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UNIT I - Introduction

UNIT II - Static Electric Field

UNIT III - Static Magnetic Field

UNIT IV - Time Varying Fields And Maxwell’s Equations
UNIT V - Electromagnetic Waves



COURSE OBJECTIVES

= To introduce the concept of co-ordinate systems and vector field

= To describe static electric fields, their behavior in different media, boundary conditions and
electromagnetic potentials.

= To impart knowledge on the concept of static magnetic fields for simple configuration

= To Analyze the Maxwell’s equations in differential and integral forms

» To understand the propagation of electromagnetic waves through different media.



COURSE OUTCOMES

Differentiate different types of coordinate systems and use them for solving the problems

of electromagnetic field theory.

Interpret the concepts of static electric fields and apply boundary conditions on
Electrostatic field.

Develop concepts of static magnetic fields and apply boundary conditions.

To use integral and point form of Maxwell's equations for solving the problems of
electromagnetic field theory .

Describe the propagation of electromagnetic waves, Poynting vector and theorem.



19EEC01- ELECTROMAGNETIC FIELDS

UNIT I - INTRODUCTION

Sources and effects of electromagnetic fields - Vector fields - Different co-ordinate systems
- Gradient, Divergence and Curl operation - Divergence theorem -Stoke’s theorem -
Coulomb’s Law - Electric field intensity - Field due to point and continuous charges —
Electric flux density - Gauss’s law and application.

UNIT II - STATIC ELECTRIC FIELD

Electrical potential - Electric field and equipotential plots - Relationship between E and V -
Electric field in free space, conductors, dielectric - Dielectric polarization, Electric field in
multiple dielectrics - Boundary conditions, Poisson’s and Laplace’s equations - Capacitance
energy density - Dielectric strength.



19EEC01- ELECTROMAGNETIC FIELDS

UNIT III - STATIC MAGNETIC FIELD

Lorentz Law of force, magnetic field intensity — Biot savart Law - Ampere’s Law - Magnetic
field due to straight conductors, circular loop, infinite sheet of current - Magnetic flux density in
free space, conductor, magnetic materials - Boundary conditions - Scalar and vector potential -
Magnetic force — Torque — Inductance — Energy density - Magnetic circuits.

UNIT IV- TIME VARYING FIELDS AND MAXWELL’S EQUATIONS
Faraday’s laws, induced emf - Static and dynamic EMF, Maxwell’s equations (differential and
integral forms) - Displacement current - Relation between field theory and circuit theory.

UNIT V- ELECTROMAGNETIC WAVES

Electromagnetic wave generation equations - Uniform plane waves - Phase and group velocity,
attenuation - Propagation in good conductors - Waves in free space, lossy and lossless dielectrics,
conductors - Skin depth, Poynting theorem and vector.
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SOURCES OF ELECTROMAGNETIC FIELDS

» Natural sources of electromagnetic fields
» Human-made sources of electromagnetic fields

EFFECTS OF ELECTROMAGNETIC FIELDS

» Low frequency and high frequency electromagnetic waves affect the
human body in different ways.

» Human nervous system

» Birds and animals

» Human respiratory system

» Human memory loss

» Plants and Animals.

» Electrical components.



VECTOR FIELDS

Fields are classified as

Scalar field —Scalars are quantities characterized by magnitude only and
algebraic sum.
Examples : atmospheric temperature and Pressure

Vector field - magnitude and direction

Examples : wind velocity and gravitational force in atmosphere.



Coulomb’s Law

[t states that the force F between two point charges Q, and Q, 1s

In Vector form

Origin




Electric Field lntenszftg

Electric Field Intensity is the force per unit charge when placed in

electric field

In Vector form

Qr — r')

r"’i

= 4re,lr - r

If we have more than two point charges



Electric Field due to Continuous Charge
Distribution

If LLICIC 15 d CUILILLITUOUDS Ulli:l.lgl'& Uistiivuiiunl E‘ji:l_}’ i‘.‘l].UllE da 1ic, Ul
surface, or in a volume

o T A
0 7
+ ® .
Point Line
charge charge

The charge element dQ and the total charge Q due to these cha
distributions can be obtained by



dQ = p,dv— Q0 = J p.dv (volume charge)

‘l

The electric field intensity due to each charge distribution p,, p a
py may be given by the summation of the field contributed by f{
numerous point charges making up the charge distribution.

dl
E f £L s ag (line charge)

dS
E = J fs L ap (surface charge)



Electric Flux Dens fftg

The electric field intensity depends on the medium in which !
charges are placed.

