
Control Systems



In this chapter we describe a general process for designing a control system. 

A control system consisting of interconnected components is designed to achieve a 

desired purpose. To understand the purpose of a control system, it is useful to 

examine examples of control systems through the course of history. These early 

systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for 

improving manufacturing processes, the efficiency of energy use, advanced 

automobile control, including rapid transit, among others. 

We also discuss the notion of a design gap. The gap exists between the complex 

physical system under investigation and the model used in the control system 

synthesis. 

The iterative nature of design allows us to handle the design gap effectively while 

accomplishing necessary tradeoffs in complexity, performance, and cost in order to 

meet the design specifications. 

Chapter 1: Introduction to Control Systems 
Objectives



Introduction

System – An interconnection of elements and devices for a desired purpose.

Control System – An interconnection of components forming a system configuration 
that will provide a desired response.

Process – The device, plant, or system 
under control.  The input and output 
relationship represents the cause-and-
effect relationship of the process.



Introduction

Multivariable Control System

Open-Loop Control Systems
utilize a controller or control 
actuator to obtain the desired 
response.

Closed-Loop Control Systems
utilizes feedback to compare 
the actual output to the 
desired output response.



History

Watt’s Flyball Governor
(18th century)

Greece (BC) – Float regulator mechanism
Holland (16th Century)– Temperature regulator



History

Water-level float regulator



History



History

18th Century James Watt’s centrifugal governor for the speed control of a steam 
engine.

1920s Minorsky worked on automatic controllers for steering ships.

1930s Nyquist developed a method for analyzing the stability of controlled systems

1940s Frequency response methods made it possible to design linear closed-loop 
control systems

1950s Root-locus method due to Evans was fully developed

1960s State space methods, optimal control, adaptive control and

1980s  Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control theory 
includes such non-engineering systems such as biological, biomedical, economic and 
socio-economic systems
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(a) Automobile 

steering control 

system.

(b) The driver uses 

the difference 

between the actual 

and the desired 

direction of travel

to generate a 

controlled adjustment 

of the steering wheel.

(c) Typical direction-

of-travel response.

Examples of Modern Control Systems
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Control System Design





Design Example



ELECTRIC SHIP CONCEPT

Ship
Service
Power

Main Power
Distribution

Propulsion

Motor

Motor

Drive
Generator

Prime

Mover

Power

Conversion

Module

 Electric Drive

 Reduce # of Prime 
Movers

 Fuel savings

 Reduced maintenance

 Technology

Insertion

Warfighting 
Capabilities

Vision

Integrated
Power
System

All
Electric

Ship

Electrically
Reconfigurable

Ship

 Reduced manning

 Automation

 Eliminate auxiliary 
systems (steam, 
hydraulics, compressed 
air)

Increasing Affordability and Military Capability

Design Example



CVN(X) FUTURE AIRCRAFT CARRIER

Design Example
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Sequential Design Example





Sequential Design Example



We use quantitative mathematical models of physical systems to design and 

analyze control systems. The dynamic behavior is generally described by 

ordinary differential equations. We will consider a wide range of systems, 

including mechanical, hydraulic, and electrical. Since most physical systems are 

nonlinear, we will discuss linearization approximations, which allow us to use 

Laplace transform methods. 

We will then proceed to obtain the input–output relationship for components and 

subsystems in the form of transfer functions. The transfer function blocks can be 

organized into block diagrams or signal-flow graphs to graphically depict the 

interconnections. Block diagrams (and signal-flow graphs) are very convenient 

and natural tools for designing and analyzing complicated control systems

Mathematical Models of Systems Objectives



Introduction 
Six Step Approach to Dynamic System Problems

Define the system and its components
Formulate the mathematical model and list the necessary 
assumptions
Write the differential equations describing the model
Solve the equations for the desired output variables
Examine the solutions and the assumptions
If necessary, reanalyze or redesign the system



Differential Equation of Physical Systems

Ta t( ) Ts t( ) 0

Ta t( ) Ts t( )

 t( ) s t( ) a t( )

Ta t( ) = through - variable

angular rate difference = across-variable 



Differential Equation of Physical Systems
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Differential Equation of Physical Systems
Electrical Capacitance

Translational Mass

Rotational Mass

Fluid Capacitance

Thermal Capacitance
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Differential Equation of Physical Systems
Electrical Resistance

Translational Damper
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Fluid Resistance

Thermal Resistance
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Differential Equation of Physical Systems
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Differential Equation of Physical Systems
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Differential Equation of Physical Systems
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Linear Approximations

Linear Systems - Necessary condition

Principle of Superposition

Property of Homogeneity

Taylor Series
http://www.maths.abdn.ac.uk/%7Eigc/tch/ma2001/notes/node46.ht

ml

http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node46.html
http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node46.html


Linear Approximations – Example 2.1

M 200gm g 9.8
m

s
2

 L 100cm 0 0rad  
15 

16
 

T0 M g L sin 0 

T1   M g L sin  

T2   M g L cos 0   0  T0
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

Students are encouraged to investigate l inear approximation accuracy for different values of0



The Laplace Transform

Historical Perspective - Heaviside’s Operators

Origin of Operational Calculus (1887)
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Expanded in a power series

v = H(t)

Historical Perspective - Heaviside’s Operators
Origin of Operational Calculus (1887)

(*) Oliver Heaviside: Sage in Solitude, Paul J. Nahin, IEEE Press 1987.



The Laplace Transform

Definition
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The Laplace Transform

Determine the Lap lace transform for the functions
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 Evaluate the laplace transform of the derivative of a function

The Laplace Transform



The Laplace Transform
Practical Example - Consider the circuit.  

The KVL equation is
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The Partial-Fraction Expansion (or Heaviside expansion theorem)

Suppose that

The partial fraction expansion indicates that F(s) consists of 

a sum of terms, each of which is a factor of the denominator. 

The values of K1 and K2 are determined by combining the 

individual fractions by means of the lowest common 

denominator and comparing the resultant numerator 

coefficients with those of the coefficients of the numerator 

before separation in different terms.
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Evaluation of Ki in the manner just described requires the simultaneous solution of n equations.  

An alternative method is to multiply both sides of the equation by (s + pi) then setting s= - pi, the 

right-hand side is zero except for Ki so that 
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The Laplace Transform



The Laplace Transform

s -> 0t -> infinite

Lim s F s( )( )Lim f t( )( )7.  Final-value    Theorem
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Useful Transform Pairs

The Laplace Transform



The Laplace Transform
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The Transfer Function of Linear Systems
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The Transfer Function of Linear Systems

Example 2.2
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The Transfer Function of Linear Systems



 Kf if

Tm K1 Kf if t( ) ia t( )

field controled motor - Lapalce Transform

Tm s( ) K1 Kf Ia  If s( )

Vf s( ) Rf Lf s  If s( )

Tm s( ) TL s( ) Td s( )

TL s( ) J s
2

  s( ) b s  s( )

rearranging equations

TL s( ) Tm s( ) Td s( )

Tm s( ) Km If s( )

If s( )
Vf s( )

Rf Lf s

The Transfer Function of Linear Systems

Td s( ) 0

 s( )

Vf s( )

Km

s J s b( ) Lf s Rf 
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The Transfer Function of Linear Systems

V2 s( )

V1 s( )

1

RCs

V2 s( )

V1 s( )
RCs



The Transfer Function of Linear Systems

V2 s( )

V1 s( )

R 2 R 1 C s 1 
R 1
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R 1 C 1 s 1  R 2 C 2 s 1 
R 1 C 2 s



The Transfer Function of Linear Systems
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The Transfer Function of Linear Systems
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For the unloaded case:

id 0 c q

0.05s c 0.5s

V12 Vq V34 Vd

 s( )

Vc s( )

Km

s  s 1 


J

b m( )

m = slope of l inearized 

torque-speed curve 

(normally negative)



The Transfer Function of Linear Systems
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A = area  of piston

Gear Ratio = n = N1/N2
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L n m



The Transfer Function of Linear Systems
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R2

R
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The Transfer Function of Linear Systems

V2 s( ) Kt  s( ) Kt s  s( )

Kt constant

V2 s( )

V1 s( )

ka

s  1

Ro = output resistance

Co = output capacitance

 Ro Co  1s

and is often negligible 

for control ler amplifier



The Transfer Function of Linear Systems

T s( )

q s( )

1

Ct s Q S
1

R












T To Te = temperature difference due to thermal process 

Ct = thermal capacitance

= fluid flow rate = constant

= specific heat of water

= thermal resistance of insulation

= rate of heat flow of heating element 

Q

S

Rt

q s( )

xo t( ) y t( ) xin t( )

Xo s( )

Xin s( )

s
2



s
2 b

M









s
k

M


For low frequency oscil lations, where n

Xo j  

Xin j  


2

k

M



The Transfer Function of Linear Systems

x r 

converts radial motion to l inear motion



Block Diagram Models



Block Diagram Models



Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram



Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram



Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram



Block Diagram Models



Block Diagram Models

Example 2.7



Block Diagram Models Example 2.7



Signal-Flow Graph Models

For complex systems, the block diagram method can become 
difficult to complete.  By using the signal-flow graph model, the 
reduction procedure (used in the block diagram method) is not 
necessary to determine the relationship between system 
variables.



Signal-Flow Graph Models

Y1 s( ) G11 s( ) R1 s( ) G12 s( ) R2 s( )

Y2 s( ) G21 s( ) R1 s( ) G22 s( ) R2 s( )



Signal-Flow Graph Models

a11 x1 a12 x2 r1 x1

a21 x1 a22 x2 r2 x2



Signal-Flow Graph Models

Example 2.8

Y s( )

R s( )

G1 G2 G3 G4 1 L 3 L 4   G5 G6 G7 G8 1 L 1 L 2  

1 L 1 L 2 L 3 L 4 L 1 L 3 L 1 L 4 L 2 L 3 L 2 L 4



Signal-Flow Graph Models

Example 2.10

Y s( )

R s( )

G1 G2 G3 G4

1 G2 G3 H 2 G3 G4 H 1 G1 G2 G3 G4 H 3



Signal-Flow Graph Models

Y s( )

R s( )

P1 P2 2 P3



P1 G1 G2 G3 G4 G5 G6 P2 G1 G2 G7 G6 P3 G1 G2 G3 G4 G8

 1 L1 L2 L3 L4 L5 L6 L7 L8  L5 L7 L5 L4 L3 L4 

1 3 1 2 1 L5 1 G4 H4



Design Examples



Speed control of an electric traction motor.

Design Examples



Design Examples



Design Examples



Design Examples



Design Examples



BLOCK DIAGRAM REDUCTION
OF MULTIPLE SYSTEMS



Components of a block diagram for a linear, time-invariant system



a. Cascaded subsystems;
b. equivalent transfer function



a. Parallel subsystems;
b. equivalent transfer function



a. Feedback control system;
b. simplified model;

c. equivalent transfer function



Block diagram algebra for summing junctions

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction



Block diagram algebra for pickoff points

equivalent forms for moving a block
a. to the left past a pickoff point;
b. to the right past a pickoff point



Block diagram reduction via familiar forms for Example

Problem: Reduce the block diagram shown in figure to a single transfer
function



Steps in solving Example
a. collapse summing junctions;

b. form equivalent cascaded
system in the forward path

c. form equivalent parallel
system in the feedback
path;

d. form equivalent feedback system and
multiply by cascadedG1(s)

Block diagram reduction via familiar forms for Example Cont.



