Polar Plot conti...

Step 7: Put Im [G(jo) ]=0, determine the frequency at which plot intersects the
real axis and calculate intersection value by putting the above calculated
frequency in G(jo)

Step 8: Sketch the Polar Plot with the help of above information



Polar Plot for Type 0 System

~ K
 (1+ST)(@1+5T,)

Let G(s)

Step 1. Put s=jo

. K
Step 2: ﬁékﬁ?gttaejmitude of G(jo)
K

Z—tan™ o, —tan ™ oT,

) JL+ (T, F 1+ (aT, )



Type 0 system conti...

: . K
lim |G(iw)| = ~K

0 \/1+ (T, ) \/ 1+ j(@T, )

Stepl: Ngaheslimi £0(jo)
If[]j e 1+(oT,)" 1+ j(oT, ) ;

lim £G(jw)=£-tan™ T, —tan™ T, =0

o—0

lim £G(jw) = £-tan™ @T, —tan™ wT, =180

W—>0



Type 0 system conti...

Step 4: Separate the real and Im part of G(jo)

JK(1- o’TT,) : Ko(T,+T,)

Step 5:Byt|Re [6(,\,0,J —
(ee) O T2+ T +0'TT, 1+ T+’ T} +0'TT,

K(l-—oTT

2 2( a; > 2)4 0 o= &w=-w
1+ 0T +0° T, + 0" T,T, T,T,

So When

KT,T
L ~—2 /-90°

wo=—=0G(|w
ﬁ (Jo) = T, +T,

& w=0 = G(jow)=0s-180°




Type 0 system conti...

Step 6: Put Im [G(jw)]=0
Kao(T,+T,)
1+ a)lez + a)2T22 + a)4T1T2
So When
o=0=G(jo)=K0°
o =0= G(jw)=0-180°

= 0=>w=0& +w



Type 0 system conti...

= 0[€

» = ()

Figure 1: Polar Plot of Type 0 System



Polar Plot for Type 1 System

K
Let G(s)= s(L+sT,)(L+sT,)

Step 1. Put s=jo

K
jo(+ joT,))1+ joT,)
K

) o1+ (aT, ) 1+ j(T, )

G(jo) =

Z-90° —tan " @T, —tan " T,




Type 1 system conti...

Step 2: Taking the limit for magnitude of G(jw)

i : K
G(Jo)| = = o0
lim GG o1+ (0T, P 1+ j(aT, f
Steﬁﬁﬂ'(glfijr}g)}h_e limit of the Phase Angle of GQw)
o o1+ (0T, P 1+ j(aT, f

lim £G(jw) = £-90° —tan™ @T, —tan™ T, =-90°

o—0

lim <G (jw) = £-90° —tan™ T, —tan* T, = —270°

wW—>0



Type 1 system conti...

Step 4: Separate the real and Im part of G(jo)

| —oK(T,+T,) _ j(Ko’T,T, —K)

Step 5: PutdRq ) Gw)}=o
)

_|_
+’ (T2 +T,) +0°T T)) o+’ (T +T +0’TT))

—oK(T, +T,)
W + a)3(T12 +T22 + w2T12T22)
So at
W = O = G(jw) =0£-270°

=0= w=w



Type 1 system conti...

Step 6: Put Im [G(jw)]=0

(Ko’T.T, - K
g( Za) = 2)2 —=0=>0= = & @ = Foo
o+0°(T +T, +o° T T,) T.T,
So When
K.JT.T
L o G(jo)=—Vr2 s

a):
\/ﬁ T +T,

W =00 = G(jw) = 0£0°



Type 1 system conti...

-2709
A Im

1

(1) =

-l 800 &m m— o0

> Re

I +1,

O o

m= 0

>

0

90"

00

Figure 2: Polar Plot of Type 1 System



Polar Plot for Type 2 System
Let

Similar to above

K

Gls) = s2(L+sT,)(L+sT,)



Type 2 system conti...