Suppose a vector field D independent of the medium is defined by
D=¢g L
The electric flux vy in terms of D can be defined as
Y = ‘D - dS

The vector field D is called the electric flux density and is measure



Electric Flux bens fftg

For an infinite sheet the electric flux density D is given by

D= w a,

For a volume charge distribution the electric flux density D is gr
by

, dv
D= [p_“l-;ag
] 4xR*°



Gauss Law

It states that the total electric flux y through any closed surface
equal to the total charge enclosed by that surface.

w = QE‘HC

p-far-{p.as

A

Total charge enclosed 0 = J p, dv

I |



Using Divergence Theorem
%D'dS=l'V*de (ii)
$ 1
Comparing the two volume integrals in (1) and (i1)
p, = VD
This is the first Maxwell’s equation.

[t states that the volume charge density is the same as the diverge:
of the electric flux density.



Electric Potential

Electric Field intensity, E due to a charge distribution can be obtais
from Coulomb’s Law.

or using Gauss Law when the charge distribution 1s symmetric.

We can obtain E without involving vectors by using the electric sc:
potential V.

From Coulomb’s Law the force on point
charge Q is . .
F=0F

The work done in displacing the charge B




The total work done or the potential energy required in moving
point charge Q from A to B 1s

W= —QTE.dl
A

Dividing the above equation by Q gives the potential energy per u
charge.

W
~—=—|Edl =y,
A

O

V45 is known as the potential difference between points A and B.

1. If V,; is negative, there is loss in potential energy in moving
from A to B (work is being done by the field)if; is positive, the



The potential at any point due to a point charge Q located at the origi
V = O
4re r

The potential at any point is the potential difference between tl
point and a chosen point at which the potential is zero.

Assuming zero potential at infinity, the potential at a distance r fi
the point charge is the work done per unit charge by an external ag
in transferring a test charge from infinity to that point.

V=4Eﬁ



For n point charges Q,, Q,, Q,.....Q, located at points with posit

vectors the potential at 7~ is

4re, o= | r—r, |

Vi) =—-y

If there 1s continuous charge distribution instead of point charges t

the potential at #~ becomes

1 [ r
V(r) = J p"(i )d’{ (line charge)
, Ir— r|

dre,

vim = —L_ [ esr)ds’

fenrface charoe)




Relationship between € and v

The potential difference between points A and B 1s independent of

path taken
V,.==V

AB BA

B A
VAB=—jE.dz and VBA=IE.d!
y B
V 15+ Vs = Edl =0

$Ed? =0 (i)



Physically it means that no net work 1s done in moving a charge alo
a closed path in an electrostatic field.

Applying Stokes’s theorem to equation (1)
§Edl=[(VXE)dS =0

VXE =0 (ii)
Equation (1) and (i1) are known as Maxwell’s equation for sta
electric fields.

Equation (1) 1s in integral form while equation (11) i1s in different



Also
E=-VV
It means Electric Field Intensity is the gradient of V.

The negative sign shows that the direction of £ 1s opposite to f
direction in which V increases.



Polarvization in Dielectrics

Consider an atom of the dielectric consisting of an electron cloud (-

and a positive nucleus (+Q).
When an electric field 7 is applied, the positive charge is displac

from its equilibrium position in the direction of — 7 by — F =0 Fald
the negative charge i1s displaced in the oppos
¥ _OF

direction.




This distorted charge distribution is equivalent to the origi
distribution plus the dipole whose moment is

p=0Qd
where E 1s the distance vector between -Q to +Q.
If there are N dipoles in a volume Av of the dielectric, the total dipe
moment due to the electric field N
Qid; + Qxdy + -+ * + Ondy = 2 Qvd;

k=1

For the measurement of intensity of polarization, we defin
polarization P (coulomb per square meter) as dipole moment per u
volume



The major effect of the electric field on the dielectric 1s the creation
dipole moments that align themselves in the direction of electric fiel

This type of dielectrics are said to be non-polar. eg: H,, N,, O,

Other types of molecules that have in-built permanent dipole mome;
are called polar. eg: H,O, HCI

When electric field i1s applied to a polar material then its permanc
dipole experiences a torque that tends to align its dipole moment in f
direction of the electric field.

