
19EEC09 / MICRO-COMPUTING BASED SYSTEM DESIGN

Prepared by

Dr.S.Saravanan,

Professor,

Department of Electrical and Electronics Engineering,

Muthayammal Engineering College (Autonomous),

Rasipuram – 637 408.

Course Objective

1.To study the basic concept of 8085 microprocessor

2.To study the basic concept of 8051 microcontroller

3.To introduce the PIC microcontroller and programming of 8085 and 8051

4.To study the basic concept of interfacing

5. To study the application of Processors and controllers

DIFFERENCE BETWEEN MICROPROCESSOR AND MICROCONTROLLER

MICROPROCESSOR MICROCONTROLLER

A microprocessor is a general purpose device

is called a CPU

A microcontroller is a dedicated chip is called

a single chip

Microprocessor based system design is

complex

Microcontroller based system design is simple

It is flexible which means we can change the

size

It is not flexible

Microprocessor do not have power saving

features

Microcontrollers have the power saving mode

Size of RAM / ROM can vary Size of the RAM / ROM fixed

It does not contain internal memory It contain internal memory

Cost is high Cost low

UNIT 1 – 8085 PROCESSOR

INTRODUCTION

A Microprocessor is known as a Central Processing Unit.

It is fabricated on a single chip

The first microprocessor was Intel 4004 introduced in 1971. It is a 4 bit processor .

The first microprocessor to make into a home computer was Intel 8080.It is a 8 bit computer

on one chip introduced in 1974.

In 1976 updated the intel 8080 design with 8085 by adding two instruction to enable / disable

the interrupt and serial port

In 1978 introduced the intel 8086.It is a 16 bit processor.

In 1980 introduced the intel 8087.

INTRODUCTION TO MICROCOMPUTER SYSTEM

Microcomputer system is the interconnection of CPU , memory and input / output device

CPU

Central Processing unit is the brain of the microcomputer system. It coordinate the entire

microcomputer operation.

It accept input and output device depending on the instruction permanent programs stored in

ROM or temporary program stored in RAM execute the program and finally result will be

displayed through output device .

The CPU chip of the microcomputer is know as microprocessor

MEMORY

It is a two types of Memory

RAM – Random Access Memory

ROM – Read Only Memory

RAM is used for temporarily storing the program

ROM is used for permanently storing the program

PERIPHERAL DEVICE

The input and output devices called peripheral device. The input device is used to fed the data
and the output device is used to display the result

BUSES

The input output and memory device are connected to CPU by a group of line is called buses.

They can be divided into three types

1.Address bus

2.Data bus

3.Control bus

The address bus carries a address of the memory location or I/O devices that the CPU want to access.

Data bus is used to transfer the data between CPU, memory and I/O device.

Control bus is used to control the signal between CPU, memory and I/O device.

INTRODUCTION TO MICROPROCESSOR

The CPU built on a single IC is called microprocessor.

The internal architecture of microprocessor determine how and what operation can be performed with

the data. To perform any operation microprocessor requires

1. Arithmetic Logic unit

2. Control Logic Unit

3. Register

4. Instruction register

5. Program counter

6.Internal bus

1.ALU is the computational unit of microprocessor which performs arithmetic and logic

operation on binary unit

Register array is the internal storage device

The control unit is generating the control signal for internal and external operation of

microprocessor

Program counter is used to hold the memory address for the next instruction to be executed

ADVANTAGE OF MICROPROCESSOR

1.Low cost

2.Low size

3.Low power consumption

4.High reliability

FEATURES OF 8085

8085 is an 8 bit general purpose microprocessor.

It is a 40 pin dual in line package single chip integrated circuit

Only one +5V power supply is needed for operation

It can operate with a 3MHz single phase clock

It provides Serial Input data and Serial Output Data Line for simple serial interface

In 8085 microprocessor has the following register

1. One 8-bit Accumulator (ACC) register A

2. Six 8-bit general purpose register B,C,D,E,H,L

3. One 16 – bit stack pointer SP

4. One 16-bit program counter , PC

5. Instruction register

6. Temporary register

ARCHITECTURE OF 8085 MICROPROCESSOR

The architecture of 8085 has the following components

1. Accumulator

2. General Purpose register

3. Program Counter

4. Stack pointer

5. Arithmetic and Logic Unit

6. Temporary register

7. Flags

8. Instruction register and Decoder

9. Timing and Control unit

10. Interrupt control

11. Serial I?O control

12. Address buffer and Address Data buffer

13. Address bus and data bus

ACCUMULATOR

Accumulator is an 8-bit register.

It hold one of the data to be processed by Arithmetic and Logic unit

It also stores the result of the operation

The accumulator is also called a A-register

It is connected to 8_bit internal data bus

The bi-directional arrow between the accumulator and the bus.

It allows the accumulator to send and receive the data

GENERAL PURPOSE REGISTERS

The 8085 microprocessor contain six 8 bit general purpose register

They are B,C,D,E.H,L register

A combination of two 8 bit registers is a 16 bit data

The combination og two 8 bit registers is known as register pair

The register pair in 8085 are B-C,D-E and H-L pair

H-L pair is act as a memory pointer

PROGRAM COUNTER(PC)

It is a 16-bit special-purpose register.

It is used to hold the memory address of the next instruction to be executed

The microprocessor increment the content of program counter during the execution of instruction

STACK POINTER(SP)

It is a 16-bit register

It is used as a memory pointer

Stack pointer is decremented each time when data is loaded into the stack and incremented when
the data is retrieved from stack

ARITHMETIC AND LOGIC UNIT(ALU)

It is a 8- bit register

ALU carries only the arithmetic and logic operation

Arithmetic operation such as addituion,subtraction,multiplication,division

Logic operation such as AND,OR and EXOR.

ALU results is stored back in the accumulator

TEMPORARY REGISTER

It is an 8-bit register

It is associated with ALU

It hold data during an arithmetic and logical operation

FLAG
Flag register is a group of five individual flip-flops

The five status flag of intel 8085 are

1.Carry flag (CY)

2.Parity flag(P)

3.Auxiliary Carry flag(AC)

4.Zero flag(Z)

Sign flag(S)

INSTRUCTIO REGISTER AND DECODER
It is a 8-bit register.

The instruction decoder decodes the content of the instruction register

During fetch cycle,opcode of an instruction is stored in the instruction register

TIMING AND CONTROL UNIT

This unit has the following signal

Control signal : READY,RD,WR,ALE

Status signal : S0,S1,IO/N

DMA signal : HOLD

RESET signal : RESET IN RESET OUT

INTERRUPT

It has two types

1.Maskable

2.Non maskable

Maskable contain contain RST 5.5,6.6,7.5

Non maskable contain TRAP,INTR

SERIAL I/O CONTROL

Serial Input Data

Serial Output Data

The Serial input data enter into the instruction then the Serial Output data can be leave

ADDRESS BUFFER AND ADDRESS DATA BUFFER

The Stack pointer and program counter can be loaded into the address buffer and address
data buffer

The 8-bit internal data bus is also connected to the address data buffer

The bidirectional arrow indicates the three connection that allow address data buffer t send
or receive data from 8-bit internal data

ADDRESS BUS AND DATA BUS

The Intel 8085 requires a 16 bit address.