-270Y
A Im ]
-180° : » Re
O 00
-9(°

Figure 3: Polar Plot of Type 2 System



Note: Introduction of additional pole in denominator contributes a constant -
180° to the angle of G(jw) for all frequencies. See the figure 1,2 & 3

Figure 1+(-180° Rotation)=figure 2

Figure 2+(-180° Rotation)=figure 3



Ex: Sketch the polar plot for G(s)=20/s(s+1)(s+2)
Solution:
Step 1: Put s=jw

20
jo(jo+1)(jo+2)

B 20
a)\/a)2 +l\/a)2 +4

G(jw) =

Z-90°—tantw—-tant w/2




Step 2: Taking the limit for magnitude of G(jo)

] . 20

G(jow)| = =0
Icloqol oNo? +1Nw? +4
] . 20

G(jo)| = =0
Ic!m a)\/a)2 +1\/a)2 +4

Step 3: Taking the limit of the Phase Angle of G(jo)

lim £G(jw) = £-90° —tan " w—tan " w/2 = —90°
o—0
lim 2G(j@) = £ -90° —tan w—tan" w/2 = —270°

W—>0



Step 4: Separate the real and Im part of G(jo)

—600° . j20(0° - 20)

G(jw)= 4 2 N 4 2 2
(0" +0°)(4+ @) (0" +0°)(4+ @)

— 60w?
4 > > =0=> o=
(0" + )4+ o)

So at
W = 0 = G(|w) =0/ -270°




Step 6: Put Im [G(jw)]=0

j20(0° - 2w)
(0" + )4+ o?)
So for positivevalueof
w=-2= G(ja))z—%goo
=00 => G(jw) =0£0°

=0 w=4J2 & =+t



-270"

A Im
= \/5
-180° R O 0 > Re
m=0 _9()°

Figure 4: Polar Plot G(s)=20/s(s+1)(s+2)



Gain Margin, Phase Margin &
Stability

Phase Crossover Freq

|(—X ; \
-180° -1 m o D)- Re
@ Q¢
PM(®,, o
(@) ® Unit
’ Radius

Gain Crossover Freq K _9()" _
Circle




Phase Crossover Frequency (w,) : The frequency where a polar plot intersects
the —ve real axis is called phase crossover frequency
Gain Crossover Frequency (w,) : The frequency where a polar plot intersects
the unit circle is called gain crossover frequency
So at w,

G(jw)| =Unity



Phase Margin (PM):
Phase margin is that amount of additional phase lag at the gain crossover frequency
required to bring the system to the verge of instability (marginally stabile)

®,,=180%+0
Where
O=2G(jw,)
if ®,>0 => +PM (Stable System)

if ®,,<0 =>-PM (Unstable System)



Gain Margin (GM): _
The gain margin is the reciprocal of magnitud (ja))ft the frequency at
which the phase angle is -180°.

In terms of dB

vo_ 1 1
|G(jwe) | X

. 1 .
GMin dB=20lo =—-20Io G(we) |=-20lo X
10 GO | 010 | G(jwce) | 010(X)



Stability

Stable: If critical point (-1+j0) is within the plot as shown, Both GM & PM are

+ve
GM=20log,,(1
-270° 10
J\Im
Phase Crossover Freq
=0
~180° 2”5 Re
D 0°
PM(®,, - '
(P) Unait
Gain Crossover Freq ,'f -90° Radius
Circle

Stable system: +GM, +PM



Unstable: If critical point (-1+j0) is outside the plot as shown, Both GM & PM

are -ve

5700 GM=20log,,(1
/ AIm

=0
-180° (D >» Re
Z 0°
® Unit Radius
Circle

-90°
Unstable system: -GM, -PM



Marginally Stable System: If critical point (-1+j0) is on the plot as shown, Both
GM & PM are ZERO
GM=20log,,(1

-270°
Alm
-180° -1 > Re
/(D 0°
® Unit Radius
Circle
-9()°

Marginally stable system: GM=0 dB. PM=(°



MATLAB Margin

>> [Gm,Pm,Wcg,Wcep] = margin(g)
Gm =
2.5000 10

Gs)= s(s/5+1)s/20+1)

Pm =
22.5359
Wceg =
10.0000 (phase crossover freq.)
Wcep =
6.0783 (gain crossover freq.)