Problem: Reduce the block diagram shown in figure to a single transfer function

Block diagram reduction by moving blocks Example



Steps in the block diagram reduction for Example

a)Move G2(s) to the left past of
pickoff point to create parallel
subsystems, and reduce the
feedback system of G3(s) and H3(s)

b)Reduce parallel pair of 1/G2(s)
and unity, and push G1(s) to the
right past summing junction

c)Collapse the summing junctions,
add the 2 feedback elements, and
combine the last 2 cascade blocks

d)Reduce the feedback system to
the left

e) finally, Multiple the 2 cascade
blocks and obtain final result.



Second-order feedback control system

The closed loop transfer function is

Note K is the amplifier gain, As K varies, the poles move through
the three ranges of operations OD, CD, and UD
0<K<a2/4 system is over damped
K = a2/4
K > a2/4

system is critically damped
system is under damped

s 2  as  K
T (s ) 

K



Finding transient response Example

Problem: For the system shown, find peak time, percent overshot, and settling time.
25Solution: The closed loop transfer function is T (s ) 

s 2  5s  25

And

1 2

X 1 0 0  1 6 .3 0 3

 1   2

 e   /

 n  2 5  5

2 n  5 so  = 0 .5

T p   0 .7 2 6 sec

%O S

4
 1 .6 sec

n

T s 
n





using values for  and n and equation in chapter 4 we find



Gain design for transient response Example

Problem: Design the value of gain K, so that the system will respond with a 10%
overshot.
Solution: The closed loop transfer function is

For 10% OS we find

We substitute this value in previous equation to find K = 17.9

T (s ) 
s 2  5s  K

K

5
 K an d  5 th u s  = 2

2 K
n n

 = 0 .5 9 1



Signal-flow graph components:

a. system;
b. signal;

c. interconnection of systems and signals



a. cascaded system
nodes

b. cascaded system

signal-flow graph;

c. parallel system nodes

d. parallel system

signal-flow graph;

e. feedback system nodes

f. feedback system signal-flow
graph

Building signal-flow graphs



Problem: Convert the block diagram to a signal-flow graph.

Converting a block diagram to a signal-flow graph



Signal-flow graph development:

a. signal nodes;

b. signal-flow graph;

c. simplified signal-flow graph

Converting a block diagram to a signal-flow graph



Mason’s ƌule - Definitions

Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at the
same node, following the direction of the signal flow, without passing through any other node more than
once. G2(s)H2(s), G4(s)H2(s), G4(s)G5(s)H3(s), G4(s)G6(s)H3(s)
Forward-path gain: The product of gains found by traversing a path from input node to output node in
the direction of signal flow. G1(s)G2(s)G3(s)G4(s)G5(s)G7(s), G1(s)G2(s)G3(s)G4(s)G5(s)G7(s)
Nontouching loops: loops that do not have any nodes in common. G2(s)H1(s) does not touch G4(s)H2(s),
G4(s)G5(s)H3(s), and G4(s)G6(s)H3(s)
Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at a
time.
[G2(s)H1(s)][G4(s)H2(s)], [G2(s)H1(s)][G4(s)G5(s)H3(s)], [G2(s)H1(s)][G4(s)G6(s)H3(s)]



Mason’s Rule
The Transfer function. C(s)/ R(s), of a system represented by a signal-flow graph is

Where
K = number of forward paths

Tk = the kth forward-path gain

= 1 - loop gains + nontouching-loop gains taken 2 at a time - nontouching-loop
gainstaken 3 at a time + nontouching-loop gains taken 4 at atime - …….

= - loop gain terms in that touch the kth forward path. In other words,
k is formed by eliminating from  those loop gains that touch the kth forward path.k

G (s ) 
C (s )



R (s )

T k k

k










Transfer function via Mason’s rule

Problem: Find the transfer function for the signal flow graph
Solution:
forward path
G1(s)G2(s)G3(s)G4(s)G5(s)

Loop gains
G2(s)H1(s), G4(s)H2(s), G7(s)H4(s),
G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)

Nontouching loops
2at a time
G2(s)H1(s)G4(s)H2(s)
G2(s)H1(s)G7(s)H4(s)
G4(s)H2(s)G7(s)H4(s)
3at a time G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)
Now

 = 1-[G2(s)H1(s)+G4(s)H2(s)+G7(s)H4(s)+ G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)] + [G2(s)H1(s)G4(s)H2(s) +

G2(s)H1(s)G7(s)H4(s) + G4(s)H2(s)G7(s)H4(s)] – [G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)]

1 = 1 - G7(s)H4(s)


[G1(s)G2(s)G3(s)G4(s)G5(s)][1-G7(s)H4(s)]



G (s ) 
T11





Signal-Flow Graphs of State Equations

Problem: draw signal-flow graph for:

x 2  6x 1  2x 2  2x 3  5r

x 3  x 1  3x 2  4x 3  7 r

y  4x 1  6x 2  9x 3

a. place nodes;

b. interconnect state
variables and
derivatives;

c. form dx1/dt ;
d. form dx2/dt

x 1  2x 1  5x 2  3x 3  2r



(continued)
e. form dx3 /dt;
f. form output

Signal-Flow Graphs of State Equations



Alternate Representation: Cascade Form

C (s )


24 

R (s ) (s  2)(s  3)(s  4)



Alternate Representation: Cascade Form

x 1  4x 1  x 2

x 2   3x 2

x 3 
y  c (t )  x 1

 x 3

 2x 3  24r

y  1 0

X   0 3 1 X  0

0

0X

4 1 0  0 

 0


2 24

r
  

  



Alternat2e4Representation1: 2Parallel F2o4rmC (s ) 12

R (s ) (s  2)(s  3)(s  4) (s  2) (s  3) (s  4)
   

x 1  2x 1

x 2   3x 2

x 3 
y  c (t )  x 1  x 2

 12r

 24r

 4x 3  12r
 x 3



 0

y  1 1 1X

2 0 0 
3 0 X  24 r


0 4

12
X   0

 

12 





Alternate Representation: Parallel Form Repeated roots

(s 1)2 (s  2) (s 1)2

C (s )


(s  3) 


2 1 1 

R (s ) (s 1) (s  2)

x 1  x 1  x 2

x 2  x 2

x 3   2x 3  r
y  c (t )  x 1  1 / 2x 2  x 3

+2r

1 1 0 

 1 0 X  2 r


 0 0 2

y  1 1 / 2 1X

0
X   0

 
1 



G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by ordering the
phase variable in reverse order

Alternate Representation: controller canonical form

y  2 7 1x 2 

x 3 

x 1 
1

    
x 2    0

1 0  x

0 1  x 2   0 r

26 9 x 3  1
 3 

x 1 

 0  0

24 
x

 

  

 

 
y  1 7 2x 2 

x 1 
1

    
x 2    1

 

0  x 2   0 r

0  x 3  0x 3 

x 1 

x 3 

9 26 24 x

0

 0 1

 1 
 

  

 

 



Alternate Representation: controller canonical form

System matrices that contain the coefficients of the characteristic polynomial are
called companion matrices to the characteristic polynomial.

Phase-variable form result in lower companion matrix

Controller canonical form results in upper companion matrix



Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}



Alternate Representation: observer canonical form

x 1  9x 1  x 2

x 2   26x 1

x 3   24x 1

 r

 x 3 +7r

 2r

y  c (t )  x 1

y  1 0 0X

 9 1 0

 0 1X  7 r

24 0

1 
X  26

  

0 2

Note that the observer form has A matrix that is transpose of the
controller canonical form, B vector is the transpose of the controller C
vector, and C vector is the transpose of the controller B vector. The 2
forms are called duals.



Feedback control system for Example

Problem Represent the feedback control system

shown in state space. Model the forward transfer
function in cascade form.

Solution first we model the forward transfer

function as in (a), Second we add the feedback
and input paths as shown in (b) complete system.
Write state equations

x 1  3x 1

x 2 

 x 2

- 2x 2  100(r - c )

 5x 1  (x 2  3x 1 )  2x 1  x 2but c



 2x 1  x 2y  c (t )

Feedback control system for Example

x 1  3x 1  x 2

x 2  200x 1  102x 2  100r

y  2 1X

 3 1 0

200 102 100
X   X    r

 



State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)



UNIT-II
TIME RESPONSE ANALYSIS



In this chapter we extend the ideas of modeling to include control system 

characteristics, such as sensitivity to model uncertainties, steady-state errors, 

transient response characteristics to input test signals, and disturbance 

rejection.  We investigate the important role of the system error signal which we 

generally try to minimize.

We will also develop the concept of the sensitivity of a system to a parameter 

change, since it is desirable to minimize the effects of unwanted parameter 

variation.  We then describe the transient performance of a feedback system 

and show how this performance can be readily improved.  We will also 

investigate a design that reduces the impact of disturbance signals.  

Feedback Control System Characteristics
Objectives



Open-And Closed-Loop Control Systems

An open-loop (direct) system 

operates without feedback and 

directly generates the output in 

response to an input signal.

A closed-loop system uses a 

measurement of the output 

signal and a comparison with 

the desired output to generate 

an error signal that is applied to 

the actuator.



Open-And Closed-Loop Control Systems

H s( ) 1

Y s( )
G s( )

1 G s( )
R s( )

E s( )
1

1 G s( )
R s( )

Thus, to reduce the error, the magnitude of 1 G s( )  1

H s( ) 1

Y s( )
G s( )

1 H s( ) G s( )
R s( )

E s( )
1

1 H s( ) G s( )[ ]
R s( )

Thus, to reduce the error, the magnitude of 1 G s( ) H s( )  1

Error Signal



Sensitivity of Control Systems To Parameter Variations

GH s( ) 1

Y s( )
1

H s( )
R s( ) Output affected only by H(s)

G s( ) G s( )

Open Loop Y s( ) G s( ) R s( )

Closed Loop

Y s( ) Y s( )
G s( ) G s( ) 

1 G s( ) G s( )  H s( )
R s( )

Y s( )
G s( )

1 GH s( ) GH s( )  1 GH s( )( )
R s( )

GH s( ) GH s( )

The change in the output of the closed system

is reduced by a factor of 1+GH(s)
Y s( )

G s( )

1 GH s( )( )
2

R s( )

For the closed-loop case if



Sensitivity of Control Systems To Parameter Variations

T s( )
Y s( )

R s( )

S

 T s( )

T s( )

 G s( )

G s( )

S

T
T

d

d

T

G
G

d

d

G











T
T

d

d









G
G

d

d









G

T


T s( )
1

1 H s( ) G s( )[ ]

S G
T T

T
d

d









G
G

d

d









G

T


T
T

d

d









G
G

d

d









G

T


1

1 GH( )
2

G

G

1 GH( )



S G
T 1

1 GH( )
Sensitivity of the closed-loop to G variations reduced

Sensitivity of the closed-loop to H variations
When GH is large sensitivity approaches 1
Changes in H directly affects the output response

S H
T GH

1 GH( )



Example 4.1

Open loop Closed loop

vo Ka vin


R2

R1
Rp R1 R2

T ka

T
Ka

1 Ka 
SKa

T 1

1 Ka 
SKa

T
1

If Ka is large, the sensitivity is low.