The 8 most significant bit are address are transmitted by the address bus

The 8 least significant bit are address are transmitted by address data bus

PIN DIAGRAM OF 8085

The Pin of 8085 can be classified as given below

1.Power supply and frequency signal

2.Address signals

3.Data signals

4.Control and status signal

5.Interrupts

6.Serial I/O signals

7.Acknowledgement signals

Address bus

A8-A15 are address bus and are used for most significant bits of the memory address

Address/Data buffer

AD0-AD7 are the address /data bus. They are used least significant 8 bits of the memory
address

Address Latch enable (ALE)

It goes High during first clock of a machine cycle and enables the lower 8-bit of the address
to be latched

IO/M

It is a status signal which distinguish whether the address is for memory or I/O.

When it goes high the address on the address bus is for an I/O device.

When it goes low the address on the address bus is for a memory location.

WR

This active LOW signal is used to control WRITE operation.

When it goes low, the data on the data bus is written into the selected memory or I/O location.

READY

It is used by the microprocessor to sense whether a peripheral is ready to transfer data or not.

A peripheral may be connected to the microprocessor through READY line.

If READY is high the peripheral is ready. If it is low the microprocessor waits till it goes high.

HOLD

It indicates that another device is requesting for the use of the address and data bus.

Having received a HOLD request the microprocessor relinquishes the use of the buses as soon as the
current machine cycle is completed

HLDA

If is a signal for HOLD acknowledgement.

It indicates that the HOLD request has been received.

After the removal of a HOLD request the HLDA goes low.

INTR

It is an interrupt request signal. Among interrupts it has the lowest priority. When it goes high

the program counter does not increment its content.

After completing the instruction at hand it attends the interrupting device.

INTA

It is an interrupt acknowledgement sent by the microprocessor after interrupt (INTR) is
received.

RST 5.5, 6.5, 7.5

RST 7.5, RST 6.5 and RST 5.5 are the restart interrupts. They cause an internal restart to be

automatically inserted. Each of them has a programmable mask.

TRAP

TRAP is the highest priority interrupts it is a non mask able interrupts

TRAP HIGHEST PRIORITY

RST 7.5

RST 6.5

RST 5.5 LOWEST PRIORITY

RESET IN

It reset the program counter to zero

It also interrupt enable and HLDA flip-flop

RESET OUT

It indicates that the CPU is being reset.

X1, X2

These are terminals to be connected to an external crystal oscillator which drives internal

circuitry of the microprocessor to produce a suitable clock for the operation of

microprocessor.

CLK

It is a clock output for user, which can be used for other digital ICs. Its

frequency is same at which processor operates

SID

It is data line for serial input. The data of this line is loaded into the 7th bit of the
accumulator when RIM instruction is executed.

SOD

It is a data line for serial output. The 7th bit of the accumulator is output on SOD when SIM
instruction is executed

Vcc

It is +5 Volts supply pin

Vss

It is a ground pin.

INSTRUCTION SET

Instruction

An instruction is a binary pattern designed inside a microprocessor to perform a specific

Function

Instruction Set

The entire group of instructions, called the instruction set, determines what functions the

microprocessor can perform

8085 Instruction Set

The 8085 instructions can be divided into five different groups based on the function the

instruction carry out. They are

1. Data Transfer Instructions

2. Arithmetic Instructions

3. Logical Instructions

4. Branching Instructions

5. Machine Control Instructions

Data Transfer Instructions

This group of instructions are used for loading data into registers, moving data in between

registers and moving data between registers and memory location.

Examples:

MOV B,D

LDA 4000 H

STA B

MOV M,C

XCHG

Arithmetic Instructions

This group of instructions are used for addition, subtraction, increment or decrement or

data in registers or in memory.

Example

ADD M

SUB C

INR M

DCX B

DAA

Logical Instructions

This group of instructions execute the logical operations like AND, OR, XOR or comparing

data between registers or between register and memory, rotating or complementing data in

registers or memories.

Examples

ANA B

ORA M

RAL

RRc

CPI A5 H

Branch Instructions

The group of instructions perform

Subroutine CALL

Conditional and unconditional JUMP Return and

Restart

Examples

JMP 9000H

JNC LOOP 1

CC LOOP 2

RET

RST 0

Machine Control Instructions

This group of instructions are used for transferring data between stack and the registers
exchanging the contents of SP and HL with the stack top moving data to and from I/O ports
enabling or disabling or masking interrupts

Examples

PUSH D

SPHL

IN 80H

OUT 07H

RIM

Data Transfer Instructions

MOV

Move the content from source to Destination

MOV destination , source

The content of the source register is moved to the destination register . The content of the
source register are not altered . If one of the operand is memory location. It is specified by
the contents of HL registers

MOV r1,r2 [r1]  [r2]

MOV r,M [r]  [[HL]]

MOV M,r [[HL]]  [r]

Examples

1. MOV B,A Before execution After execution

A B A B

MVI

Move Immediate 8 bit data

MVI destination, data

The given data is moved to the destination register or memory.

MVI r,data [r] data

MVI M,data [[HL]] data

Example

MVI B,18 H

B

18H

18 18 18

LDA

Load Accumulator Direct

LDA address

The content of the memory location, whose address is specified by the 2nd and 3rd bytes of

the instruction is loaded into the accumulator. The contents of the source are not altered.

[A] [address]

Examples

LDA 2005 H

Memory A 2003H

2003H 2004H

2004H 2005H

2005H

Before execution After execution

18
18

18

STA

Store Accumulator Direct

STA address

The contents of the accumulator are stored to a memory location specified by the 2nd and

3rd byte of the instruction.

[address][A]

Example

STA 2005A Memory

A 2002H 2003H

2003H A 2004H

2004H 2005H

2005H

Before execution After execution

1818
18

LDAX

Load Accumulator Indirect

LDAX register pair

The content of the memory location, whose address is in the register pair (B-C or D-E) is

loaded into the accumulator.

[A][[rp]]

Example

LDXA D Memory

A

A

D E

D E 4020H A4

XX

40 20

A4

40 20

STAX

Stored Accumulator Indirect

STAX register pair

The content of accumulator is stored in the memory location whose address is in
the register pair(B-C,D-E)

[[rp]]-[A]

Example

STAX B

A A 401FH

401FH

B C B C 4020H

A4

40 20 40 20

A4

LHLD

Load H and L registers Direct

LHLD address

The content of the memory location, whose address is specified in the instruction, is loaded

into register L. The content of next memory location is loaded into register H

[L][address]

[H][address+1]

Example

LHLD 2005H

Before execution After execution

2005 H L

2006

2007

18
F3

F3 18

SHLD

Store H and L registers Direct

SHL

The content of register L is stored in the memory location whose address is specified in the

instruction. The content of register H is stored in the next memory location.

[Address]  [L]

[address+1] [H]

Example

SHLD 2005 H

Before execution After execution

H L Memory

2005 H

2006 H

F0 B3
B3
F0

LXI

Load Register Pair Immediate

LXI rp, 16 bit data

This instruction loads 16 bit immediate data into the register pair (B-C, D-E, H-L). This is a

3 byte instruction . The second byte specifies the low-order byte and the third byte specifies

the high-order byte.

[rh]8 MSBs of data

[rl]8 LSBs of data

Example

LXIB,1122H

After execution

B C

11 12

XCHG

Exchange H and L with D and E

The contents of register H are exchanged with the contents of register D and the contents of

register L are exchanged with the contents of register E.