Inverse Polar Plot

The inverse polar plot of G(jw) is a graph of 1/G(jw) as a function of w.
Ex: if G(jw) =1/jw then 1/G(jw)=jw

- 0A
im (e |0 270°4 Im

w—0 A . .
i o M 1ncreasing
m |G(jw) "= ©

im GG |

®=0

>» Re

-180°

-90°

Inverse polar Plot of 1/j®



Knowledge Before
Studying Nyquist Criterion

R(s) + C(s)
5 S)

_ T = R E)

H(s) |o—-

unstable if there is any pole on RHP (right half plane)

_Ne(§) _ N, (s)
G(s) = D (5) H(s) = . (5




Open-loop system:

Ng (S) Ny, (S)

Dg(8) Dy (s
Characteristic equation:

@DHJFN Ny
1+ G(s)H(s) = 1+ GDH i

poles of G(s)H(s) and 1+G(s)H(s) are the same

G(s)H(s) =

Closed-loop system:

G(s) _ N¢ (s)D,, (S)

T GEOHE) ‘D (5)Dy (5) + Ng (SN, (5>

zero of 1+G(s)H(s) is pole of T(s)




G(s)H(s) =

(s—D(s—2)(s—3)(s—4)

(s—5)(s—6)(s—7)(s—8)

G(s)H(s)

Zero—1,2,3,4

Poles -5,6,7,8

1+ G(s)H(s)

Zero—a,b,c,d

Poles-5,6,7,8

G(S)

1+ G(s)H(s)

\ Poles — a,b,c,d

To know stability, we have to know a,b,c,d



Stability from Nyquist plot

From a Nyquist plot, we can tell a number of closed-loop poles on
the right half plane.
If there is any closed-loop pole on the right half plane, the system goes
unstable.

If there is no closed-loop pole on the right half plane, the system is
stable.



Nyquist Criterion

Nyquist plot is a plot used to verify stability
of the system.

mapping contour

F(S) . (S o Zl)(S o 22)

function

(5= p)(S-py)

mapping all points (contour) from one plane to another
by function F(s).



F(S) _ (S B Zl)(s B 22)
(S_ pl)(s_ pz)

jo € Contour 4 Im

s-plane A F-plane A
' Contour B
Q
- 0 —» F(s) —= \\_j = Re




J
[

s-planc

2]

3
F-planc
C —» F(s)=(s—2z)) —»

Contour A

(@)

Im

Contour B

A
@Re R=V

= Re R=

Jjo Im
f § A
s-plane F-plan
x -0 —= Fs)=—1 _ »
Pl (s—pvD
R
()

Jw I

s-plane

s-plane

s-plane

- Contour 4

A

1
v

Contour B

Contour B

©

I7-plane
@ c — [7(s) = (5 — Z7) <i/

Contour B

Re R =

<=

Contour B

w Im
g Contour A F-plan 4
m c —» F(S):(S 20, R
w (s —p1) (N
(e)

Re R-— 4
- c V2

Pole/zero inside the
contour has 360 deg.
angular change.

Pole/zero outside contour
has O deg. angular change.
Move clockwise around
contour, zero inside yields
rotation in clockwise, pole
inside yields rotation in
counterclockwise



Characteristic equation

Contour 4

4
1 + GH-plane

F(s)=1+G(s)H(s)

Im
Vv,
ViVals

O —™ F(s)=1+G(s)H(s) —™

Contour B

N=P-Z

NIV

N = # of counterclockwise direction about the origin

P = # of poles of characteristic equation inside contour
= # of poles of open-loop system

z = # of zeros of characteristic equation inside contour
= # of poles of closed-loop system

Z=P-N




Characteristic equation

Increase size of the contour to cover the right half plane

j
A

More convenient to cofgiiditethe open-Ipop system (witk known pole/zero)




Nyquist diagram of G(s)H (s)

‘Open-loop system’

Mapping from characteristic equ. to open-loop
system by shifting to the left one step

Z=P-N

Z = # of closed-loop poles inside the right half plane
P = # of open-loop poles inside the right half plane

N = # of counterclockwise revolutions around -1



s-plane

-0 —» G(s)H(s) —=

(a)

(O = zeros of 1 + G(s)H(s)
= poles of closed-loop system
Location not known

GH-plane

= Re

GH-plane 4

AN
NS

Im

Test radius

B

K)

= poles of G(s)H(s)

Location is known

X =poles of 1 + G(s)H(s)

= Re



Properties of Nyquist plot

If there is a gain, K, in front of open-loop transfer function, the Nyquist plot
will expand by a factor of K.