%



Field due to a Polarized Dielectric

Consider a dielectric material consisting of dipoles with Dip«
moment p per unit volume.

The potential dV at an external point O due to Pdv

P- Ap dv' . z
= ; (1) "
dwe R

dv

where R? = (x-x")*H(y-y’)*+(z-z’)* and R is the
distance between volume element dv’ and the
point O. "

Rut P:a. [ 1\




P'aR . P Yi-P

—

R’ R R
Put this in (1) and integrate over the entire volume v’ of the dielectri

| . F L. :
V‘L.4r8n[v R RV P}du

Applying Divergence Theorem to the first term

- 8 -V - ”
V=J e il ds’ +J Pdv' (11)
0

, 4me R . AmeR

where a_’ is the outward unit normal to the surface dS’ of the dielect



where p and p _ are the bound surface and volume charge densities.

Bound charges are those which are not free to move in the dielectr
material.

Equation (11) says that where polarization occurs, an equivale
volume charge density, p  is formed throughout the dielectric whi

an equivalent surface charge density, p  is formed over the surface
dielectric.

The total positive bound charge on surface S bounding the dielectric

Q) = ng-dS= Jppjds



Total charge on dielectric remains zero.

TOtal Chal‘ge = % pp.f ds — J ppp dv — Qb — b — 0

5 v

When dielectric contains free charge
If p, 1s the free volume charge density then the total volume ch:
density p,
P; = Py L ppv = v ' SnE
Hence
p, = V- ek — pp,

—_ V.7 B 4L D)



The effect of the dielectric on the electric field is to incidase

inside it by an anfount
The polarization would vary directly as the applied electric field.

P = X801

Where Xe is known as the electric susceptibility of the material

It 1s a measure of how susceptible a given dielectric 1s to electric fiels



Dielectric Constant and Strength

We know that
D=¢eE+P and P = x.e,E
Thus
D=¢g(l + x)E = g,8,E

or
D = gE

where e=¢ce¢

and



No dielectric i1s i1deal. When the electric field in a dielectric
sufficiently high then it begins to pull electrons completely out of
molecules, and the dielectric becomes conducting.

When a dielectric becomes conducting then it is called dielec
breakdown. It depends on the type of material, humidity, temperat
and the amount of time for which the field 1s applied.

The minimum value of the electric field at which the dielec
breakdown occurs is called the dielectric strength of the dielec

material.
or

The dielectric strength 1s the maximum value of the electric field th:



Gamtﬁwuftg Equatﬁan and Relaxation Time

According to principle of charge conservation, the time rate
decrease of charge within a given volume must be equal to the 1
outward current flow through the closed surface of the volume.

coming out of the closed surface

{ inn
I — - . = :
gut J tﬁ ! (1)

where Q. 1s the total charge enclosed by the closed surface.

The current I

out

Using divergence theorem

le-ijf ‘.wl"({‘il



Equation (1) now becomes

Jv1m=-f@wv
| dt

& v

T (ii)
ot

This is called the continuity of current equation.

Effect of introducing charge at some interior point of
conductor/dielectric

According to Ohm’s law



Equation (i1) now becomes

op, ap,
V.oE = = = —£»
£ a1
dp, ©
— 4 —p =
or 1 sp.‘

This 1s homogeneous liner ordinary differential equation. By separa
variables we get

Integrating both sides

|



Py = Pyl (i)
where E
T, = -
)

p.. is the initial charge density (i.c., p, att = 0)

Equation (ii1) shows that as a result of introducing charge at so
interior point of the material there 1s a decay of the volume cha
density p.,.

The time constant T_1s known as the relaxation time or the relaxat
time.



Bou nd&?rg Conditions

If the field exists in a region consisting of two different media, f
conditions that the field must satisfy at the interface separating t
media are called boundary conditions

These conditions are helpful in determining the field on one side
the boundary when the field on other side is known.

We will consider the boundary conditions at an interface separating

1. Dielectric (€,,) and Dielectric (¢,)

2. Conductor and Dielectric
3. Conductor and free space



Baundarg Conditions (Between two different

. ~ dielectrics) _
Consider the E field existing in a region consisting of two differ

dielectrics characterized by €, =¢,€, and €, =¢,€,

E, and E, in the media 1 and 2 can
be written as

— —

B = Elz +Eln and £, = Ezs +E2n




As Ah — 0 )
lfu = £y,

Thus the tangential components of E are the same on the two sides
the boundary. E 1s continuous across the boundary.