Ka 10
4

  0.1 SKa
T


1

1 10
3



9.99 10
4





Control of the Transient Response of Control Systems

 s( )

Va s( )
G s( )

K1

1 s 1

where,

K1

Km

Ra b Kb Km
1

Ra J

Ra b Kb Km



Control of the Transient Response of Control Systems

 s( )

R s( )

K a G s( )

1 K a K t G s( )

K a K 1

 1 s 1 K a K t K 1

K a

K 1

 1



s
1 K a K t K 1 

 1













Control of the Transient Response of Control Systems



Disturbance Signals In a Feedback Control Systems

R(s)



Disturbance Signals In a Feedback Control Systems



G1 s( ) Ka
Km

Ra
 G2 s( )

1

J s b( )
H s( ) Kt

Kb

Ka


E s( )  s( )
G s( )

1 G1 s( ) G2 s( ) H s( )
Td s( )

G1G2Hs( ) 1

E s( )
1

G1 s( ) H s( )
Td s( ) If G1(s)H(s) very large the effect of the disturbance

can be minimized

G1 s( ) H s( )
Ka Km

Ra
Kt

Kb

Ka










approximately 
Ka Km Kt

Ra
since Ka >> Kb

Strive to maintain Ka large and Ra < 2 ohms

Disturbance Signals In a Feedback Control Systems



Steady-State Error

Eo s( ) R s( ) Y s( ) 1 G s( )( ) R s( )

Ec s( )
1

1 G s( )
R s( ) H s( ) 1

Steady State Error

0t

e t( )lim

 0s

s E s( )lim



For a step unit input

eo infinite( )

0s

s 1 G s( )( )
1

s
lim

 0s

1 G 0( )( )lim



ec infinite( )

0s

s
1

1 G s( )










1

s
lim

 0s

1

1 G 0( )









lim





The Cost of Feedback

Increased Number of components and Complexity

Loss of Gain

Instability



Design Example: English Channel Boring Machines

Y s( ) T s( ) R s( ) Td s( ) D s( )

Y s( )
K 11 s

s
2

12 s K

R s( )
1

s
2

12 s K

D s( )



Design Example: English Channel Boring Machines

Study system for different
Values of gain  K

Steady state error for R(s)=1/s and D(s)=0

infinitet

e t( )lim

 0s

s
1

1
K 11 s

s
2

s














1

s
lim



0

Steady state error for R(s)=0 D(s)=1/s

infinitet

y t( )lim

 0s

s
1

s
2

12 s K










1

s
lim



1

K

G

Td



Transient vs Steady-State

The output of any differential equation can be broken up into two parts,
•a transient part (which decays to zero as t goes to infinity) and
•a steady-state part (which does not decay to zero as t goes to infinity).

t0

y(t)  ytr (t)  yss (t)

lim ytr (t)  0

Either part might be zero in any particular case.



Prototype systems
1st Order system

2nd order system

Agenda:
transfer function
response to test signals

impulse
step ramp
parabolic
sinusoidal

c(t)
1

c(t)  kr(t)


c(t)  2 c(t)  2c(t)  kr(t)n n



1st order system
Impulse response
Step response
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

C(s) 1 T
G(s) 

R(s) s 1 T


c (t) 
1

et T1(t)
r(t)   (t), R(s) 1,

T


r(t) 1(t), R(s) 
1

,
s c (t)  1 et T 1(t)

step  

s2

r(t)  t1(t), R(s) 
1

,
c (t)  t T Tet T 1(t)

ramp



1st Order system

Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change with
time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is more
convenient than the arbitrary time scale of seconds, minutes, hours, days, etc, or
fractions thereof.



Transient vs Steady state

Consider the impulse, step, ramp responses computed earlier. Identify the steady
state and the transient parts.



1st order
system
Impulse response
Step response
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

G(s) 
C(s)

 1 T
, T  0

R(s) s 1 T

c (t) 
1

et T1(t)
r(t)   (t), R(s) 1,

T


r(t) 1(t), R(s) 
1

,
s c (t)  1 et T 1(t)

step  

s2

r(t)  t1(t), R(s) 
1

,
c (t)  t T Tet T 1(t)

ramp

Consider the impulse, step, ramp responses computed
earlier. Identify the steady state and the transient
parts.

Compare steady-state part to input function, transient part to TF.



2nd order system G(s) 
C(s)



Over damped
•(two real distinct roots = two 1st order systems with real poles)
Critically damped
•(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped
•(complex conjugate pair of poles, oscillatory behavior, most common)

step response

2

n

s2  2 s 2

n nR(s)

K

  1
1 2 

1 2


c (t)  K 1



sin  t  tan

1(t)


nt

step d

e

 
 1 2

c (t)  K  e sin  1(t)n tn
dt

 





2nd Order System

Prototype parameters:
undamped natural frequency,
damping ratio

Relating problem specific parameters to prototype parameters



Transient vs Steady state

Consider the step, responses computed earlier. Identify the steady state and the
transient parts.



2nd order system G(s) 
C(s)



Over damped
•(two real distinct roots = two 1st order systems with real poles)
Critically damped
•(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped
•(complex conjugate pair of poles, oscillatory behavior, most common)

step response

2

n

s2  2 s 2

n nR(s)

K

  1
1 2 

1 2


c (t)  K 1



sin  t  tan

1(t)


nt

step d

e

 
 1 2

c (t)  K  e sin  1(t)n tn
dt

 





Use of Prototypes

Too many examples to cover them all
We cover important prototypes
We develop intuition on the prototypes
We cover how to convert specific examples to prototypes
We transfer our insight, based on the study of the prototypes to the specific
situations.



Transient-Response Spedifications

1. Delay time, td: The time required for the response to reach half the final value the
very first time.

2. Rise time, tr: the time required for the response to rise from
10% to 90% (common for overdamped and 1st order systems);
5% to 95%;
or 0% to 100% (common for underdamped systems);
of its final value

1. Peak time, tp:
2. Maximum (percent) overshoot, Mp:
3. Settling time, ts



Derived relations for 2nd

Order Systems

tr 
d

  


tp  

d



1 2

100%pM  e




t  4T 
4
 4

2%s

n 

t  3T 
3
 3

5%s

n 

  1 2
d n

 n

1 d
  tan   



 
See book for details. (Pg. 232)

Allowable Mp determines damping ratio.
Settling time then determines undamped natural frequency.
Theory is used to derive relationships between design specifications and prototype
parameters.
Which are related to problem parameters.



Higher order system

PFEs have linear denominators.

•each term with a real pole has a time constant

•each complex conjugate pair of poles has a damping ratio and an undamped
natural frequency.



Proportional control of plant w
integrator

1
GC (s)  K p , G(s) 

s(Js  b)



Integral control of Plant w disturbance

1G (s) 
K

,
G(s) 

s(Js  b)
C

s



Proportional Control of plant w/o
integrator

1
G (s)  K , G(s) 

Ts 1
C



Integral control of plant w/o integrator

1G (s) 
K

,
G(s) 

Ts 1
C

s



UNIT-III
STABILITY ANALYSIS IN S- DOMAIN



The issue of ensuring the stability of a closed-loop feedback system is central to 
control system design. Knowing that an unstable closed-loop system is generally 
of no practical value, we seek methods to help us analyze and design stable 
systems. A stable system should exhibit a bounded output if the corresponding 
input is bounded. This is known as bounded-input, bounded-output stability 
and is one of the main topics of this chapter. 

The stability of a feedback system is directly related to the location of the roots 
of the characteristic equation of the system transfer function. The Routh–
Hurwitz method is introduced as a useful tool for assessing system stability. The 
technique allows us to compute the number of roots of the characteristic 
equation in the right half-plane without actually computing the values of the 
roots. Thus we can determine stability without the added computational 
burden of determining characteristic root locations. This gives us a design 
method for determining values of certain system parameters that will lead to 
closed-loop stability. For stable systems we will introduce the notion of relative 
stability, which allows us to characterize the degree of stability. 

Chapter 6 – The Stability of Linear Feedback Systems



The Concept of Stability

A stable system is a dynamic system with a bounded 
response to a bounded input.

Absolute stability is a stable/not stable characterization for a 
closed-loop feedback system.  Given that a system is stable 
we can further characterize the degree of stability, or the 
relative stability.



The Concept of Stability

The concept of stability can be 
illustrated by a cone placed on 
a plane horizontal surface.

A necessary and 
sufficient condition for a 
feedback system to be 
stable is that all the 
poles of the system 
transfer function have 
negative real parts.

A system is considered marginally stable if only certain bounded 
inputs will result in a bounded output.



The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial must 
have the same sign and non-zero if all the roots are in the left-hand plane.

These requirements are necessary but not sufficient.  If the above 
requirements are not met, it is known that the system is unstable.  But, if the 
requirements are met, we still must investigate the system further to 
determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the 
stability of linear systems.



The Routh-Hurwitz Stability Criterion
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asasasasa Characteristic equation, q(s)

Routh array

The Routh-Hurwitz criterion 
states that the number of 
roots of q(s) with positive real 
parts is equal to the number 
of changes in sign of the first 
column of the Routh array.



The Routh-Hurwitz Stability Criterion
Case One:  No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of  a second-order sys tem is:

q s( ) a2 s
2

 a1 s a0

The Routh array is written as:

w here:

b1

a1 a0 0( ) a2

a1

a0

Therefore the requirement for a stable second-order system is 

simply that all coef f icients be positive or all the coef ficients be 

negative.

0

0

1

0

1

1

02

2

bs

as

aas



The Routh-Hurwitz Stability Criterion
Case Two:  Zeros in the first column while some elements of the row containing a 
zero in the first column are nonzero.

If  only one element in the array is zero, it may be replaced w ith a small positive 

number  that is allow ed to approach zero after completing the array.

q s( ) s
5

2s
4

 2s
3

 4s
2

 11s 10

The Routh array is then:

w here:

b1

2 2 1 4

2
0  c1

4 2 6



12


d1

6 c1 10

c1

6

There are two sign changes in the first column due to the large negative number 

calculated for c1.  Thus, the system is unstable because two roots lie in the 

right half  of  the plane. 

0010

00

010

06

1042

1121

0

1

1

1

2

1

3

4

5

s

ds

cs

bs

s

s



The Routh-Hurwitz Stability Criterion
Case Three:  Zeros in the first column, and the other elements of the row containing 
the zero are also zero.