Imaginary Axis




Nyquist plot example

—

Nyquist Diagram

Imaginary Axis
oS O o O o o o o
0 o Ao B F W Ho o3 MO

| ] [ ]
———
.

1.2

-1

08 -06
Real Axis

04

Open loop system has pole at 2

1
Closed-loop sy%tgesr)n?zgﬁ_pgle at 1

If we multiply the open-loop with a
gain, K, then @@Eargmojve the closed-

loop pole’s poéiidoh tdxhd left-half
plane




Nyquist plot example (cont.)

New look of open-loop system:

L
—2
Corresponding closed-loop sy em:

G(s) K

Evaluate value of K fdr-&&biligy (K-2)



Adjusting an open-loop gain to guarantee stability

R(s) + E(s) K(s +3)(s +5) C(s)
% | T5-2)s-4) g
(a)

Step I: sketch a Nyquist Diagram
Step IlI: find a range of K that makes the system stable!



How to make a Nyquist plot?

Easy way by Matlab
Nyquist: ‘nyquist’
Bode: ‘bode’



Step I: make a Nyquist plot

Starts from an open-loop transfer function (set K=1)

Set and find frequency response
Atdcg — i
Find at'which the imaginary part equals zero
w=0—>5=0

@



(s+3)(s+5) s*+8s+15

(s—2)(s—4) s°—-6s+8

~0*+8jw+15 (15-0°)+8jw
~0°-6jo+8 (B-0°)-6jw
(15 a))+81a) (B—w’)+6jw
(8-w’)-6jw (8 0°)+6jw

- (15-0%)(8-0")-480° + j(1540 —14°)

(8—w*)* +6°w° ™S

G(s)H(s) =

G(Jo)H(Jow) =

Need the imaginary term =0, =0, \/ﬁ
Substitute Hack i/j %o the transfer function
And get

G(s)=-1.33

(15-11)(8—11)—48(11) —540
(8-11)%+62(11) 412

=-1.31



s-plane

At dc, s=0,

GH-plane

At imaginary part=0




Step |1: satisfying stability condition

P =2, N has to be 2 to guarantee stability

Marginally stable if the plot intersects -1

For stability, 1.33K has to be greater than 1
K>1/1.33

or K>0.75



Example

Evaluate arange of K that makes the system stable

K
G(s) =5
(s +2s+2)(s+2)
Jjo Im
A B A
Contour
s-plane - GH-plane
X 1
2 I 1
L B 7
% ' > O 20 » Re
) —1 @ = \6 A’
X
() (b)



Step I: find frequency at which imaginary part =0

Set § = Ja)

K
(jo) +2jo+2)(jo+2)
B 41- 0°) — jo(6—o°)
_16(1—a)2)2 + @’ (6-w°)°

G(Jw) =

At C()ZO\/E the imaginary part=0
b)

Plug 0, :ba/a( in the transfer function
and get G =-0.05



Step Il: consider stability condition

P =0, N has to be 0 to guarantee stability

Marginally stable if the plot intersects -1

For stability, 0.05K has to be less than 1
K <1/0.05

or K< 20



Gain Margin and Phase Margin

Gain margin is the change in open-loop gain (in dB),
required at 180 of phase shift to make the closed-loop
system unstable.

Phase margin is the change in open-loop phase shift,

required at unity gain to make the closed-loop
system unstable.

GM/PM tells how much system can tolerate
before going unstable!!!