[H-L]> [D-E]

Example

XCHG

Before execution After execution

H L H L

D E D E

10 12
30 40

30 40 10 12

Arithmetic Instruction

ADD

Add register or Memory or Accumulator

ADD register

The content of the register or memory is added to the content of the accumulator and the

result is stored in the accumulator

[A][A]+[r]

Example

ADD B

A A B

3311+22

ADC

Add Register to Accumulator with Carry

ADC register

The content of the register or memory and the carry flag are added to the content of the

accumulator and the result is stored in the accumulator

[A][A]+[r]+[CY]

Example

ADC B

A A B CY

21 10 + 10 + 01

ADI

Add Immediate data to accumulator

ADI 8 bit data

The immediate 8 bit data is added to the content of the accumulator and the result is stored

in the accumulator

[A][A]+data

Example

ADI B2H

A A

C4  12 + B2

ACI

Add Immediate data to accumulator with carry

ACI 8 bit data

The 8 bit data and the carry flag are added to the content of the accumulator and the result
is stored in the accumulator

[A][A]+[data]+[CY]

Example

ACI 15H

A A CY

38 23 + 15 + 00

DAD

Add register pair to H-L register

DAD register pair

The 16 bit contents of the specified register pair are added with the content of the H-L

register pair and the result is stored in the H-L register

[H-L][H-L]+[rp]

Example

DAD B

H L H L B C

33 33  11 11 + 22 22

SUB B

Subtract register/memory from Accumulator

Sub register/memory

The content of register or memory location is subtracted from the content of the accumulator

and the result is stored in the accumulator

[A][A]-[r]

Example

SUB B

A A B

1020 – 10

SBB

Subtract register/memory and borrow from accumulator

SBB register/memory

The content of register or the memory and the borrow flag are subtracted from the content of
the accumulator and the result is stored in the accumulator

[A][A]-[r]-[CY]

Example

SBB B

[A] [A]-[r]-[CY]

A A B CY

IF40 – 20 - 01

SUI

Subtract Immediate Data from accumulator

SUI 8-bit data

The 8-bit data is subtracted from the content of accumulator and the result is stored in the
accumulator

[A][A]- data

Example

SUI 13 H

A A

0518 - 3

SBI

Subtract Immediate data with Borrow from Accumulator

The 8 bit data and the content of borrow flag (carry flag) are subtracted from the content of the

accumulator and the result is stored in the accumulator.

[A]  [A)—data—[CY]

Example :

SBI 13H

A A CY

0418 - 13 – 01

INR

Increment contents of register/memory by 1

INR register /memory

The content of register or memory location pointed by H-L pair is incremented by 1and the
result is stored in same place

[r][r]+1

[[HL]][HL]]+1

Example

INR B

B B

ICIB + 1

DCR

Decrement register/ memory content by 1

Decrement register/memory

The content of the register is decremented by 1 and the result is stored in the same place

[r][r]-1

[HL][HL]-1

Example

DCR C

C C

A2 A3 – 1

INX

Increment register pair by 1

INX rp

The content of register is incremented by 1

[rp][rp]+1

Example

INX B

B C B C

A1 04  A1 03 +1

DCX

Decrement register pair by 1

DCX rp

The content of register is decremented by 1

[rp][rp]-1

Example

DCX D

D E D E

FF FE  FF FF -1

Logical instruction

ANA

Logical AND with accumulator

AND register/memory

The contents of the accumulator are logically anded with the contents of the register or

memory and the results is stored in the accumulator.

[A][A]^[r]

[A][A]^[[HL]]

Example

AND B

[A] 0110 0011

[B] 0100 1010

Result0100 0010 stored in A

ANI

AND immediate data with Accumulator

ANI 8 bit data

The contents of the accumulator are logically anded with the 8-bit data and the

results is stored in the accumulator

[A][A]^data

Example

ANI 15 H

[A]  0110 0011

Data 0001 0101

Result0000 0001 stored in A

ORA

Logically OR with Accumulator

ORA register/memory

The contents of the accumulator are logically ORed with the contents of the

register or memory and the results is stored in the accumulator.

[A] [A]v[r]

[A] [A]v[[HL]]

Example ORA C

[A] = 1100 0011

[C] = 0101 0101

Result = 1101 0111 stored in accumulator

ORI

Logically OR Immediate data

ORI 8 bit data

The contents of the accumulator are logically ORed with the 8-bit data and the

results is stored in the accumulator

[A] [A]v data

Example ORI 71 H

[A] = 0110 1110

Data = 0111 0001

Result = 0111 1111

XRA

Exclusive OR with Accumulator

XRA register/memory

The contents of the accumulator are logically ORed with the contents of the

register or memory and the results is stored in the accumulator.

[A]  [A] v [r]

[A]  [A] v [[HL]]

Example XRA E

[A] = 1110 1110

[E] = 0101 1010

Result=1011 0100 stored in accumulator

XRI

Exclusive OR immediate with accumulator

XRI 8 bit data

The exclusive ORed 8-bit data with the content of accumulator and the results is stored in the

accumulator

[A][A]v data

Example XRI 18 H

[A] = 1100 0011

Data = 0001 1000

Result = 1101 1011

CMA

Complement Accumulator

The content of accumulator are complemented(1’s complement)

[A][A]

Example

CMA

Before execution After execution

10011001 01100110

CMC

Complement carry

The carry flag is complemented

[CY]  [CY]

Example CMC

Before execution After execution

CY CY

1 0

CMP

Compare with Accumulator

CMP reg/memory

The content of the register or memory is subtracted from the content of the accumulator and

the status flag are set according to the result of the subtraction .But the result is not stored .

The content of the accumulator remains unchanged.

If [A] <[r] ; CY =1, Z=0

If [A] = [r]; CY = 0, Z=1

Example CMP B

Before execution After execution

A B A B

45 75 45 75

FLG CY=1 Z=0

CPI

Compare Immediate data with Accumulator

CPI 8 bit data

The 8 bit data is compared with the contents of the accumulator . The status flag are set

according to the result of subtraction . But the result is discarded

[A]- data

Example

CPI 45 H

STC

Set Carry

The carry flag is set to 1

[CY]1

RLC

Rotate Accumulator Left

The content of the accumulator is rotated left by one bit. The seventh bit of the

accumulator is moved to carry bit as well as to the zero bit of the accumulator



Example CY A

Before execution : 0 10001011

CY A

After execution : 1 00010111

B7 B0CY

RRC

Rotate Accumulator Right

The content of the accumulator is rotated right by one bit. The zero bit of the accumulator

(B0) is moved to the seventh bit (B7) as well as to carry bit.

 

Example CY A

Before execution : 10100111

CY A

After execution : 11010011

B7 B0CY

RAL

Rotate Accumulator Left through carry

The content of the accumulator is rotated left one bit through carry. The seventh bit of the

accumulator (B7) is moved to carry and the carry bit is moved to the zero bit (B0) of the

Accumulator

Example CY A

Before execution : 11100001

CY A

After execution : 11000010

RAR

Rotate Accumulator Right through carry

The content of the accumulator is rotated right one bit through carry. The zero

bit of the accumulator (B0) is moved to carry and the carry bit is moved to the

seventh bit (B7) of the Accumulator

Example CY A

Before execution : 0 00011100

CY A

After execution : 0 00001110

B7

Branch Instruction

JMP

(i)Jump Unconditionally

JMP 16-bit address

2nd byte and 3rd byte of the instruction give the address of the label where the program

jumps. The address of the label is the address of the memory location of next instruction to

be executed. The program jumps to the instruction specified by the address unconditionally

[PC]Label

Example

JMP 4000H

(i)Jump conditionally

After the execution of the condition jump instruction the program jumps to the instruction

specified by the address(Label) if the specified condition is fulfilled.Otherwise the program

proceeds further in the normal sequence

Instruction Operation

JC

JNC

JP

JM

JPE

JPO

JZ

JNZ

Jump on carry

Jump on No carry

Jump on positive

Jump on Minus

Jump on Parity Even

Jump on Parity Odd

Jump on zero

Jump on No zero

CALL

i) Unconditional Subroutine Call

CALL 16-bit address

CALL instruction is used to call a subroutine. Before the control is transferred to the

subroutine the address of the next instruction of the main program is saved in the stack. The

content of SP is decremented by 2 to indicate the new stack top.