This case occurs when the polynomial q(s) has zeros located symetrically about the 

origin of  the s-plane, such as (s+)(s -) or (s+j)(s -j).  This case is solved using 

the auxiliary polynomial, U(s), w hich is located in the row above the row  containing 

the zero entry in the Routh array.

q s( ) s
3

2 s
2

 4s K

Routh array:

For a stable system we require that 0 s 8

For the marginally stable case, K=8, the s^1 row  of the Routh array contains all zeros.  The 

auxiliary plynomial comes f rom the s^2 row. 

U s( ) 2s
2

Ks
0

 2 s
2

 8 2 s
2

4  2 s j 2( ) s j 2( )

It can be proven that U(s) is a factor of  the characteris tic polynomial:

q s( )

U s( )

s 2

2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q s( ) s 2( ) s j 2( ) s j 2( )

0

0

2

41

0

2
81

2

3

Ks

s

Ks

s

K



The Routh-Hurwitz Stability Criterion
Case Four:  Repeated roots of the characteristic equation on the jw-axis.

With simple roots on the jw-axis, the system will 
have a marginally stable behavior.  This is not 
the case if the roots are repeated.  Repeated 
roots on the jw-axis will cause the system to be 
unstable.  Unfortunately, the routh-array will fail 
to reveal this instability.



Example 6.4



Example 6.5 Welding control

Using block diagram reduction we find that:

The Routh array is then:

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

)6(6

111



For the system to be stable bothb3 and c3 must be positive.

Using these equations a relationship can be determined for K and a .

where: b3

60 K

6
and c3

b3 K 6( ) 6 Ka

b3



The Relative Stability of Feedback Control Systems

It is often necessary to know the 
relative  damping of each root to 
the characteristic equation.  
Relative system stability can be 
measured by observing the 
relative real part of each root.  In 
this diagram r2 is relatively more 
stable than the pair of roots 
labeled r1.

One method of determining the relative stability of 
each root is to use an axis shift in the s-domain and 
then use the Routh array as shown in Example 6.6 
of the text.



Problem statement:  Design the turning control for a tracked vehicle.  Select K 
and a so that the system is stable.  The system is modeled below.  

Design Example: Tracked Vehicle Turning Control



The characteristic equation of this system is:

1 Gc G s( ) 0

or 

1
K s a( )

s s 1( ) s 2( ) s 5( )
 0

Thus,

s s 1( ) s 2( ) s 5( ) K s a( ) 0

or 

s
4

8s
3

 17s
2

 K 10( )s Ka 0

To determine a stable region for the system, we establish the Routh array as:

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

0)10(8

171



Design Example: Tracked Vehicle Turning Control



Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

0)10(8

171



Design Example: Tracked Vehicle Turning Control

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Therefore,

K 126

K a 0

K 10( ) 126 K( ) 64Ka 0



The Root   Locus Method

In the preceding chapters we discussed how the performance of a feedback system can be 
described in terms of the location of the roots of the characteristic equation in the s-plane. We 
know that the response of a closed-loop feedback system can be adjusted to achieve the 
desired performance by judicious selection of one or more system parameters. It is very useful 
to determine how the roots of the characteristic equation move around the s-plane as we 
change one parameter. 

The locus of roots in the s-plane can be determined by a graphical method. A graph of the locus 
of roots as one system parameter varies is known as a root locus plot. The root locus is a 
powerful tool for designing and analyzing feedback control systems and is the main topic of this 
chapter. We will discuss practical techniques for obtaining a sketch of a root locus plot by hand. 
We also consider computer-generated root locus plots and illustrate their effectiveness in the 
design process. The popular PID controller is introduced as a practical controller structure. 

We will show that it is possible to use root locus methods for design when two or three 
parameters vary. This provides us with the opportunity to design feedback systems with two or 
three adjustable parameters. For example the PID controller has three adjustable parameters. 
We will also define a measure of sensitivity of a specified root to a small incremental change in 
a system parameter. 



The Root   Locus Method



The root locus is a graphical procedure for determining the poles of a closed-loop system 

given the poles and zeros of a forward-loop system. Graphically, the locus is the set of 

paths in the complex plane traced by the closed-loop poles as the root locus gain is varied 

from zero to infinity.  
 

In mathematical terms, given a forward-loop transfer function,  KG(s)  

where K is the root locus gain, and the corresponding closed-loop transfer function  

 
the root locus is the set of paths traced by the roots of  

 
as K varies from zero to infinity. As K changes, the solution to this equation changes.  

This equation is called the characteristic equation.  This equation defines where the poles 

will be located for any value of the root locus gain, K. In other words, it defines the 

characteristics of the system behavior for various values of controller gain.  

The Root   Locus Method



The Root   Locus Method



The Root   Locus Method



The Root   Locus Method



The Root   Locus Method



No matter what we pick K to be, the closed-loop system must always have n poles, where 

n is the number of poles of G(s).  

The root locus must have n branches, each branch starts at a pole of G(s) and goes to a 

zero of G(s).  

If G(s) has more poles than zeros (as is often the case), m < n and we say that G(s) has 

zeros at infinity. In this case, the limit of G(s) as s -> infinity is zero.  

 

The number of zeros at infinity is n-m, the number of poles minus the number of zeros, 

and is the number of branches of the root locus that go to infinity (asymptotes).  

 

Since the root locus is actually the locations of all possible closed loop poles, from the 

root locus we can select a gain such that our closed-loop system will perform the way we 

want. If any of the selected poles are on the right half plane, the closed-loop system will 

be unstable. The poles that are closest to the imaginary axis have the greatest influence on 

the closed-loop response, so even though the system has three or four poles, it may still 

act like a second or even first order system depending on the location(s) of the dominant 

pole(s).  

The Root   Locus Method



Example



MATLAB Example - Plotting the root locus of a transfer function 

Consider an open loop system which has a transfer function of  

G(s) = (s+7)/s(s+5)(s+15)(s+20) 

How do we design a feedback controller for the system by using the root locus method?  

Enter the transfer function, and the command to plot the root locus:  
num=[1 7]; 

den=conv(conv([1 0],[1 5]),conv([1 15],[1 20])); 

rlocus(num,den) 

axis([-22 3 -15 15])  

 

 
 

Example



 

Graphical
Method



Graphical
Method



Root Locus Design GUI (rltool)

The Root Locus Design GUI is an interactive 
graphical tool to design compensators using 
the root locus method. This GUI plots the 
locus of the closed-loop poles as a function of 
the compensator gains. You can use this GUI 
to add compensator poles and zeros and 
analyze how their location affects the root 
locus and various time and frequency domain 
responses. Click on the various controls on 
the GUI to see what they do. 

rltool1.shtml
rltool2.shtml
rltool3.shtml
rltool3_5.shtml
rltool4.shtml
rltool5.shtml
rltool6.shtml
rltool7.shtml
rltool8.shtml
rltool9.shtml
rltool10.shtml
rltool11.shtml


UNIT-IV
FREQUENCY RESPONSE ANALYSIS



Frequency Response Methods
and Stability

In previous chapters we examined the use of test signals such as a step and a ramp 
signal. In this chapter we consider the steady-state response of a system to a sinusoidal 
input test signal. We will see that the response of a linear constant coefficient system 
to a sinusoidal input signal is an output sinusoidal signal at the same frequency as the 
input. However, the magnitude and phase of the output signal differ from those of the 
input sinusoidal signal, and the amount of difference is a function of the input 
frequency. Thus we will be investigating the steady-state response of the system to a 
sinusoidal input as the frequency varies. 

We will examine the transfer function G(s) when s =jw and develop methods for 
graphically displaying the complex number G(j)as w  varies. The Bode plot is one of the 
most powerful graphical tools for analyzing and designing control systems, and we will 
cover that subject in this chapter. We will also consider polar plots and log magnitude 
and phase diagrams. We will develop several time-domain performance measures in 
terms of the frequency response of the system as well as introduce the concept of 
system bandwidth.



Introduction

The frequency response of a system is defined as the steady-state response of the 
system to a sinusoidal input signal.  The sinusoid is a unique input signal, and the 
resulting output signal for a linear system, as well as signals throughout the system, is 
sinusoidal in the steady-state; it differs form the input waveform only in amplitude and 
phase.
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Bode Plots – Real Poles
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si j ii end 10
i r

range variable:i 0 Nrange for plot :

r log
start

end









1

N
step size:

end 100highest frequency (in Hz):

N 50number of points:start .01lowest  frequency  (in Hz):

Next , choose a frequency range for the plots (use powers of 10 for convenient plot ting):

G s( )
K

s 1 s( ) 1
s

3












K 2

Assume 

ps G   180


arg G j    360 if arg G j    0 1 0  

Phase shift :

db G   20 log G j   

Magnitude:

Frequency Response Plots

Bode Plots – Real Poles



range for plot : i 0 N range variable: i end 10
i r

 si j i
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 .1 .11 2 K 2 j 1
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w 4

Finding the Resonance Frequency
Given

20 log T w( )  5.282

wr Find w( ) wr 0.813

Mpw 1

Given

20 log Mpw( ) 5.282 Finding Maximum value of the frequency response

Mpw Find Mpw( ) Mpw 1.837
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Assume that the system has dominant second-order roots

 .1
Finding the damping factor

Given

Mpw 2  1 
2














1

 Find    0.284

wn .1
Finding the natural frequency

Given

wr wn 1 2 
2



wn Find wn( ) wn 0.888
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Bode Plots 

Bode plot is the representation of the magnitude and phase of G(j*w) (where 
the frequency vector w contains only positive frequencies). 
To see the Bode plot of a transfer function, you can use the MATLAB 
bode

command. 

For example, 

bode(50,[1 9 30 40])

displays the Bode plots for the 
transfer function: 

50 / (s^3 + 9 s^2 + 30 s + 40)



Gain and Phase Margin 

Let's say that we have the following system: 

where K is a variable (constant) gain and G(s) is the plant under consideration. 

The gain margin is defined as the change in open loop gain required to make the 
system unstable. Systems with greater gain margins can withstand greater changes 
in system parameters before becoming unstable in closed loop.  Keep in mind that 
unity gain in magnitude is equal to a gain of zero in dB.

The phase margin is defined as the change in open loop phase shift required to 
make a closed loop system unstable. 

The phase margin is the difference in phase between the phase curve and -180 deg 
at the point corresponding to the frequency that gives us a gain of 0dB (the gain 
cross over frequency, Wgc). 

Likewise, the gain margin is the difference between the magnitude curve and 0dB 
at the point corresponding to the frequency that gives us a phase of -180 deg (the 
phase cross over frequency, Wpc).