GM and PM via Nyquist plot

A
GH-plane Umt circle A — K . _ . 1 .
Nyquist PM =180° + /G(jo YH(j@)
" ) diagram
— 1, y = Re
| |\
I, |
I~ |
: | 1
fedat
|
|

Gain difference
before instability

Gain margin = Gy, = 20 log a

Phase difference
before instability

Phase margin = @, = «




GM and PM via Bode Plot

M (dB)
A
Gain
plot
0dB n - log ® ¢The frequency at which the
| } Gy phase equals 180 degrees is
| called the phase crossover
A frequency e
M
Phase
plot *The frequency at which the
Phase (degrees) magnitude equals 1is called
A the gain crossover frequency
D, 1 | D,
I
180° | » log @
a)(DM wGM

gain crossover frequency phase crossover frequency



Example

Find Bode Plot and evaluate a value of K

that makes the system stable
The system has a unity feedback
with an open-loop transfer function

- K
(s+2)(s+4)(s+5)

G(s)

First, let’s find Bode Plot of G(s) by assuming
that K=40 (the value at which magnitude plot

starts from O dB)



0 7
-20 —20rdBydcc ANy
VT HINIS

40 ~aoasgaee TN
~60 < AN
\\

—-100

20 logdO M

120
0.01 0.1 1 10 100

Frequency (rad/s)

0 —
va L] %\ -
45 /delc9 - \\
—90°/dec \\\ S d
\\

—135°/dec N

— \\

5

Phase(degrees)

-G

—45°/dec

O
=
[¢]

| | I |

) (] — — |
~J o o (o8] O
o wn o wn o

~
—~=
0

0.1 1 1 100

Frequency (rad/s)

e
o

At phase =-180, w = 7 rad/sec, magnitude = -20 dB



GM>0, system is stable!!!

Can increase gain up 20 dB without causing instability (20dB = 10)
Start from K =40

with K < 400, system is stable



Closed-loop transient and closed-loop frequency
responses
‘27 system’

w2 C(s)_
s(s+2{w,)

C(s) _T(s) = o’
R(s) $° + 24w, S+’



Damping ratio and closed-loop frequency response

A
10 -
20log M) b——————— e |
| i
: ;
O 3 b
EREE i |
= M = |
ol p 5 | |
S 10 - 20\1-¢ i |
|
I I
15k |
15 v, = @y, J1-2¢7° | i
L
_20 1 1

log w, log wgw
Log frequency (rad/s)

Magnitude Plot of closed-loop system



Response speed and closed-loop frequency response

Dy = a)n\/(l—Zé’z) r\Jact —ar? g2
Dy = %\/(1—252) N YRV

T

= (1-28°2)+48% —48% +2
Wpw Tp\/]?\/ —I—\/ +

(Wp\w frequency at which magnitude is 3dB down

from value at dc (0 rad/sec), or
M =

1
V2



Find from D\
Open-loop Frequency Response

Closed-loop magnitude = -3 dB Nichols Charts

Open-loop magnitude (dB)

| | | | |

—280 —260 —240 —220 —200 —180 —160 —140 —120 —100 —80
Open-loop phase (degrees)

From open-loop frequency response, we can find

0, the open-loop frequency that the magnitude
lies between -6dB to-7.5dB (phase between -135 to -225)



Relationship between
damping ratio and phase margin
of open-loop frequency response

Phase margin of open-loop frequency response
Can be written in terms of damping ratio as following

gy =tan™ a9

\/— 202 +1+4¢*



Phase (degrees)

Open-loop system with a unity feedback has a bode plot
below, approximate settling time and peak time

10
= 3.7
] — — “8

1 2 3 4 5 6 7 8 9 10
Frequency (rad/s)

100
120

—140 e
~160

-180 ¥ ~—]
200 e

L

©
|

W

g

220 et S

—240




¢, =tan™ 2
\/—242 +.J1+4C°

Solve for PM = 35 ¢ =0.32

A

Oy &
=55

= J1-20%) + A —4g 7 +2

T

T = 1-202)++J4C —42% +2
p wBWMJ( £+ A - a7

=1.43




UNIT-5

STATE SPACE REPRESENTATION



Objectives

How to find mathematical model, called a state-space representation, for a
linear, time-invariant system

How to convert between transfer function and state space models

How to find the solution of state equations for homogeneous &non
homogeneous systems