[[SP]-1]  PCH

[[SP]-2]PCL

[SP] [SP]-2

[PC] Label (address)

Example

CALL 5000H

ii)Conditional Subroutine call

Instruction Operation

CC

CNC

CP

CM

CPE

CPO

CZ

CNZ

Call on carry

Call on No carry

Call on Positive

Call on Minus

Call on Parity even

Call on Parity Odd

Call on zero

Call on non zero

RET

i) Return from subroutine Unconditionally

RET is used at the end of subroutine. Before the execution of subroutine the address of the next

instruction of the main program saved the main program is saved in the stack. The content of

SP is incremented by 2 to indicate the new stack top.

PCL SP

PCH [[SP]+1]

[SP] [SP]+2

ii) Conditional return

RST

Restart

Restart is a one-word CALL instruction. The content of PC is saved in the stack. The

Program jumps to the instruction starting at restart location

Instruction Operation

RC

RNC

RP

RM

RPE

RPO

RZ

RNZ

Return on carry

Return on No carry

Return on Positive

Return on Minus

Return on Parity even

Return on Parity Odd

Return on zero

Return on non zero

Instruction Restart Locations (Hex)

R8T0 0000

RST1 0008

RST2 0010

RST3 0018

RST4 0020

RST5 0028

RST6 0030

RST7 0038

PCHL

Load PC with HL contents

The contents of registers H and L are copied into the program counter. The contents of H are
placed as a high order byte and the contents of L are placed as a low order byte.

[PCH] [H]

[PCL] [L]

Stack, I/O and Machine Control Instructions

IN

Input Data to Accumulator from a Port

IN 8-bil Port address

The contents of the input port specified in, the operand are read and loaded into the

accumulator.

[A]  [Port]

Example IN 80 H

OUT

Output Data from Accumulator to a Port

OUT 8-bit Port address

The contents of the accumulator are copied into the output port specified by the operand.

[Port]  [A]

Example :OUT 30 H

PUSH

Push Register pair onto stack

PUSH rp

The contents of the register pair are pushed into the stack. The SP is decremented and the

contents of the high order register (B, D, H, A) are copied into that location. The SP is

decremented again and the contents of the low order register (C, E, L) are copied to that

location.

[[SP]—l] [rh]

[[SP]—2] [rl]

[SP][SP]—2

Example PUSH B

Before execution After execution Stack

B C B C 2097

23 45 23 45 2098

SP SP 2099

20992097

POP

POP OF Stack to Register Pair

The contents of the memory location pointed out by the SP are copied to low-ords register

(C. E. L) of the operand. The SP is incremented by 1 and the contents of that memor location

are copied to high-order register (A, B, D, H) of the operand. The SP is agsir incremented by
1.

45

23

XX

[rL][SP]

[rH][[SP]+1]

[SP][SP]+2

Example POP H

Before execution After execution Stack

H L H L 2090H

XX XX 18 5A 2091H

SP SP 2092H

2090 2092
HLT

Halt

The execution of the instruction HLT stops the microprocessor. The MPU finishes executing the

current instruction and halts any further execution. The registers and Status flags remain

unaffected.

5A

18

XTHL

Exchange H and L with Stack TOP

The content of register L are exchanged with the byte of the stack top. The content of register

H are exchanged with the byte below the Stack top

[L] [SP]

[H][SP]+1]

Before execution After execution

H L H L

11 22 33 44

Stack Stack

3000 3000

3001 3001

44

33

22

11

SPHL

Copy H and L to the SP

The contents of HL pair are transferred to the stack pointer register.

[SP]  [HL]

EI

Enable Interrupts

When this instruction is executed, the interrupts are enabled.
DI

Disable Interrupts

When this instruction is executed, the interrupts are disabled.

NOP

NO operation

When this instruction is executed, no operation is performed. The register and flags remain

unaffected. The instruction is used to fill in time delays or to delete or insert instruction with trouble

shooting

SIM

Set Interrupt Mask

SlM is a multipurpose instruction and used to implement the 8083 interrupts (RST 7.3,6.5

and S.5) 2nd serial data output. Time instruction interprets the accumulator contents as

follows:

7 0

Serial Output data 1= Reset 1 = Mask 1= Mask interrupt

Serial data enable RST 7.5 set enable

flip flop

SOD SDE X R7.5 MSE M7.5 M6.5 M5.5

RIM

Read Interrupt Mask

RIM is a multipurpose instruction used to real the status of interrupts (RST 7.5,6.5and

5.5) and to read serial data input bit. The instruction interprets the accumulator contents, as

follows:

Serial input data 1= Interrupt 1=Interrupt enable 1= Interrupts masked

Pending flip flop is set

SID I7 I6 I5 IE 7.5 6.5 5.5

ADDRESSING MODES

Every instruction of a program has to operate on a data. The method of specifying the data to

be operated by the instruction is called Addressing.

Addressing mode is the way the microprocessor identifies the operands for the instruction.

The 8085 has the following addressing modes.

• Immediate addressing mode

• Direct addressing mode

• Register addressing mode

• Register indirect addressing mode

• Implicit addressing mode

Immediate Addressing Mode

In immediate addressing mode, the data (Operand) is specified within the instruction itself.

Examples :

MVI A, 18 H

ADI 09 H

LXI H, 50AB H

MVI A, l8 M

Accumulator

18

Move the data l8H to the Accumulator

Direct Addressing Mode

In direct addressing mode, the address of the data (operand) is specified in the instruction

itself.

Examples :

STA 2005 H

OUT 05 H

LDA 4100 H

STA 2005 H

Memory Location

2003H

A 2004H

2005H

Store the content of the accumulator in the memory location 2005 H. 2005 H is it memory

address where the data is to be stored. It is given in the instruction itself.

Register Addressing Mode

In register addressing mode, the instruction specifies the name of the register in which the

data is available.

18
18

The opcode specifies the address of the register in addition to the,

operation to be performed.

Examples

MOV A, B

ANA B

SUB H

MOV A,B

A B

Move the content of register B to A

Data

Register Indirect Addressing Mode

In register addressing mode, the instruction specifies the name of the register in

which the data is available.

Examples

MOV A, M

SUB M

DCR M

MOV A,M

Memory Location

2002H

A 2003H

2004H

2005H1818

Implicit addressing Mode

Some instruction operate on the content of the accumulator. Such instruction

do not requires the address of operand.

Example

CMA

RAL

RAR

8085 Addressing mode

Type Instruction

Direct STA 2005H

Register MOV A,B

Register Indirect MOV A,M

Immediate MVIA,18H

Implicit CMA

Timing diagram

The timing diagram provides the information about the various condition of the signal in

which the machine cycle is executed

The timing diagram matches the peripheral devices like memories, ports etc.. Can be

selected to form a system with microprocessor as CPU

Instruction cycle

It is defined as the time required to complete the execution of an instruction.