Gain and Phase Margin 

-180



We can find the gain and phase margins for a system directly, by using MATLAB. 
Just enter the margin command. 
This command returns the gain 
and  phase margins, the gain and 
phase cross over frequencies, and 
a graphical representation of these 
on the Bode plot. 

margin(50,[1 9 30 40])

Gain and Phase Margin 



si j ii end 10
i r

range variable:i 0 Nrange for plot :

r log
start

end









1

N
step size:

end 100highest frequency (in Hz):

N 50number of points:start .01lowest  frequency  (in Hz):

Next , choose a frequency range for the plots (use powers of 10 for convenient plot ting):

G s( )
K

s 1 s( ) 1
s

3












K 2

Assume 

ps G   180


arg G j    360 if arg G j    0 1 0  

Phase shift :

db G   20 log G j   

Magnitude:

Gain and Phase Margin 



gm 6.021gm db G gm 

Calculate the gain margin:

gm 1.732

gm root ps G gm  180 gm 

Solve for  at the phase shift  point of 180 degrees: 

gm 1.8

Now using the phase angle plot, estimate the frequency at which the phase shift crosses 180 degrees:

Gain Margin

degreespm 18.265pm ps G c  180

Calculate the phase margin:

c 1.193c root db G c  c 

Solve for the gain crossover frequency:

c 1Guess for crossover frequency:

Gain and Phase Margin 



The Nyquist Stability Criterion

The Nyquist plot allows us also to predict the stability and performance of a closed-loop system by 
observing its open-loop behavior. The Nyquist criterion can be used for design purposes regardless of open-
loop stability (Bode design methods assume that the system is stable in open loop). Therefore, we use this 
criterion to determine closed-loop stability when the Bode plots display confusing information.   

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the open-loop transfer function and w is a 
vector of frequencies which encloses the entire right-half plane. In drawing the Nyquist diagram, both 
positive and negative frequencies (from zero to infinity) are taken into account. In the illustration below we 
represent positive frequencies in red and negative frequencies in green. The frequency vector used in 
plotting the Nyquist diagram usually looks like this (if you can imagine the plot stretching out to infinity): 

However, if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at those points, and 
we must loop around them when we are plotting the contour. Such a contour would look as follows:



The Cauchy criterion

The Cauchy criterion (from complex analysis) states that when taking a closed contour in 
the complex plane, and mapping it through a complex function G(s), the number of 
times that the plot of G(s) encircles the origin is equal to the number of zeros of G(s) 
enclosed by the frequency contour minus the number of poles of G(s) enclosed by the 
frequency contour. Encirclements of the origin are counted as positive if they are in the 
same direction as the original closed contour or negative if they are in the opposite 
direction. 

When studying feedback controls, we are not as interested in G(s) as in the closed-loop 
transfer function: 

G(s)

---------

1 + G(s)

If 1+ G(s) encircles the origin, then G(s) will enclose the point -1. 
Since we are interested in the closed-loop stability, we want to know if there are any 
closed-loop poles (zeros of 1 + G(s)) in the right-half plane. 

Therefore, the behavior of the Nyquist diagram around the -1 point in the real axis is 
very important; however, the axis on the standard nyquist diagram might make it hard 
to see what's happening around this point 



Gain and Phase Margin 

Gain Margin is defined as the change in open-loop gain expressed in decibels (dB), required at 180 
degrees of phase shift to make the system unstable.  First of all, let's say that we have a system that 
is stable if there are no Nyquist encirclements of -1, such as : 

50
-----------------------

s^3 + 9 s^2 + 30 s + 40

Looking at the roots, we find that we have no open loop poles in the right half plane and therefore no 
closed-loop poles in the right half plane if there are no Nyquist encirclements of -1. Now, how much 
can we vary the gain before this system becomes unstable in closed loop? 

The open-loop system represented by this plot will become unstable in closed loop if the gain is 
increased past a certain boundary.  



and that the Nyquist diagram can be viewed by typing: 
nyquist (50, [1 9 30 40 ])

The Nyquist Stability Criterion



Phase margin as the change in open-loop phase shift required at unity gain to make a 
closed-loop system unstable.  

From our previous example we know that this particular system will be unstable in closed 
loop if the Nyquist diagram encircles the -1 point. However, we must also realize that if the 
diagram is shifted by theta degrees, it will then touch the -1 point at the negative real axis, 
making the system marginally stable in closed loop. Therefore, the angle required to make 
this system marginally stable in closed loop is called the phase margin (measured in 
degrees). In order to find the point we measure this angle from, we draw a circle with 
radius of 1, find the point in the Nyquist diagram with a magnitude of 1 (gain of zero dB), 
and measure the phase shift needed for this point to be at an angle of 180 deg. 

Gain and Phase Margin 



w 100 99.9 100 j 1 s w( ) j w f w( ) 1

G w( )
50 4.6

s w( )
3

9 s w( )
2

 30 s w( ) 40



2 1 0 1 2 3 4 5 6
5

0

5

Im G w( )( )

0

Re G w( )( )

The Nyquist Stability Criterion



Consider the Negative Feedback System

Remember from the Cauchy criterion that the number N of times that the plot of G(s)H(s) encircles -1 is 
equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequency contour minus the number P 
of poles of 1 + G(s)H(s) enclosed by the frequency contour (N = Z - P).

Keeping careful track of open- and closed-loop transfer functions, as well as numerators and 
denominators, you should convince yourself that: 

 the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function 

 the poles of 1 + G(s)H(s) are the poles of the open-loop transfer function. 

The Nyquist criterion then states that: 

 P = the number of open-loop (unstable) poles of G(s)H(s) 

 N = the number of times the Nyquist diagram encircles -1 

 clockwise encirclements of -1 count as positive encirclements 

 counter-clockwise (or anti-clockwise) encirclements of -1 count as negative encirclements 

 Z = the number of right half-plane (positive, real) poles of the closed-loop system 

The important equation which relates these three quantities is: 

Z = P + N



Knowing the number of right-half plane (unstable) poles in open loop (P), and the 
number of encirclements of -1 made by the Nyquist diagram (N), we can determine 
the closed-loop stability of the system. 

If Z = P + N is a positive, nonzero number, the closed-loop system is unstable.

We can also use the Nyquist diagram to find the range of gains for a closed-loop 
unity feedback system to be stable. The system we will test looks like this:

where G(s) is :

s^2 + 10 s + 24

---------------

s^2 - 8 s + 15

The Nyquist Stability Criterion - Application



This system has a gain K which can be varied in order to modify the response of the closed-loop 
system. However, we will see that we can only vary this gain within certain limits, since we have to 
make sure that our closed-loop system will be stable. This is what we will be looking for: the range 
of gains that will make this system stable in the closed loop. 

The first thing we need to do is find the number of positive real poles in our open-loop transfer 
function: 

roots([1 -8 15])

ans =

5

3

The poles of the open-loop transfer function are both positive. Therefore, we need two anti-
clockwise (N = -2) encirclements of the Nyquist diagram in order to have a stable closed-loop 
system (Z = P + N). If the number of encirclements is less than two or the encirclements are not 
anti-clockwise, our system will be unstable. 

Let's look at our Nyquist diagram for a gain of 1: 

nyquist([ 1 10 24], [ 1 -8 15])

There are two anti-clockwise encirclements of -1. 
Therefore, the system is stable for a gain of 1.

The Nyquist Stability Criterion



MathCAD Implementation

w 100 99.9 100 j 1 s w( ) j w

G w( )
s w( )

2
10 s w( ) 24

s w( )
2

8 s w( ) 15



2 1 0 1 2
2

0

2

Im G w( )( )

0

Re G w( )( )

The Nyquist Stability Criterion

There are two anti-
clockwise encirclements of -
1. 
Therefore, the system is 
stable for a gain of 1.



The Nyquist Stability Criterion



Time-Domain Performance Criteria Specified
In The Frequency Domain

Open and closed-loop  frequency  responses are related by :

T j  G j 

1 G j 

Mpw
1

2  1 
2


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G   u j v M M  
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The Nichols Stability Method

Polar S tability Plot - Nichols  Mathcad Implementation

This examp le makes a polar p lot of a transfer function and draws one contour of constant  

closed-loop  magnitude. To draw the plot, enter a definition for the transfer function G(s):

G s( )
45000

s s 2( ) s 30( )


The frequency range defined by  the next two equations provides a logarithmic frequency scale 

running from 1 to 100. You can change this range by editing the definitions for m and m:

m 0 100 m 10
.02 m



Now enter a value for M to define the closed-loop  magnitude contour that will be plot ted. 

M 1.1

Calculate the points on the M-circle:

MCm
M

2


M
2

1

M

M
2

1

exp 2  j .01 m 












The first plot  shows G, the contour of constant closed-loop magnitude, M 



The Nichols Stability Method

The first plot  shows G, the contour of constant closed-loop magnitude, M, and the 

Nyquist of the open loop system 

Im G j m  

Im MCm 

0

Re G j m   Re MCm  1



The Nichols Stability Method



The Nichols Stability Method

G   1

j  j  1  0.2 j  1 


Mpw 2.5 dB r 0.8

The closed-loop phase angle

 at r is equal to -72 degrees and b = 1.33

The closed-loop phase angle at b is equal to

-142 degrees

Mpw

-72 deg    wr=0.8
-3dB

-142 deg



The Nichols Stability Method

G   0.64

j  j  2
j  1 



Phase Margin = 30 degrees

On the basis of the p hase we est imate 0.30

Mpw 9 dB Mpw 2.8 r 0.88

From equation

Mpw
1

2  1 
2



 0.18

We are confronted with comflecting s

The apparent  conflict  is caused by the nature of 

G(j) which slopes rap idally  toward 180 degrees 

line from the 0-dB axis.    The designer must use 

the frequency-domain-t ime-domain correlation 

with caution

PM

GM



The Nichols Stability Method

PM

GM
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The Design of Feedback Control Systems

PID 

Compensation Networks



Different Types of Feedback Control

On-Off Control

This is the simplest form of control. 



Proportional Control

A proportional controller attempts to perform better than the On-off type by 
applying power in proportion to the difference in temperature between the 
measured and the set-point.  As the gain is increased the system responds faster 
to changes in set-point but becomes progressively underdamped and eventually 
unstable. The final temperature lies below the set-point for this system because 
some difference is required to keep the heater supplying power.  



Proportional,  Derivative Control

The stability and overshoot problems that arise when a  proportional 
controller is used at high gain can be mitigated by adding a term 
proportional to the time-derivative of the error signal. The value of the 
damping can be adjusted to achieve a critically damped response.



Proportional+Integral+Derivative Control

Although PD control deals neatly with the overshoot and ringing 
problems associated with proportional control it does not cure the 
problem with the steady-state error. Fortunately it is possible to 
eliminate this while using relatively low gain by adding an integral term 
to the control function which becomes 



The Characteristics of P, I, and D controllers

A proportional controller (Kp) will have the effect of reducing the rise time and will 
reduce, but never eliminate, the steady-state error. 

An integral control (Ki) will have the effect of eliminating the steady-state error, but it 
may make the transient response worse. 

A derivative control (Kd) will have the effect of increasing the stability of the system, 
reducing the overshoot, and improving the transient response.



Proportional Control

By only employing proportional control, a steady state error occurs.