Linear, time invariant

T

_
=l




Two approaches for analysis and design of control system

1. Classical Technique or Frequency Domain Technique
2. Modern Technique or Time Domain Technique



Some definitions

'Sy%tem variable : any variable that responds to an input or initial conditions in a
system

tate variables : the smallest set of linearly mdependent S\kstem variables such that
the values of the members of the set at time t0 al onIg with nown orcmg functions
completely determine the value of all system variables for all t > t0
*State vector : a vector whose eIements are the state variables
«State space : the n—dlmen5|ona scloace whose axes are the state variables
«State equations : a set of first- or er differential equations with b variables, where
the n variables to be solved are the state variables

*Output equation : the algebraic equation that expresses the output variables of a
system as linear combination of the state variables and the inputs.

*For nth-order, write n simultaneous, first-order differential equations in terms of
the state variables (state equations).

*If we know the initial condition of all of the state variables at as well as the
system input for , we can solve the equations



Graphic
representation of
state space and a
state vector

State vector, x{f)
" State vector trajectory

T State vector, x(4)




For a dynamic system, the state of a system is described in terms of a set of state
variables

X0 X0 ... X, @]

The state variables are those variables that determine the future behavior of a
system when the present state of the system and the excitation signals are known.
Consider the system shown in Figure 1, where y,(t) and y,(t) are the output signals
and u,(t) and u,(t) are the input signals. A set of state variables [x; x, ... x,] for the
system shown in the figure is a set such that knowledge of the initial values of the
state variables [x,(t;) x,(t,) .- X,(ty)] at the initial time t,, and of the input signals
u,(t) and u,(t) for t>=t,, suffices to determine the future values of the outputs and
state variables.

. X O . oy
Input Signals Output Signals ( ) Initial conditions

yi(t)

Y,(t)

Input Output

Figure 1. Dynamic system.



In an actual system, there are several choices of a set of state variables that specify

the energy stored in a system and therefore adequately describe the dynamics of
the system.

The state variables of a system characterize the dynamic behavior of a system. The
engineer’s interest is primarily in physical, where the variables are voltages,

currents, velocities, positions, pressures, temperatures, and similar physical
variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential equations
written in terms of the state variables [x, x, ... x.]. These first-order differential
equations can be written in general form as

X, =8, X, +a,,X, +...a,, X, +b,u, +---b, U_

X, =8, X; +a,,X, +...8,, X, +b,u, +---b, u_

X, =a.,X,+a.,X,+...a,. X, +b u +---b__u_



Thus, this set of simultaneous differential equations can be written in matrix form as
follows:

X1 d;; Ay, o0 Ay X1 B b b ar T
11 1m U,
E X . dy; 8y ottty || Xy n . .
dt : :
b -« Db u
| Mn1 nm_| L~ m_|
_Xn_ _anl an2 a‘nn_ _Xn_

n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state vector and is
written as




The vector of input signals is defined as u. Then the system can be represented by the
compact notation of the state differential equation as

X=AX+BuU

This differential equation is also commonly called the state equation. The matrix A is
an nxn square matrix, and B is an nxm matrix. The state differential equation relates
the rate of change of the state of the system to the state of the system and the input
signals. In general, the outputs of a linear system can be related to the state variables
and the input signals by the output equation

y=Cx+Du

Where y is the set of output signals expressed in column vector form. The state-space
representation (or state-variable representation) is comprised of the state variable
differential equation and the output equation.



General State Representation

X = AxX+ Bu State equation
y = Cx+ Du output equation

= state vector
= derivative of the state vector with respect to time

= output vector

= input or control vector

= system matrix

W P c <« x x

= input matrix
C = output matrix

D =feedforward matrix



AN EXAMPLE OF THE STATE VARIABLE CHARACTERIZATION OF A SYSTEM

Ie l L
u(t) v R V,
C—
C
Current
source

* The state of the system can be described in terms of a set of variables [x; x,],
where x, is the capacitor voltage v (t) and x, is equal to the inductor current i(t).
This choice of state variables is intuitively satisfactory because the stored energy
of the network can be described in terms of these variables.