The 8085 instruction cycle consist of one to six machine cycles.

Machine cycle

It is defined as the time required to complete one operation of accessing memory , I/O or

acknowledgement an external request . This cycle may consist of 3 to 6 T-states

T-state

It is defined as one subdivision of the operation performed in one clock period

These subdivision are internal state synchronized with system clock.

One T – state – One clock period

Each instruction of the 8085 microprocessor can be divided into a few basic operation

called machine cycle and each machine cycle can be divided into T-states

Instruction Cycle

Machine cycle 1 Machine cycle 2 Machine cycle 3

T1 T2 T3 T4 T5 T6

ALE(Address Latch Enable)

This signal is high active signal. It is activated in the beginning of the T1 state of each

machine cycle , except bus idle machine cycle , and it remains active in the T1 state

Machine cycle 1 Machine cycle 2

T4 T2 T3 T4 T1 T2 T3

ALE

A0-A7(Lower byte address)

The lower byte of address is available on the multiplexed addressed / data bus during T1 state

of each machine cycle except bus idle machine cycle

T1 T2 T3 T4 T1 T2 T3

A0-A7 A0-A7

D4-D7(Data bus)

The data from memory or I/O device and from microprocessor to memory or I/O device is

transferred during T2 and T3 states.

It is important to note that in read machine cycle , data will appear on the data bus during

the later part of the T2-state whereas in write cycle data will appear on the data bus at the

beginning of the T2-state

To read data from memory or I/O device it is necessary to select memory or I/O device

T1 T2 T3 T1 T2 T3

Address Data Address Data

READ CYCLE WRITE CYCLE

A8-A15

The higher byte of address is available on A8-A15 bus during T1,T2 and T3 states of each

machine cycle , except bus idle machine cycle

During T2 state

At the beginning of T2 states the microprocessor sends the control signal RD goes low to

enable memory

The data which is opcode D0-D7 of the selected memory location are placed on A/D bus

During T3 state

The opcode of A/D bus is transferred to the instruction register

The RD is high thus disabling the memory from A/D bus

During T4 state

The fetched opcode is decoded

Signal Opcode Fetch M

T1 T2 T3 T4

CLK

IO/M

S-S0

A8-A15

AD0-AD7

ALE

RD

Memory Read Machine cycle

If instruction is one bit in length opcode fetch cycle only one machine cycle is required for

completion

When the instruction is more than one byte to transfer the operand from memory or I/O

device may require a few more machine cycle

Usually these cycles have 3 states

For example

MVI D,18H

This instruction is a memory read cycle which consist of two machine cycle .

First machine cycle is to fetch the opcode and the second machine cycle is the memory read

machine cycle which transfer the operand – 18 H from memory

During T1 state

The content of program counter is placed on Address or Address / Data bus

The ALE signal goes high and at middle of T1 ALE goes low

The microprocessor recognizes the memory read machine cycle by the status signal

For memory read cycle IO/M=0 S1=1,S0=0

During T2 state

The content of (D0-D7) of selected memory location are placed on the A/D bus

During T3 state

The data loaded on the A/D bus is moved to microprocessor

In the middle of the T3 state RD goes high and disables the memory read operation

Signal Memory Read M

T1 T2 T3 T4

CLK

IO/M

S-S0

A8-A15

AD0-AD7

ALE

RD

I/O Read Machine Cycle

It is similar with read operation

For example IN 80 H

It is a two byte I/O read instruction

The first machine cycle is opcode and fetch and the second is I/O read machine cycle is

used where content of the port address is transferred to the microprocessor. The status

information for I/O read is IO/M = 1,S1=0,S0=0

Memory write machine cycle

A memory write or I/O write cycle is used for sending data from one of the microprocessor

register to the memory or I/O device

For example

MOV M,A

This requires two machine cycle

The first is opcode fetch machine cycle . The second is the write machine cycle used for

Transferring the content of accumulator to the memory location.

During T1 state

The microprocessor place 16-bit address of the memory location on the address or Address /

data buffer

The ALE goes high and at the middle of T1 state it goes low which is used to latch the address

bit in the memory

The microprocessor recognizes the memory write machine cycle , from the status signal

For the memory write machine cycle IO/M = 0 , S1=0,S0=1

During T2 state

At the beginning of T2 state WR goes low to enable write operation

In this state the content of the register C is placed on data bus

During T3 state

The data on the data bus is transferred to the specific memory location

In the middle of T3 state the control signal WR goes high and disable the memory

Signal Memory Write M

T1 T2 T3 T4

CLK

IO/M

S-S0

A8-A15

AD0-AD7

ALE

RD

I/O Write Machine cycle

It is similar with memory write operation

Example OUT 03 H

The I/O write machine cycle is used for sending data from accumulator to the output device

whose address is 03H

The microprocessor recognize the machine cycle from thee status signal . For I/O write

machine cycle IO/M =1 , S1=0,S0=1

INTA Machine cycle

When microprocessor is executing a program it checks the INTR line during execution of

each instruction.

If INTR is high the microprocessor completes the current instruction and send a signal INTA.

Bus Idle Machine cycle

It is a machine cycle during which data bus of the microprocessor is not used . It is in

idle state

During bus idle machine cycle

READY line is not sampled by the microprocessor

No memory or I/O device is communicating with the microprocessor

No WAIT cycle are possible

The data bus is not used it is tri stated

INTERRUPTS

The process of interrupting the normal program execution to carry out a specific task / work

is referred to as interrupt

The microprocessor can be interrupted

1. By an external signal generated by peripheral

2. By an internal signal generated by instruction

3. By an internal signal generated due to an exceptional condition which occurs while

4. executing an instruction.

When microprocessor receives an interrupt signal it stops executing the main program, uses

the status of all registers in stack then processor executes the interrupt service routine

(ISR) in order to perform the specific work requested by the interrupt.

Classification of interrupts

Interrupts

Hardware Software Vectored Non-vectored Maskable Non-maskable

TRAP RST 0 TRAP INTR RST 5.5 TRAP

RST 5.5 RST 1 RST 5.5 RST 6.5

RST 6.5 RST 2 RST 6.5 RST 7.5

RST 7.5 RST 3 RST 7.5

INTR RST 4

RST 5

RST 6

RST 7

Interrupt Vectored Table

It is not possible to give each interrupt Service Routine (ISR) a fixed slot in the memory

since the different routines may be of different size.

When an interrupt occurs the control does not go to the ISR directly.

Instead a CALL instruction to a predetermined location on the 00 page of the memory is

executed.

Software Interrupt

The syntax for software interrupt instruction is RST n

When n range from 0 to 7 (RST1,RST2…)

These are single byte instruction and the Hex code with the address in the Vectored Interrupt

table

Instruction Op-code Hex code in Hex Vector address

RST0 C7 0000

RST1 CF 0008

RST2 D7 0010

RST3 DF 0018

RST4 E7 0020

RST5 EF 0028

RST 6 F7 0030

RST 7 FF 0038

When any of these instruction are executed a CALL to the specified address is executed.

The content of the program counter is saved in stack memory.

Vector address of the instruction are spaced by 8 byte.