Proportional and Integral Control 

The response becomes more oscillatory and needs longer to settle, the error 
disappears.

Proportional, Integral and Derivative Control

All design specifications can be reached.



CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

The Characteristics of P, I, and D controllers



Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be 
improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.  

Lastly, please keep in mind that you do not need to implement all three controllers 
(proportional, derivative, and integral) into a single system, if not necessary. For 
example, if a PI controller gives a good enough response (like the above 
example), then you don't need to implement derivative controller to the system. 
Keep the controller as simple as possible. 



num=1; 

den=[1 10 20]; 

step(num,den)

Open-Loop Control - Example

G s( )
1

s
2

10s 20

http://www.engin.umich.edu/group/ctm/extras/step.html


Proportional Control - Example

The proportional controller (Kp) reduces the rise time, increases the overshoot, and 
reduces the steady-state error.  

MATLAB Example

Kp=300;

num=[Kp];

den=[1 10 20+Kp];

t=0:0.01:2;

step(num,den,t)
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Time (sec.)
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Kp=300;

Kd=10;

num=[Kd Kp];

den=[1 10+Kd 20+Kp];

t=0:0.01:2;

step(num,den,t)

Proportional - Derivative - Example

The derivative controller (Kd) reduces both the overshoot and the settling time.

MATLAB Example
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Proportional - Integral - Example

The integral controller (Ki) decreases the rise time, increases both the overshoot and the 
settling time, and eliminates the steady-state error

MATLAB Example
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Kp=30;

Ki=70;

num=[Kp Ki];

den=[1 10 20+Kp Ki];

t=0:0.01:2;

step(num,den,t)
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Syntax 

rltool

rltool(sys)

rltool(sys,comp)

RLTOOL



RLTOOL



RLTOOL



RLTOOL



RLTOOL



Consider the following configuration: 

Example - Practice



The design a system for the following specifications:

· Zero steady state error 

· Settling time within 5 seconds 

· Rise time within 2 seconds 

· Only some overshoot permitted 

Example - Practice



Lead or Phase-Lead Compensator Using Root Locus

A first-order lead compensator can be designed using the root locus. A lead compensator 
in root locus form is given by 

where the magnitude of z is less than the magnitude of p.   A phase-lead compensator 
tends to shift the root locus toward the left half plane. This results in an improvement in 
the system's stability and an increase in the response speed. 

When a lead compensator is added to a system, the value of this intersection will be a 
larger negative number than it was before. The net number of zeros and poles will be the 
same (one zero and one pole are added), but the added pole is a larger negative number 
than the added zero. Thus, the result of a lead compensator is that the asymptotes' 
intersection is moved further into the left half plane, and the entire root locus will be 
shifted to the left. This can increase the region of stability as well as the response speed. 

Gc s( )
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In Matlab a phase lead compensator in root locus form is implemented by using the 
transfer function in the form 

numlead=kc*[1 z];

denlead=[1 p];

and using the conv() function to implement it with the numerator and 
denominator of the plant 

newnum=conv(num,numlead);

newden=conv(den,denlead);

Lead or Phase-Lead Compensator Using Root Locus



Lead or Phase-Lead Compensator Using Frequency Response

A first-order phase-lead compensator can be designed using the frequency response. A 
lead compensator in frequency response form is given by 

In frequency response design, the phase-lead compensator adds positive phase to the 
system over the frequency range. A bode plot of a phase-lead compensator looks like the 
following 
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Lead or Phase-Lead Compensator Using Frequency Response

Additional positive phase increases the phase margin and thus increases the stability of 
the system. This type of compensator is designed by determining alfa from the amount 
of phase needed to satisfy the phase margin requirements, and determining tal to place 
the added phase at the new gain-crossover frequency. 

Another effect of the lead compensator can be seen in the magnitude plot. The lead 
compensator increases the gain of the system at high frequencies (the amount of this 
gain is equal to alfa. This can increase the crossover frequency, which will help to 
decrease the rise time and settling time of the system. 



In Matlab, a phase lead compensator in frequency response form is 
implemented by using the transfer function in the form 

numlead=[aT 1];

denlead=[T 1];

and using the conv() function to multiply it by the numerator and 
denominator of the plant 

newnum=conv(num,numlead);

newden=conv(den,denlead);

Lead or Phase-Lead Compensator Using Frequency Response



Lag or Phase-Lag Compensator Using Root Locus

A first-order lag compensator can be designed using the root locus. A lag compensator in root 
locus form is given by 

where the magnitude of z is greater than the magnitude of p. A phase-lag compensator tends 
to shift the root locus to the right, which is undesirable. For this reason, the pole and zero of a 
lag compensator must be placed close together (usually near the origin) so they do not 
appreciably change the transient response or stability characteristics of the system. 

When a lag compensator is added to a system, the value of this intersection will be a smaller 
negative number than it was before. The net number of zeros and poles will be the same (one 
zero and one pole are added), but the added pole is a smaller negative number than the 
added zero. Thus, the result of a lag compensator is that the asymptotes' intersection is 
moved closer to the right half plane, and the entire root locus will be shifted to the right. 

Gc s( )
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It was previously stated that that lag controller should only minimally change the 
transient response because of its negative effect. If the phase-lag compensator is 
not supposed to change the transient response noticeably, what is it good for? 
The answer is that a phase-lag compensator can improve the system's steady-state 
response. It works in the following manner. At high frequencies, the lag controller 
will have unity gain. At low frequencies, the gain will be z0/p0 which is greater 
than 1. This factor z/p will multiply the position, velocity, or acceleration constant 
(Kp, Kv, or Ka), and the steady-state error will thus decrease by the factor z0/p0. 
In Matlab, a phase lead compensator in root locus form is implemented by using 
the transfer function in the form 

numlag=[1 z];

denlag=[1 p];

and using the conv() function to implement it with the numerator and 
denominator of the plant 

newnum=conv(num,numlag);

newden=conv(den,denlag);

Lag or Phase-Lag Compensator Using Root Locus



Lag or Phase-Lag Compensator using Frequency Response

A first-order phase-lag compensator can be designed using the frequency response. A 
lag compensator in frequency response form is given by 

The phase-lag compensator looks similar to a phase-lead compensator, except that a is 
now less than 1. The main difference is that the lag compensator adds negative phase 
to the system over the specified frequency range, while a lead compensator adds 
positive phase over the specified frequency. A bode plot of a phase-lag compensator 
looks like the following 
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In Matlab, a phase-lag compensator in frequency response form is 
implemented by using the transfer function in the form 

numlead=[a*T 1];

denlead=a*[T 1];

and using the conv() function to implement it with the numerator and 
denominator of the plant 

newnum=conv(num,numlead);

newden=conv(den,denlead);

Lag or Phase-Lag Compensator using Frequency Response



Lead-lag Compensator using either Root Locus or Frequency Response

A lead-lag compensator combines the effects of a lead compensator with those of a lag 
compensator. The result is a system with improved transient response, stability and 
steady-state error. To implement a lead-lag compensator, first design the lead 
compensator to achieve the desired transient response and stability, and then add on a 
lag compensator to improve the steady-state response



Exercise -  Dominant Pole-Zero Approximations and Compensations

The influence of a particular pole (or pair of complex poles) on the response is mainly determined 

by two factors: the real part of the pole and the relative magnitude of the residue at the pole.  The 

real part determines the rate at which the transient term due to the pole decays; the larger the real 

part, the faster the decay.  The relative magnitude of the residue determines the percentage of the 

total response due to a particular pole.

Investigate (using Simulink) the impact of a closed-loop negative real pole on the overshoot of a 

system having complex poles.
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Make pr to vary (2, 3, 5) times the real part of the complex pole for different values of  (0.3, 0.5, 

0.7).

Investigate (using Simulink) the impact of a closed-loop negative real zero on the overshoot of a 

system having complex poles.
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Make zr to vary (2, 3, 5) times the real part of the complex pole for different values of  (0.3, 0.5, 0.7). 



Exercise -  Lead and Lag Compensation

Investigate (using Matlab and Simulink) the effect of lead and lag compensations on the two 

systems indicated below.  Summarize your observations.  Plot the root-locus, bode diagram 

and output for a step input before and after the compensations.  

Remember 

lead compensation: z<p  (place zero below the desired root location or to the left of the first two 

real poles)

lag compensation:   z>p (locate the pole and zero near the origin of the s-plane)

Lead Compensation (use z=1.33, p=20 and K =15).



Lag Compensation (use z=0.09 , and p=0.015, K=1/6 )

Summarize your findings



Problem 10.36

Determine a compensator so that the percent overshoot is less than 20% and Kv 
(velocity constant) is greater  than  8.







Poles and Zeros and Transfer Functions

Transfer Function: A transfer function is defined as the ratio of the Laplace
transform of the output to the input with all initial 
conditions equal to zero.  Transfer functions are defined
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.
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The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles.
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Poles, Zeros and the S-Plane

An Example: You are given the following transfer function.  Show the
poles and zeros in the s-plane.
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Poles, Zeros and Bode Plots

Characterization: Considering the transfer function of the 
previous slide. We note that we have 4 different
types of terms in the previous general form:
These are:

)1/(,
)1/(

1
,

1
, 


zs

pss
K

B

Expressing in dB: Given the tranfer function:
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|1/|log20||log20|)1/(|log20log20|(|log20  pjwjwzjwKjwG
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wlg



Poles, Zeros and Bode Plots

Mechanics: We have 4 distinct terms to consider:

20logKB

20log|(jw/z +1)|

-20log|jw|

-20log|(jw/p + 1)|

wlg
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wlg

This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.



Poles, Zeros and Bode Plots

Mechanics: The gain term, 20logKB, is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted
on semi-log paper is a straight line sloping at 
-20dB/decade.  It has a magnitude of 0 at w = 1.
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Poles, Zeros and Bode Plots

Mechanics: The term, - 20log|(jw/p + 1), is drawn with the 
following approximation:  If w < p we use the
approximation that –20log|(jw/p + 1 )| = 0 dB,
a flat line on the Bode.  If w > p we use the 
approximation of –20log(w/p), which slopes at
-20dB/dec starting at w = p.  Illustrated below.
It is easy to show that the plot has an error of
-3dB at w = p and – 1 dB at w = p/2 and w = 2p.
One can easily make these corrections if it is 
appropriate.
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Poles, Zeros and Bode Plots

0

20

-20

-40

 = z

+20db/dec

Mechanics: When we have a term of 20log|(jw/z + 1)| we
approximate it be a straight line of slop 0 dB/dec
when w < z.  We approximate it as 20log(w/z)
when w > z, which is a straight line on Bode paper
with a slope of + 20dB/dec.  Illustrated below.
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Example 1:

Given: 50,000( 10)
( )

( 1)( 500)

jw
G jw

jw jw




 

First:  Always, always, always get the poles and zeros in a form such that 
the constants are associated with the jw terms.  In the above example 
we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

50,000 10( /10 1) 100( /10 1)
( )

500( 1)( / 500 1) ( 1)( / 500 1)

x jw jw
G jw

jw jw jw jw

 
 

   

Second:  When you have neither poles nor zeros at 0, start the Bode
at 20log10K = 20log10100 = 40 dB in this case.
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Example 1: (continued)

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode.
In this example we first have a pole occurring at 1 which
causes the Bode to break at 1 and slope – 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a
slope of +20 dB/dec which cancels out the – 20 dB/dec,
resulting in a flat line ( 0 db/dec).  Finally, we have a
pole that occurs at w = 500 which causes the Bode
to slope down at – 20 dB/dec.