Therefore x,(t,) and x,(t,) represent the total initial energy of the network and thus the
state of the system at t=t,,

Utilizing Kirchhoff’s current low at the junction, we obtain a first order differential
equation by describing the rate of change of capacitor voltage

I.=C ?’_uayq

Kirchhoff’s voltage low for the right-hand loop provides the equation describing the
rate of change of inducator current as

m
m

The output of the system is represented by the linear algebraic equation

=R, (1)

=—-R1 +Vv,



We can write the equations as a set of two first order differential equations in terms
of the state variables x, [v.(t)] and x, [i (t)] as follows:

dv, :
C g :U(t)—ll_ ‘ %:—%XZ—F%U(t)

L dt
di, _ dx, _ 1 « —EX
_;EE_ =R I, +V, :]Illllllll"’ dt | 1 L 2

The output signal is then Y. (t) =V, (t) =R X,

Utilizing the first-order differential equations and the initial conditions of the
network represented by [x,(ty) x,(ty)], we can determine the system’s future and its
output.

The state variables that describe a system are not a unique set, and several
alternative sets of state variables can be chosen. For the RLC circuit, we might
choose the set of state variables as the two voltages, v(t) and v,(t).



We can write the state variable differential equation for the RLC circuit as

-
Clx+|cu)
0

and the output as



RLC network

V()

f(f))

C -

/|

1. State variables

i(t) a(t)



di 1 _ R. 1
== g-—i+ >t
gt Lc’ LI+LV()

3. CI(t) i(t):an be solved using Laplace Transform

4. Other network variables can be obtained
1 .
t)=-Z )~ Ri() +v(t)

5. (1),(2) : state-space representation

(1)

(2)



Other variables VR(t) Ve (t)

dv, R R R
— S =——V, ——V. +—V(t
dt LS L° L 9

dt RC




In vector-matrix form

X =Ax+ Bu

where i
. d(_q/dt} A{ 0 1 }
| di/dt -1/LC -RJ/L
i 0
x:_ﬂ B:L/J u=v(t)
y =Cx+Du
where

y=v (t) c=[-yc -R] D=1



State space representation using phase variable form

d"y

y y
+a, ,——+--+a—+a,y=byu
dt" " dt? g TRV
choose
dy d’y d”‘ly
Xl_y XZ:E X3:F e o o Xn: dtn_]_
l diferensiasikan
. dy
=g X =X,
. d? X, = X
XZ:dtZ S
g =9y
Pt > X, =X,
: X =—a,X —a,X
dny n aO 1 ai 2

-—a X +byu



| — &

1 0 0
0 1 0
0 0 1
0 0 0

—q —4a, _a3

y=[1 0 0

0,




Example : TF to State Space

1. Inverse Laplace

C+9C+26C+24c = 24r

2. Select state variables
X;=C X,=C X;=C

Rix) 24 Cis)
. l -y 53+ 052+ 265+ 24
X, =X
1 2 @
X, =X
C 6(s)=
Xy = —24X, — 26X, —9X; + 24r D(s)

N(s) numerator
y =C= Xl D(s) denominator




r(f)

24 -26 -9

—| 24

(% | [ 0 1
X, 0 O
X3

"‘53“)

.\;2(1)

x () y()

26

J- ot
24 |
e
y:h 0 O:@
| X3 |




Decomposing a transfer function

R(S) sz’Z + blﬁ’ + bo C(S)
P -
a3s3 + azsz +astag
(@)
R(s Xq(s

a3s3 + a232 +aistag

Internal variables:
Xy(s), Xa(s)

(b)

C(s)



Y(s)=C(s)=(b,s? +h5+1, )X, (5)

l

d?x dx
t)=b, © 5 b P p
V(t)=b, " +b b,

|
y(t) — bOxl + b1X2 T b2X3



Example

R(s) 24+ 75+ 2 C(s)
—_— =
§3+ 9524 265+ 24
(a)
R(s) | Xi(s) C(s)
— = > s2+7s+2 I

§3+ 952+ 265+ 24

Internal variables:
Xy(5), Xa(s)