Usually 3 byte JMP instruction to the corresponding ISR is stored

Hardware Interrupts

The 8085 CPU has 5 hardware interrupts

Interrupt Vector address

TRAP 0024

RST 5.5 002C

RST 6.5 0034

RST 7.5 003C

INTR -

The space between RST 5 (software interrupt) and RST 5.5 (hardware interrupt) is only 4

byte

The predetermined addresses of the hardware interrupts are in the first page of if memory
area.

Note that the vector addresses of the hardware interrupt are spaced only 8 bytes

Vectored and Non-Vectored Interrupts

The first 4 hardware interrupt signals (TRAP, RST5.5, RST6.5, RST7.5) are di rect ly

vectored to the address specified in the interrupt vector table

They are also called vectored interrupts.

However the interrupt request INTR is handled slightly in different way

When INTR interrupt is activated the CPU produce an Interrupt Acknowledgement INTA

signal

INTR is called non vectored interrupt

Maskable and Non-maskable Interrupts

The hardware interrupts can be classified as maskable and nonmaskable interrupts.

Except TRAP,the others are maskable interrupts.

TRAP is a non maskable interrupt.

The maskable interrupts may be enabled and disabled by software instructions.

When they are disabled the CPU ignores them when they occur.

Priority interrupts

When a hardware interrupt is activated it is sensed only after completing the present cycle.

If more than one interrupt are actuated at the same time, they are serviced basis.

TRAP has the highest priority.

It is always serviced first then RST 7.5, then RST 6. 5 and finally RST 5.5.

At the end of every instruction cycle, internally, the interrupt are scanned in priority

• TRAP - Highest Priority

• RST 7.5

• RST 6.5

• RST 5.5

• INTR Lowest Priority

Interrupt Service Sequence

• A hardy are interrupt occurs or a RST n instruction is encountered in the program.

• CPU completes the execution of the current instruction and scans the interrupt lines.

• lf there is any interrupt, the contents of program counter is stored in the stack

memory

• The CPU sends out an INTA signal (for hardware interrupt only) C PU branches to the
vector table location.

• Execute JMP to specified ISR

• Carriers out ISR

• When RET instruction is encountered the CPU loads the return address the stack into the

program counter and returns to the main program

Working of Interrupt Control

TRAP

Trap being non-maskable it used to handle the very important function

In general it is used to take care of sudden power failures. It may execute a routine to

transfer the content of the main memory to the back up memory.

It is edge and level sensitive which means input has to go high

The rising edge triggers the D flip-flop

The D flip-flop and the AND output triggers the TRAP input.

The TRAP is cleared by

The RESET signal or

Internal TRAP Acknowledgement signal

As soon as Internal TRAP Acknowledgement signal will reset the D-flipflop

RST 7.5,6.5,5.5

RST 7.5 is edge sensitive. The D-flipflop is actuated by the rising edge and its output become

high.

The RST 7.5 interrupt is cleared by internal RST 7.5 interrupt

RST 6.5 and RST 5.5 are level sensitive interrupt

MEMORY ORGANIZATION

A Memory unit is an integral part of any microcomputer and its primary purpose is to hold the

instructions and data

The major design goal of a memory unit is it allow it to operate at a speed close to that of

microprocessor.

The cost of a memory unit is prohibitive and practically it is not feasible to design large

memory unit with one technology.

The memory system is usually designed with different technologies such as solid state,

magnetic and optical

The memory system can be divided into three groups

Microprocessor memory

Primary or main memory

Secondary memory

Microprocessor memory

It comprises a set of microprocessor register. The registers are used to hold temporary

memory .

There is no speed between the register and microprocessor

Main memory

It is the storage area in which all the program are executed.

Primary memory is the computer memory that is accessed directly by the CPU

These are several types of memory such as processor cache and system ROM

Primary memory is also called as primary storage

The primary storage may also refer to internal storage device like internal hard drives.

The operating system and applications are loaded into primary memory since RAM can be

accessed much faster than storage device.

The data can be transferred between CPU and RAM.

Secondary memory

It refers to storage device like hard drives and solid state

It also refers to removable storage such as USB flash drives, Ds and DVD

Unlike primary memory, secondary memory is not accessed directly by CPU

RAM plays an important role it provides fast data to access the speed

Secondary memory is slower than primary memory

Secondary memory is to store permanent data

19EEC09 / MICRO-COMPUTING BASED SYSTEM DESIGN

Prepared by

Dr.S.Saravanan,

Professor,

Department of Electrical and Electronics Engineering,

Muthayammal Engineering College (Autonomous),

Rasipuram – 637 408.

Unit – II 8051 Microcontroller
Microcontroller

1. 8051Microcontroller is an 8-bit microcontroller created in 1981. It is most popular and

commonly used microcontroller.

2. An 8-bit microcontroller has an 8-bit data bus and 16- bit address bus.

3. It is an integrated chip designed under very large scale integration techniques .

4. It consist of a processor with other peripheral devices like memory, I/O ports and timer. A
microcontroller contain all these component in a single chip

5. A microcontroller does not require much additional interfacing ICs for operation and it

functions

6. A microcontroller clock speed is limited only to a few tens of MHz

Classification of microcontrollers

Intel 4004 4 bit (2300 PMOS trans, 108 kHz) 1971

Intel 8048 8 bit 1976

Intel 8031 8 bit (ROM-less) .

Intel 8051 8 bit (Mask ROM) 1980

Microchip PIC16C64 8 bit 1985

Motorola 68HC11 8 bit (on chip ADC) .

Intel 80C196 16 bit 1982

Atmel AT89C51 8 bit (Flash memory) .

Microchip PIC 16F877 8 bit (Flash memory + ADC) .

Various features of 8051 microcontroller

• 8-bit CPU

• 16-bit Program Counter

• 8-bit Processor Status Word (PSW)

• 8-bit Stack Pointer

• Internal RAM of 128bytes

• Special Function Registers (SFRs) of 128 bytes

• 32 I/O pins arranged as four 8-bit ports (P0 - P3)

• Two 16-bit timer/counters : T0 and T1

• Two external and three internal vectored interrupts

• One full duplex serial I/O

ARCHITECTURE OF 8051 MICROCONTROLLER:

ALU:

• It is 8 bit unit

• It performs arithmetic operation as addition, subtraction, multiplication,

division, increment and decrement.

• It performs logical operations like AND, OR and EX-OR. It manipulates 8 bit and 16 bit

data

• It calculates address of jump locations in relative branch instruction.

• It performs compare, rotate and compliment operations

• 8051 micro controller contains 34 general purpose registers or working registers

Accumulator(A-reg):

It is 8 bit register

It is bit and byte accessible

Result of arithmetic & logic operations performed by ALU is accumulated by this register.

Therefore it is called accumulator register

It is used to store 8 bit data and to hold one of operand of ALU units during arithmetical and

logical operations

Most of the instructions are carried out on accumulator data.

B-register

It is special 8 bit math register. It is bit and byte accessible.

It is used in conjunction with A register as I/P operand for ALU. It is used as general

purpose register to store 8 bit data.

PSW

It is 8 bit register.

Its address is D0H and It is bit and byte accessible.

It has 4 conditional flags or math flags which sets or resets according to condition of result.

It has 3 control flags, by setting or resetting bit required operation or function

can be achieved.

FLAG:

Carry Flag(CY): During addition and subtraction any carry or borrow is generated then

carry flag is set otherwise carry flag resets.

It is used in arithmetic, logical, jump, rotate and Boolean operations.