But D:::gE:D[-{-Dn

Thus
D]r 1,
g S — - Fd |
P = Elr o EZr -
|

Eo

or Dlr D‘h



Applying %D dS = Qene

Putting Ah 2> 0 gives

AQ = psAS = D\, AS — D,, AS Du' e 1

Dln_Dln=pS

Where p_ 1s the free charge density placed deliberately at the bounda

[f there 1s no charge on the boundary i.e. p, = 0 then



Biot-Savart’s Law

It states that the magnetic field intensity dH produce at a point P
the differential current element Idl is proportional to the product
and the sine of angle o between the element and line joining P to
element and 1s inversely proportional to the square of distance
between P and the element.

[ di s
dH o« L8RS o gy = =20
R 47R"
fdl X a Idl X R _
dH = .- , 4H (inward)

AwR* 4R’



Ampere’s clrcuit Law

The line integral of the tangential component of H around a close p
is the same as the net current [ enclosed by the path.

fw.a-1.



Application of Ampere’s Law : Infinite Sheet

. - Current
Consider an infinite current sheet in z = 0 plane.

[f the sheet has a uniform current density then

4

E = KV av T
Applying Ampere’s Law on closed A/mpcﬁunpam
rectangular path (Amperian path) we :

get

%H-dl=lc,,c—'K}.b (i)




The resultant dH has only an x-component.

Also H on one side of sheet is the negative of the other.

Due to infinite extent of the sheet, it can be regarded as
consisting of such filamentary pairs so that the characteristic of
H for a pair are the same for the infinite current sheets

|
'\f
-

H = !H““" (i)



Evaluating the line integral of H along the closed path

-

fwa([o[«[+[)a-a

= 0(—a) + (—H,)(—b) + O(a) + H.(b)
= 2Hb (iii)
Comparing (1) and (1i1), we get

H, = K, (iv)

Using (1v) in (i1), we get



Generally, for an infinite sheet of current density K

I
H = 2 K X a,
where a_ 1s a unit normal vector directed from the current sheet to f
point of interest.



Magwnetic Flux pensity

The magnetic flux density B is similar to the electric flux density D

Therefore, the magnetic flux density B is related to the magnetic fi
intensity H
= poH

where p_ 1s a constant and is known as the permeability of free space

Its unit 1s Henry/meter (H/m) and has the value
u, = 47 X 107 H/m

The magnetic flux through a surface S 1s given by
[



Magnetic fiu

Magnetic flux lines due to a straight
wire with current coming out of the

page
Each magnetic flux line is closed

with no beginning and no end and
are also not crossing each other.

In an electrostatic field, the flux passing through a closed surface 1
the same as the charge enclosed.

closed surface, ¥ = Q :
Y=¢D - dS=Q //_,_4



closed surface, ¥ =0

Magnetic flux lines are always close
upon themselves,.

So it 1s not possible to have an isolated
magnetic pole (or magnetic charges)

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field m
be zero.

%B*dS=0



Applying Divergence theorem, we get

-

%B-u‘S=J,V-de=O
A}

‘1

or VB':O

This 1s Maxwell’s fourth equation.

This equation suggests that magnetostatic fields have no source
sinks.
Also magnetic flux lines are always continuous.



Famdag ‘s law

According to Faraday a time varying magnetic field produces
induced voltage (called electromotive force or emf) in a closed circt
which causes a flow of current.

The induced emf (V__,) in any closed circuit is equal to the time rate

change of the magnetic flux linkage by the circuit. This is Faraday
Law and can be expressed as

d\ d¥
Veml‘ = S

PRG  Juciicil
dt dt

where N 1s the number of turns in the circuit and v 1s the flux throu
each turn.



Transformer and Motional EMF

For a circuit with a single turn (N = 1)
L, dY

In terms of E and B this can be written as

Vemt':%E'dl:_EJB'dS (1)
L dt A

where y has been replaced by J s B+ dS and S is the surface area
the circuit bounded bv a closed nath ...



The variation of flux with time may be caused in three ways.