We are now ready to draw the Bode.  

Before we draw the Bode we should observe the range
over which the transfer function has active poles and zeros.
This determines the scale we pick for the w (rad/sec)
at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and 
experience is the best teacher here. wlg
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Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example.  We place the transfer function
in the form:

]500501[

]500005000[

)500)(1(

)10(5000
2 


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

ss

s

ss

s

The Matlab Program

num = [5000 50000];
den = [1 501 500];
Bode (num,den)

wlg

In the following slide, the resulting magnitude and phase plots (exact)
are shown in light color (blue).  The approximate plot for the magnitude
(Bode) is shown in heavy lines (red).  We see the 3 dB errors at the
corner frequencies.
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Phase for Bode Plots

Comment: Generally, the phase for a Bode plot is not as easy to draw
or approximate as the magnitude.  In this course we will use
an analytical method for determining the phase if we want to
make a sketch of the phase.  

Illustration: Consider the transfer function of the previous example.
We express the angle as follows:

)500/(tan)1/(tan)10/(tan)( 111 wwwjwG  

We are essentially taking the angle of each pole and zero.
Each of these are expressed as the tan-1(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine
a good idea of what is happening to the phase.
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Bode Plots

Example 2: Given the transfer function.  Plot the Bode magnitude.
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Which, when expressed in dB, are;  20log100 – 20 logw.
This is plotted below.
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Example 2: (continued)
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The completed plot is shown below.
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Bode Plots

Given: problem 11.15 text
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Bode Plots

Design Problem: Design a G(s) that has the following Bode plot.
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Example 7
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Bode Plots

Procedure: The two break frequencies need to be found.  
Recall:

#dec = log10[w2/w1]

Then we have:

(#dec)( 40dB/dec)  =  30 dB

log10[w1/30] = 0.75 w1  =  5.33 rad/sec

Also:

log10[w2/900] (-40dB/dec) =  - 30dB

This gives  w2  =  5060 rad/sec

wlg



Bode Plots

Procedure:

2 2

2 2

(1 / 5.3) (1 / 5060)
( )

(1 / 30) (1 / 900)

s s
G s

s s

 


 

Clearing: 2 2

2 2

( 5.3) ( 5060)
( )

( 30) ( 900)

s s
G s

s s

 


 

Use Matlab and conv:

2 2 71 ( 10.6 28.1) 2 ( 10120 2.56 )N s s N s s xe     

N = conv(N1,N2)

N1 = [1 10.6  28.1]                  N2 = [1 10120 2.56e+7]

1      1.86e+3     2.58e+7     2.73e+8    7.222e+8

s4 s3                      s2                      s1 s0

wlg



Bode Plots

Procedure: The final G(s) is given by;

Testing: We now want to test the filter.  We will check it at  = 5.3 rad/sec
And  = 164.  At  = 5.3 the filter has a gain of 6 dB or about 2.
At  = 164 the filter has a gain of 30 dB or about 31.6.

We will check this out using MATLAB and particularly, Simulink.

)29.7022.5189.91860(

)194.7716.2571.26.10130(
)(

872234

882834

esesess

esesess
sG






wlg



Matlab (Simulink) Model:

wlg



Filter Output at  = 5.3 rad/sec

Produced from Matlab Simulink
wlg



Filter Output at  =  70 rad/sec

Produced from Matlab Simulink

wlg



Reverse Bode Plot

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)

dB



20 
db/dec

20 db/dec

-20 db/dec
30

1 110 850

68

Not to scale

wlg
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Reverse Bode Plot

Not to scale

100 dB

w (rad/sec)

50 dB

0.5

-40 dB/dec

-20 dB/dec

40

10 dB

300

-20 dB/dec

-40 dB/dec

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)

wlg
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Polar Plot 



Introduction

The polar plot of sinusoidal transfer function G(jω) is a plot of the 
magnitude of G(jω)  verses the phase angle of G(jω) on polar coordinates 
as ω is varied from zero to infinity.
Therefore it is the locus of                      as ω is varied from zero to infinity. 
As 
So it is the plot of vector                 as ω is varied from zero to infinity )()(  jGjG 

)()()(  jMejGjG 

)(jMe



Introduction conti…

In the polar plot the magnitude of G(jω) is plotted as the distance from the 
origin while phase angle is measured from positive real axis. 
+ angle is taken for anticlockwise direction. 
Polar plot is also known as Nyquist Plot.



Steps to draw Polar Plot 

Step 1: Determine the T.F G(s)

Step 2: Put s=jω in the G(s)

Step 3: At ω=0 & ω=∞ find              by                  & 

Step 4: At ω=0 & ω=∞ find              by                  &

Step 5: Rationalize the function G(jω)  and separate the real and imaginary parts 

Step 6: Put Re [G(jω) ]=0, determine the frequency at which plot intersects the Im axis  and 

calculate intersection  value by putting the above calculated frequency in G(jω)

)( jG

)( jG

)(lim
0




jG


)(lim 


jG


)(lim
0




jG


)(lim 


jG




Steps to draw Polar Plot conti…

Step 7: Put Im [G(jω) ]=0, determine the frequency at which plot intersects the 

real axis  and calculate intersection  value by putting the above calculated 

frequency in G(jω)

Step 8: Sketch the Polar Plot with the help of above information



Polar Plot for Type 0 System

Let

Step 1: Put s=jω

Step 2: Taking the limit for magnitude of G(jω) 
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Type 0 system conti…

Step 3: Taking the limit of the Phase Angle of G(jω) 
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Type 0 system conti…

Step 4: Separate the real and Im part of G(jω) 

Step 5: Put Re [G(jω)]=0
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Type 0 system conti…

Step 6: Put Im [G(jω)]=0
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Type 0 system conti…



Polar Plot for Type 1 System

Let

Step 1: Put s=jω
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Type 1 system conti…

Step 2: Taking the limit for magnitude of G(jω) 

Step 3: Taking the limit of the Phase Angle of G(jω) 
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Type 1 system conti…

Step 4: Separate the real and Im part of G(jω) 

Step 5: Put Re [G(jω)]=0
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Type 1 system conti…

Step 6: Put Im [G(jω)]=0
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Type 1 system conti…



Polar Plot for Type 2 System

Let 

Similar to above 
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Type 2 system conti…



Note: Introduction of additional pole in denominator contributes a constant -

1800 to the angle of G(jω) for all frequencies. See the figure 1, 2 & 3

Figure 1+(-1800 Rotation)=figure 2

Figure 2+(-1800 Rotation)=figure 3



Ex: Sketch the polar plot for G(s)=20/s(s+1)(s+2)
Solution:
Step 1: Put s=jω
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Step 2: Taking the limit for magnitude of G(jω) 

Step 3: Taking the limit of the Phase Angle of G(jω) 
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Step 4: Separate the real and Im part of G(jω) 
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Step 6: Put Im [G(jω)]=0
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Gain Margin, Phase Margin & 

Stability 



Phase Crossover Frequency (ωp) : The frequency where a polar plot intersects 
the –ve real axis is called phase crossover frequency

Gain Crossover Frequency (ωg) : The frequency where a polar plot intersects 
the unit circle is called gain crossover frequency

So at ωg

UnityjG )( 



Phase Margin (PM): 
Phase margin is that amount of additional phase lag at the gain crossover frequency 
required to bring the system to the verge of instability (marginally stabile)

Φm=1800+Φ
Where 

Φ=∠G(jωg)
if Φm>0 => +PM (Stable System)
if Φm<0 => -PM (Unstable System)



Gain Margin (GM): 
The gain margin is the reciprocal of magnitude             at the frequency at 
which the phase angle is -1800.

In terms of dB
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Stability 

Stable: If critical point (-1+j0) is within the plot as shown, Both GM & PM are 
+ve

GM=20log10(1 
/x) dB



Unstable: If critical point (-1+j0) is outside the plot as shown, Both GM & PM 
are -ve

GM=20log10(1 
/x) dB



Marginally Stable System: If critical point (-1+j0) is on the plot as shown, Both 
GM & PM are ZERO 

GM=20log10(1 
/1)=0 dB



MATLAB Margin



Inverse Polar Plot 

The inverse polar plot of G(jω) is a graph of 1/G(jω) as a function of ω. 
Ex: if G(jω) =1/jω then 1/G(jω)=jω
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Knowledge Before
Studying Nyquist Criterion 
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unstable if there is any pole on RHP (right half plane)
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poles of G(s)H(s) and 1+G(s)H(s) are the same

zero of 1+G(s)H(s) is pole of T(s)

Characteristic equation:

Open-loop system:

Closed-loop system:
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Zero – 1,2,3,4

Poles – 5,6,7,8

Zero – a,b,c,d

Poles – 5,6,7,8

Zero – ?,?,?,?

Poles – a,b,c,d

To know stability, we have to know a,b,c,d



Stability from Nyquist plot 

From a Nyquist plot, we can tell a number of closed-loop poles on 
the right half plane.

If there is any closed-loop pole on the right half plane, the system goes 
unstable.
If there is no closed-loop pole on the right half plane, the system is 
stable.



Nyquist Criterion 

Nyquist plot is a plot used to verify stability
of the system.

function
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mapping all points (contour) from one plane to another
by function F(s).

mapping contour
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Pole/zero inside the 
contour has 360 deg. 
angular change. 
Pole/zero outside contour 
has 0 deg. angular change.
Move clockwise around 
contour, zero inside yields 
rotation in clockwise, pole 
inside yields rotation in 
counterclockwise
 



Characteristic equation  

N = P-Z
N = # of counterclockwise direction about the origin

P = # of poles of characteristic equation inside contour
= # of poles of open-loop system

z = # of zeros of characteristic equation inside contour
= # of poles of closed-loop system

Z = P-N

)()(1)( sHsGsF 



Characteristic equation 
Increase size of the contour to cover the right half plane

More convenient to consider the open-loop system (with known pole/zero) 



‘Open-loop system’ 

Mapping from characteristic equ. to open-loop 
system by shifting to the left one step

Z = P-N
 

Z = # of closed-loop poles inside the right half plane
P = # of open-loop poles inside the right half plane
N = # of counterclockwise revolutions around -1 

)()( sHsGNyquist diagram of





Properties of Nyquist plot 

If there is a gain, K, in front of open-loop transfer function, the Nyquist plot 
will expand by a factor of K.



Nyquist plot example 
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Open loop system has pole at 2

Closed-loop system has pole at 1

If we multiply the open-loop with a 
gain, K, then we can move the closed-
loop pole’s position to the left-half 
plane 
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Nyquist plot example (cont.) 