Auxiliary carry flag(AC): If during addition and subtraction any carry or borrow is

generated from lower 4 bit to higher 4 bit then AC sets else it resets.

It is used in BCD arithmetic operations.

Overflow flag(OV): If in signed arithmetic operations result exceeds more than 7 bit than

OV flag sets else resets.

It is used in signed arithmetic operations only.

Parity flag(P): If in result, even no. Of ones "1" are present than it is called even parity and

parity flag sets.

In result odd no. Of ones "1"are present than it is called odd parity and parity flag resets.

CONTROL FLAGS:

FO: It is user defined flag. The user defines the function of this flag. The user can set test

and clear this flag through software.

RS1 and RS0: These flags are used to select bank of register by resetting those flags

Program counter (PC):

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next

instruction to execute is found in memory.

It is used to hold 16 bit address of internal RAM, external RAM or external ROM

locations.

It is important to note that PC isn’t always incremented by one and never decremented.

Data pointer register (DTPR): It is a 16-bit register used to hold address of external or

internal RAM where data is stored or result is to be stored.

It is used to store 16 bit data.

Each register can be used as general purpose register to store 8 bit data and can also be used

as memory location.

DPTR does not have single internal address.

It functions as Base register in base relative addressing mode and in-direct jump.

Stack pointer (SP):

It is 8-bit register. It is byte addressable.

Its address is 81H.

It is used to hold the internal RAM memory location addresses which are used as stack

memory.

When the data is to be placed on stack by push instruction, the content of stack pointer is

incremented by 1, and when data is retrieved from stack, content of stack of stack pointer is

decremented by 1.

Special function Registers(SFR):

The 8051 microcontroller has 11 SFR divided in 4 groups:

Timer/Counter register

8051 microcontroller has 2-16 bit Timer/counter registers called Timer-reg-T0 And

Timer/counter Reg-T1.

Each register is 16 bit register divide into lower and higher byte register

These register are used to hold initial no. of count.

All of the 4 register are byte addressable.

Timer control register

8051 microcontroller has two 8-bit timer control register i.e. TMOD and TCON register.

TMOD Register:

It is 8-bit register.

Its address is 89H.

It is byte addressable.

It used to select mode and control operation of time by writing control word.

TCON register:

It is 8-bit register. Its address is 88H.

It is byte addressable.

Its MSB 4- bit are used to control operation of timer/ counter and LSB 4-bit are used for

external interrupt control.

Serial data register:

8051 micro controller has 2 serial data register viz. SBUF and SCON.

Serial buffer register (SBUF):

It is 8-bit register.

It is byte addressable .

Its address is 99H.

It is used to hold data which is to be transferred serially.

Serial control register (SCON):

It is 8-bit register.

It is bit/byte addressable.

Its address is 98H.

The 8-bit loaded into this register controls the operation of serial communication.

Interrupt register: 8051 µC has 2 8-bit interrupt register.

Interrupt enable register (IE): It is 8-bit register.

It is bit/byte addressable.

Its address is A8H.

It is used to enable and disable function of interrupt.

Interrupt priority register (IP):

It is 8-bit register.

It is bit/byte addressable.

Its address is B8H.

It is used to select low or high level priority of each individual interrupts.

Power control register (PCON):

It is 8-bit register.

It is byte addressable .

Its address is 87H.

Its bits are used to control mode of power saving circuit, either idle or power down mode and
also one bit is used to modify baud rate of serial communication.

PIN DIAGRAM

Pinout Description

Pins 1-8 PORT 1. Each of these pins can be configured as an input or an output.

Pin 9 RESET. A logic one on this pin disables the microcontroller and clears the

contents of most registers. In other words, the positive voltage on this pin

resets the microcontroller. By applying logic zero to this pin, the program

starts execution from the beginning.

Pins10-17 PORT 3. Similar to port 1, each of these pins can serve as general input or

output. Besides, all of them have alternative functions

Pin 10 RXD. Serial asynchronous communication input or Serial synchronous

communication output.

Pin 11 TXD. Serial asynchronous communication output or Serial

synchronous communication clock output.

Pin 12 INT0.External Interrupt 0 input

Pin 13 INT1. External Interrupt 1 input

Pin 14 T0. Counter 0 clock input

Pin 15 T1. Counter 1 clock input

Pin 16 WR. Write to external (additional) RAM

Pin 17 RD. Read from external RAM

Pin 18, 19 XTAL2, XTAL1. Internal oscillator input and output. A quartz crystal which

specifies operating frequency is usually connected to these pins.

Pin 20 GND. Ground.

Pin 21-28 Port 2. If there is no intention to use external memory then these port pins are

configured as general inputs/outputs. In case external memory is used, the

higher address byte, i.e. addresses A8-A15 will appear on this port. Even

though memory with capacity of 64Kb is not used, which means that not all

eight port bits are used for its addressing, the rest of them are not available as

inputs/outputs.

Pin 29 PSEN. If external ROM is used for storing program then a logic zero (0)

appears on it every time the microcontroller reads a byte from memory.

Pin 31 EA. By applying logic zero to this pin, P2 and P3 are used for data and

address transmission with no regard to whether there is internal memory or

not. It means that even there is a program written to the microcontroller, it

will not be executed. Instead, the program written to external ROM will be

executed. By applying logic one to the EA pin, the microcontroller will use

both memories, first internal then external (if exists).

Pin 32-39 PORT 0. Similar to P2, if external memory is not used, these pins can be used as

general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7)

when the ALE pin is driven high (1) or as data output (Data Bus) when the ALE

pin is driven low (0).

Pin 40 VCC. +5V power supply.

IO Port Usage in 8051

The four 8-bit I/O ports P0, P1, P2 and P3 each uses 8 pins.

All the ports upon RESET are configured as input, ready to be used as input ports.

When the first 0 is written to a port, it becomes an output port.

To reconfigure it as an input, 1 must be sent to the port.

To use any of these ports as an input port, it must be programmed.

It can be used for input or output, each pin must be connected externally to a 10K ohm pull-

up resistor.

This is due to the fact that P0 is an open drain, unlike P1, P2, and P3.

Open drain is a term used for MOS chips in the same way that open collector is used for

TTL chips.

Port 0 with Pull up registers

The following code will continuously send out to port 0 the alternating value 55H and AAH

BACK: MOV A,#55H

• MOV P0,A

• ACALL DELAY

• MOV A,#0AAH

• MOV P0,A

• ACALL DELAY

• SJMP BACK

• Port 0 as input

• In order to make port 0 an input, the port must be programmed by writing 1
to all the bits.

Port 0 is configured first as an input port by writing 1s to it, and then data is received from
that port and sent to P1

• MOV A,#0FFH ;A=FF hex

• MOV P0,A ;make P0 an i/p port ;by writing it all 1s

• BACK: MOV A,P0 ;get data from P0

• MOV P1,A ;send it to port 1 SJMP BACK

Dual role of Port 0

Port 0 is also designated as AD0-AD7, allowing it to be used for both address and data.

When connecting an 8051/31 to an external memory, port 0 provides both address and

data.

Port 1 can be used as input or output

In contrast to port 0, this port does not need any pull-up resistors since it

already has pull-up resistors internally.

Upon reset, port 1 is configured as an input port.

The following code will continuously send out to port 0 the alternating value 55H and AAH

MOV A,#55H

• BACK: MOV P1,A

• ACALL DELAY CPL A

• SJMP BACK

To make port 1 an input port, it must be programmed as such by writing 1to all its bits.