1. By having a stationary loop in a time-varying B field.
2. By having a time-varying loop area in a static B field.
3. By having a time-varying loop area in a time-varying B field.

Stationary Loop in a time-varying B field
(Transformer emt)

Increasing B(/)

Consider a stationary conducting
loop in a time-varying magnetic B i
E / "'-\

field. The equation (i) becomes



This emf induced by the time-varying current in a stationary loop
often referred to as transformer emf in power analysis since it is due
the transformer action.

By applying Stokes’s theorem to the middle term, we get
oB

e
ot

JWXErﬁr—J

h S

Th
= JB

dt

This 1s one of the Maxwell’s equations for time-varying fields.

VAE =



2. Moving loop in static B field (Motional emq

When a conducting loop i1s moving in a static B field, an emf
introduced in the loop.

The force on a charge moving with uniform velocity u in a magne

field B 1s
F,=0uXB

The motional electric field E_ 1s defined as

F
E.=—=uXB
O

Consider a conducting loop moving with uniform velocity u, the ¢

1adrrnand 1 tha TAansm 160



By applying Stokes’s theorem to equation (1), we get

J(VXE,,,)*dS=[VX(uXB]'dS

I-Y S‘

VXE,=VX(uXB)



3. Moving loop in time-varying field
Consider a moving conducting loop in a time-varying magnetic fiels

Then both transformer emf and motional emf are present.

Thus the total emf will be the sum of transformer emf and motior
emf

- JB
chf:%E'dl=_J—'(ﬁ+%(uXB)'dl
L Sat L

also

JB
VXE=—-—+4+ VX @uXB)



Dfsplacemewt CuUrremt

For static EM fields
VXH-=] (i)

But the divergence of the curl of a vector field is zero. So
V- (VXH)=0=V-J i
But the continuity of current requires
ap,
V-J=—=
ot
Equation (i1) and (i11) are incompatible for time-varying conditions

Fa - - & Jm

# 0 (iii)



Again the divergence of the curl of a vector field 1s zero. So
V- (VXH)=0=V-J+ V-], (V)

In order for equation (v) to agree with (1i1)

, oD
dp, :i(v D)=V -—

Vida=—Vid=o it

or Jd ——Jp—— (vi)

Putting (v1) in (1v), we get D
VXH=J+ -5—



Maxwell’s Eqwatfons in Final Form

Differential Form

Integral Form

Remarks

V-D=p,
V-B=0

a
OxE= -8

ATy

!

D-dS = Jp.,.dv

‘l

Gauss’s law

Nonexistence of i1sol:
magnetic charge*

Faraday's law



Introduction

Electromagnetic (EM) waves were first postulated by James Clerk
Maxwell and subsequently confirmed by Heinrich Hertz

Maxwell derived a wave form of the electric and magnetic equations,
revealing the wave-like nature of electric and magnetic fields, and
their symmetry

Because the speed of EM waves predicted by the wave equation
coincided with the measured speed of light, Maxwell concluded
that light itself is an EM wave

According to Maxwell’s equations, a spatially-varying electric
field generates a time-varying magnetic field and vice versa

Therefore, as an oscillating electric field generates an oscillating
magnetic field, the magnetic field in turn generates an oscillating

electric field, and so on

These oscillating fields together form an electromagnetic wave



Speed of EM waves

In the studies of electricity and magnetism, experimental
physicists had determined two physical constants - the electric
(e,) and magnetic (p,) constant in vacuum

These two constants appeared in the EM wave equations, and
Maxwell was able to calculate the velocity of the wave (i.e. the
speed of light) in terms of the two constants:

1

C = ~3.0x1 08 m/s £ = 8.8542 x 1012 C? s¥/kgm? (permittivity of vacuum)

E, 1, Ho=41 = 107 kgm/A?s* (permeability of vacuum)

Therefore the three experimental constants, g,, 1, and c
previously thought to be independent are now related in a fixed
and determined way



Polarization of Electromagnetic Wave

The transverse EM wave 1s said to be polarized (more
specifically, plane polarized) if the electric field vectors are
parallel to a particular direction for all points in the wave

direction of the electric field vector E = direction of polarization

Example, consider an electric field propagating in the positive
z-direction and polarized in the x-direction

E = E, sin(kz — o)

SDMD p—-2 _E_[
. C

lj E, sin(kz —mt)y

I, " S = Bad Eé sin(kz —or)z