New look of open-loop system: 
 
 
Corresponding closed-loop system: 

Evaluate value of K for stability 
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Adjusting an open-loop gain to guarantee stability 

Step I: sketch a Nyquist Diagram
Step II: find a range of K that makes the system stable!



How to make a Nyquist plot? 

Easy way by Matlab
Nyquist: ‘nyquist’
Bode: ‘bode’



Step I: make a Nyquist plot 

Starts from an open-loop transfer function (set K=1)
Set              and find frequency response

At dc,
Find       at which the imaginary part equals zero
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At dc, s=0, 

At imaginary part=0



Step II: satisfying stability condition

P = 2, N has to be 2 to guarantee stability

Marginally stable if the plot intersects -1

For stability, 1.33K has to be greater than 1

K > 1/1.33

or K > 0.75



Example 
Evaluate a range of K that makes the system stable
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At 6,0 the imaginary part = 0

Plug              back in the transfer function
and get G = -0.05

Step I: find frequency at which imaginary part = 0 
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Step II: consider stability condition

P = 0, N has to be 0 to guarantee stability

Marginally stable if the plot intersects -1

For stability, 0.05K has to be less than 1

K < 1/0.05

or K < 20



Gain Margin and Phase Margin 

Gain margin is the change in open-loop gain (in dB),
required at 180 of phase shift to make the closed-loop
system unstable.

Phase margin is the change in open-loop phase shift,
required at unity gain to make the closed-loop
system unstable.

GM/PM tells how much system can tolerate
before going unstable!!!



GM and PM via Nyquist plot



GM and PM via Bode Plot 

MG

M

•The frequency at which the 
phase equals 180 degrees is 
called the phase crossover 
frequency

•The frequency at which the 
magnitude equals 1 is called 

the gain crossover frequency

MG

gain crossover frequency phase crossover frequency



Example 

Find Bode Plot and evaluate a value of K
that makes the system stable
The system has a unity feedback 
with an open-loop transfer function

)5)(4)(2(
)(




sss

K
sG

First, let’s find Bode Plot of G(s) by assuming 
that K=40 (the value at which magnitude plot
starts from 0 dB)



At phase = -180, ω = 7 rad/sec, magnitude = -20 dB



GM>0, system is stable!!!
Can increase gain up 20 dB without causing instability (20dB = 10)
Start from K = 40
with K < 400, system is stable 



Closed-loop transient and closed-loop frequency 
responses
‘2nd system’ 
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Magnitude Plot of closed-loop system

Damping ratio and closed-loop frequency response 
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= frequency at which magnitude is 3dB down

from value at dc (0 rad/sec), or             .

Response speed and closed-loop frequency response 
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Find          from 
Open-loop Frequency Response 

BW

Nichols Charts

From open-loop frequency response, we can find 

at the open-loop frequency that the magnitude
lies between -6dB to -7.5dB (phase between -135 to -225) 

BW



Relationship between
damping ratio and phase margin
of open-loop frequency response 
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Phase margin of open-loop frequency response
Can be written in terms of damping ratio as following



Example 

Open-loop system with a unity feedback has a bode plot 
below, approximate settling time and peak time

= 3.7
BW

PM=35
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UNIT-5

STATE SPACE REPRESENTATION



Objectives

How to find mathematical model, called a state-space representation, for a 
linear, time-invariant system
How to convert between transfer function and state space models
How to find the solution of state equations for homogeneous &non 
homogeneous systems



Plant

Mathematical Model : 
Differential equation

Linear, time invariant

Frequency Domain
Technique

Time Domain 
Technique



Two approaches for analysis and design of control system

1. Classical Technique or Frequency Domain Technique
2. Modern Technique or Time Domain Technique



Some definitions

•System variable : any variable that responds to an input or initial conditions in a 
system
•State variables : the smallest set of linearly independent system variables such that 
the values of the members of the set at time t0 along with known forcing functions 
completely determine the value of all system variables for all t ≥ t0
•State vector : a vector whose elements are the state variables
•State space : the n-dimensional space whose axes are the state variables
•State equations : a set of first-order differential equations with b variables, where 
the n variables to be solved are the state variables
•Output equation : the algebraic equation that expresses the output variables of a 
system as linear combination of the state variables and the inputs.
•For nth-order, write n simultaneous, first-order differential equations in terms of 
the state variables (state equations).
•If we know the initial condition of all of the state variables at    as well as the 
system input for   , we can solve the equations



Graphic 
representation of 
state space and a 
state vector



For a dynamic system, the state of a system is described in terms of a set of state 
variables 

)]t(x)t(x)t(x[ n21 

The state variables are those variables that determine the future behavior of a
system when the present state of the system and the excitation signals are known.
Consider the system shown in Figure 1, where y1(t) and y2(t) are the output signals
and u1(t) and u2(t) are the input signals. A set of state variables [x1 x2 ... xn] for the
system shown in the figure is a set such that knowledge of the initial values of the
state variables [x1(t0) x2(t0) ... xn(t0)] at the initial time t0, and of the input signals
u1(t) and u2(t) for t˃=t0, suffices to determine the future values of the outputs and
state variables.

System

Input Signals

u1(t)

u2(t)

Output Signals

y1(t)

y2(t) System

u(t)

Input

x(0) Initial conditions

y(t)

Output

Figure 1. Dynamic system.



In an actual system, there are several choices of a set of state variables that specify
the energy stored in a system and therefore adequately describe the dynamics of
the system.

The state variables of a system characterize the dynamic behavior of a system. The
engineer’s interest is primarily in physical, where the variables are voltages,
currents, velocities, positions, pressures, temperatures, and similar physical
variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential equations
written in terms of the state variables [x1 x2 ... xn]. These first-order differential
equations can be written in general form as

mnm11nnnn22n11nn

mm2121nn22221212
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ububxaxaxax
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Thus, this set of simultaneous differential equations can be written in matrix form as 
follows:
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n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state vector and is
written as
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The vector of input signals is defined as u. Then the system can be represented by the
compact notation of the state differential equation as

uBxAx 
This differential equation is also commonly called the state equation. The matrix A is
an nxn square matrix, and B is an nxm matrix. The state differential equation relates
the rate of change of the state of the system to the state of the system and the input
signals. In general, the outputs of a linear system can be related to the state variables
and the input signals by the output equation

uDxCy 
Where y is the set of output signals expressed in column vector form. The state-space
representation (or state-variable representation) is comprised of the state variable
differential equation and the output equation.



General State Representation

BuAxx 

DuCxy 

x

x

y

u

A

B

C

D

= state vector

= derivative of the state vector with respect to time

= output vector

= input or control vector

= system matrix

= input matrix

= output matrix

= feedforward matrix

State equation

output equation



AN  EXAMPLE OF THE STATE VARİABLE CHARACTERİZATİON OF A SYSTEM

u(t)

Current 
source

L

C

R
Vc

Vo

iL

ic

• The state of the system can be described in terms of a set of variables [x1 x2],
where x1 is the capacitor voltage vc(t) and x2 is equal to the inductor current iL(t).
This choice of state variables is intuitively satisfactory because the stored energy
of the network can be described in terms of these variables.



Therefore x1(t0) and x2(t0) represent the total initial energy of the network and thus the
state of the system at t=t0.

Utilizing Kirchhoff’s current low at the junction, we obtain a first order differential
equation by describing the rate of change of capacitor voltage

L
c

c i)t(u
dt

dv
Ci 

Kirchhoff’s voltage low for the right-hand loop provides the equation describing the
rate of change of inducator current as

cL
L viR

dt

di
L 

The output of the system is represented by the linear algebraic equation

)t(iRv L0 



We can write the equations as a set of two first order differential equations in terms
of the state variables x1 [vC(t)] and x2 [iL(t)] as follows:
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cL
L viR

dt

di
L 

The output signal is then 201 xR)t(v)t(y 

Utilizing the first-order differential equations and the initial conditions of the
network represented by [x1(t0) x2(t0)], we can determine the system’s future and its
output.

The state variables that describe a system are not a unique set, and several
alternative sets of state variables can be chosen. For the RLC circuit, we might
choose the set of state variables as the two voltages, vC(t) and vL(t).
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We can write the state variable differential equation for the RLC circuit as

and the output as

 xR0y 



RLC network 

 ti1. State variables  tq



2.  tvidt
C

Ri
dt
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L  
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Using   dtdqti 
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di 11
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(1)

3.               Can be solved using Laplace Transform ti tq

4.   Other network variables can be obtained

       tvtRitq
C

tvL 
1 (2)

5. (1),(2) : state-space representation



Other variables  tvR  tvC
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Each variables : linearly independent



In vector-matrix form

BuAxx 

DuCxy 
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State space representation using phase variable form
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Example : TF to State Space

rcccc 2424269  
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cx 2

1. Inverse Laplace

cx 3

2. Select state variables
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Decomposing a transfer function
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Example
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State Space to TF
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Laplace Transform
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Solution of  homogeneous state equation

The solution of the state differential equation can be obtained in a manner similar to the approach 
we utilize for solving a first order differential equation. Consider the first-order differential 
equation

axdtdx

xaxx



 0)0(;

Where x(t) and u(t) are scalar functions of time. We expect an exponential solution of the form
eat. Taking the Laplace transform of both sides, we have

on integrating above equation

logx=at+c

X= eat. ec

x=x(0)= ec

on substituting the intial condition ,the solution of homogeneous state equation of first order
differential equation is
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Solution of  homogeneous state equation

The solution of the state differential equation can be obtained in a manner similar to the approach 
we utilize for solving a first order differential equation. Consider the first-order differential 
equation

0)0(;  xbuaxx

Where x(t) and u(t) are scalar functions of time. By taking laplace transform

The inverse Laplace transform of X(s) results in the solution

We expect the solution of the state differential equation to be similar to x(t) and to be
of differential form. The matrix exponential function is defined as
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which converges for all finite t and any A. Then the solution of the state
differential equation is found to be

    )s(UBAsI)0(xAsI)s(X
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where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of ϕ(t)=eAt. The
matrix exponential function ϕ(t) describes the unforced response of the system
and is called the fundamental or state transition matrix.
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THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be obtained
from the state variable equations.

uBxAx 

xCy 

where y is the single output and u is the single input. The Laplace transform of the
equations

)s(CX)s(Y

)s(UB)s(AX)s(sX





where B is an nx1 matrix, since u is a single input. We do not include initial
conditions, since we seek the transfer function. Reordering the equation
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Therefore, the transfer function G(s)=Y(s)/U(s) is

B)s(C)s(G 
Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described by the
state differential function

 xR0y,u

0
C

1

x

L

R

L

1
C

1
0

x 






































 




















L

R
s

L

1
C

1
s

AsI

 

LC

1
s

L

R
s)s(

s
L

1
C

1

L

R
s

)s(

1
AsI)s(

2

1

























Then the transfer function is
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CONSIDER THE SYSTEM
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