(®)

r(t)

x5(1) X5(1) x,(1)
bt e

26 =

(c)



y(t)=2x +7x, +X,

y:[Z 7 1: X,




State Space to TF

X=AXx+ Bu
y =Cx+ Du

—» Laplace Transform
sX(s)= AX(s)+BU(s)
Y(s)=CX(s)+DU(s)

—»  X(s)=(sl-A)"BU(s)

lc(st—A)y*B+D(s)

— Y(s)

T(s) wzc(sl ~A'B+D

U(s)



0 1 0 10
x={0 O 1 |(x+| 0 Ju
-1 -2 -3 0

y=[1 0 O0]x
(s -1 0 |
— (sl-A)=|0 s -1
1 2 s+3

(sl —A)‘l _adj(sl —A)

 det(sl — A)
[(s2+35+2) s+3 1|
-1 s(s+3) s
-5 ~(2s+1) s°

s +3s°+25+1



T(s)=C(sl-A)"'B+D

~10(s% +35+2)

- T _
) $° +35% +2s5+1




Solution of homogeneous state equation

=The solution of the state differential equation can be obtained in a manner similar to the approach
we utilize for solving a first order differential equation. Consider the first-order differential
equation
X = ax; x(0) =0
dx = axdt
Where x(t) and u(t) are scalar functions of time. We expect an exponential solution of the form
et Taking the Laplace transform of both sides, we have

X
on integrating above equation
logx=at+c
X: eat eC
x=x(0)= e°

on substituting the intial condition ,the solution of homogeneous state equation of first order
differential equation is

X =e* x(0)
X = AX(t),x(0) =0
et :l—I—At—I—ﬁ—I—---—I—ﬂ—I—---

21 !



Solution of homogeneous state equation

=The solution of the state differential equation can be obtained in a manner similar to the approach
we utilize for solving a first order differential equation. Consider the first-order differential
equation

X =axX+bu; x(0) =0

Where x(t) and u(t) are scalar functions of time. By taking laplace transform

s X(s)—X, =aX(s)+bU(s)

The inverse Laplace transform of X(s) results in the solution

t
x(1) = e*x(0) + [e** Pbu(x)dt
O

We expect the solution of the state differential equation to be similar to x(t) and to be
of differential form. The matrix exponential function is defined as

AZt? ARtk

_|_ —_—

et =1l+At+"——+---
2! k!

+...



which converges for all finite t and any A. Then the solution of the state
differential equation is found to be

t
X(t) =e*'x(0) + [ e IBu(r) dv
0

X(s) =[sl-A]'x(0) +[sI —A] "B U(s)

where we note that [sl-A]1=¢(s), which is the Laplace transform of ¢(t)=e*t. The
matrix exponential function ¢(t) describes the unforced response of the system
and is called the fundamental or state transition matrix.

x(t) = (t) X (0) +j¢(t _7)Bu(t)dt



THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be obtained
from the state variable equations.

X=AX+BuU
y=CX

where y is the single output and u is the single input. The Laplace transform of the
equations

sX(s) =AX(s)+BU(s)
Y (s) = CX(s)

where B is an nx1 matrix, since u is a single input. We do not include initial
conditions, since we seek the transfer function. Reordering the equation



[sI—A]X(s) =BU(s)
X(s) =[sl— A"BU(S) = ¢(s)BU(S)
Y (s) =Co(s)BU(s)

Therefore, the transfer function G(s)=Y(s)/U(s) is

G(s) = Ch(s)B

Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described by the
state differential function

o
x+|clu , y=[0 R]x
0

|~ o
|00+




[s1-A]

Then the transfer function is

G(s)=[0 R]

R/LC

R
S+—
L

A(s)
1

LAG)

1

 CA(s)

S

A@)

R/LC

G(s) =

A(S) _52+Bs+—

1
LC

|~

o0+




CONSIDER THE SYSTEM

C(S) _ 24
R(s) s°®+9s®+26s+ 24
(s® +9s% + 265 + 24)C(s) = 24R(Ss)

¢ + 9¢ + 26¢ + 24cC = 24r State variables

X, =C
X, = ¢

X, = C SYSTem
X, = X, —  equations
X, = X3

Xy =-24X%, -26X, —9X, + 24r

y=Cc=X

— Output equation







THANK YOU