Port 1 is configured first as an input port by writing 1s to it, then data is received from that

port and saved in R7 and R5

• MOV A,#0FFH ;A=FF hex

• MOV P1,A ;make P1 an input port ;by writing it all 1s

• MOV A,P1 ;get data from P1

• MOV R7,A ;save it to in reg R7

• ACALL DELAY ;wait

• MOV A,P1 ;another data from P1

• MOV R5,A ;save it to in reg R5

Port 2 can be used as input or output

• Just like P1, port 2 does not need any pullup resistors since it already has pull-up

resistors internally.

• Upon reset, port 2 is configured as an input port.

• To make port 2 an input port, it must be programmed as such by writing 1 to all its bits.

• In many 8051-based systems, P2 is used as simple I/O.

• In 8031-based systems, port 2 must be used along with P0 to provide the 16-bit address

for the external memory.

• Port 2 is also designated as A8 – A15, indicating its dual function.

• Port 0 provides the lower 8 bits via A0 – A7.

Port 3 can be used as input or output

Port 3 does not need any pull-up resistors. Port 3 is configured as an input port upon reset.

Port 3 has the additional function of providing some extremely important signals

Port 3 alternate functions

INSTRUCTION SET.

Instruction Timings

T-state, Machine cycle and Instruction cycle are terms used in instruction

timings.

T-state is defined as one subdivision of the operation performed in one clock

period. The terms 'T- state' and 'clock period' are often used synonymously

Machine cycle is defined as 12 oscillator periods. A machine cycle consists of

six states and each state lasts for two oscillator periods. An instruction takes

one to four machine cycles to execute an instruction.

Instruction cycle is defined as the time required for completing the execution

of an instruction. The 8051 instruction cycle consists of one to four machine

cycles

8051 Instructions

The instructions of 8051 can be broadly classified under the following headings.

• Data transfer instructions

• Arithmetic instructions

• Logical instructions

• Branch instructions

• Subroutine instructions

• Bit manipulation instructions

Data transfer instructions.

In this group, the instructions perform data transfer operations of the following types.

Move the contents of a register Rn to A

• MOV A,R2

• MOV A,R7

Move the contents of a register A to Rn

• MOV R4,A

• MOV R1,A

Move an immediate 8 bit data to register A or to Rn or to a memory location(direct
or indirect)

MOV A, #45H

MOV R6, #51H

Move the contents of a memory location to A or A to a memory location using direct and

indirect addressing

MOV A, 65H

MOV 45H, A

Move the contents of a memory location to Rn or Rn to a memory location using direct
addressing

MOV R3, 65H

MOV 45H, R2

Move the contents of memory location to another memory location using direct and indirect
addressing

MOV 47H, 65H

Push and Pop instructions

MOV R6, #25H

MOV R1, #12H

PUSH 6 [SP]=08[08]=[06]=25H //CONTENT OF 08 IS 25H

PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09 IS 12H

PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A IS F3H

Exchange instructions

The content of source ie., register, direct memory or indirect memory will be exchanged
with the contents of destination ie., accumulator.

XCH A,R3

XCH A,@R1

XCH A,54h

Arithmetic instructions.

The 8051 can perform addition, subtraction. Multiplication and division
operations on 8 bit numbers.

Addition

In this group, we have instructions to

Add the contents of A with immediate data with or without carry.

ADD A, #45H

Add the contents of A with register Rn with or without carry.

ADD A, R5

ADDC A, R2

Add the contents of A with contents of memory with or without carry using direct and
indirect addressing

ADD A, 51H

ADDC A, 75H

Subtraction

In this group, we have instructions to

Subtract the contents of A with immediate data with or without carry.

SUBB A, #45H

Subtract the contents of A with register Rn with or without carry.
SUBB A, R5

SUBB A, R2

Subtract the contents of A with contents of memory with or without carry using direct
and indirect addressing

SUBB A, 51H

SUBB A, 75H

Multiplication

MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and

B register. After multiplication the lower byte of the result will be stored in accumulator

and higher byte of result will be stored in B register.

Eg. MOV A,#45H ; [A]=45H

MOV B,#0F5H ;[B]=F5H

MUL AB ;[A] x [B] = 45 x F5 = 4209

;[A]=09H, [B]=42H

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by

the 8 bit unsigned number which is stored in B register. After division the result will

be stored in accumulator and remainder will be stored in B register.

• Eg. MOV A,#45H ;[A]=0E8H

• MOV B,#0F5H ;[B]=1BH

• DIV AB ;[A] / [B] = E8 /1B = 08 H with remainder 10H

;[A] = 08H, [B]=10H

DA A (Decimal Adjust After Addition).

When two BCD numbers are added, the answer is a non-BCD number. To get the result in

BCD, we use DA A instruction after the addition

Eg 1: MOV A,#23H

MOV R1,#55H

ADD A,R1 // [A]=78

DA A // [A]=78 no changes in the accumulator after da a

Eg 2: MOV A,#53H

MOV R1,#58H

ADD A,R1 // [A]=ABh

DA A // [A]=11, C=1 . ANSWER IS 111. Accumulator data is changed after

DA A

Increment

Increments the operand by one.

INC increments the value of source by 1

If the initial value of register is FFh, incrementing the value will cause it to reset
to 0.

Decrement

Decrements the operand by one.

DEC decrements the value of source by 1. If the initial value of is 0,

decrementing the value will cause it to reset to FFh.

Logical Instructions

Logical AND

ANL destination, source:

ANL does a bitwise "AND" operation between source and destination, leaving

the resulting value in destination

The value in source is not affected

"AND" instruction logically AND the bits of source and destination.

ANL A,#DATA

ANL A, Rn

Logical OR

ORL destination, source

ORL does a bitwise "OR" operation between source and destination, leaving

the resulting value in destination.

The value in source is not affected. " OR " instruction logically OR the bits of
source and destination.

ORL A,#DATA

ORL A, Rn

Logical Ex-OR

XRL destination, source

XRL does a bitwise "EX-OR" operation between source and destination,

leaving the resulting value in destination.

The value in source is not affected. " XRL " instruction logically EX-OR the

bits of source and destination.

XRL A,#DATA

XRL A,Rn

Rotate Instructions RR A

This instruction is rotate right the accumulator.

Each bit is shifted one location to the right, with bit 0 going to bit 7.

RL A

Rotate left the accumulator. Each bit is shifted one location to the left, with bit

7 going to bit 0

RRC A

Rotate right through the carry.

Each bit is shifted one location to the right, with bit 0 going into the carry bit in

the PSW, while the carry was at goes into bit 7

RLC A

Rotate left through the carry. Each bit is shifted one location to the left, with bit

7 going into the carry bit in the PSW, while the carry goes into bit 0.

Branch (JUMP) Instructions

Jump and Call Program Range

There are 3 types of jump instructions. They are:-

• Relative Jump

• Short Absolute Jump

• Long Absolute Jump

Relative Jump

Jump that replaces the PC (program counter) content with a new address that is

greater than or less than is called a relative jump.

The advantages of the relative jump are

Only 1 byte of jump address needs to be specified in the 2's complement form

• Specifying only one byte reduces the size of the instruction and speeds up

program execution.

• The program with relative jumps can be relocated without reassembling to

generate absolute jump addresses.

Instructions that use Relative Jump

SJMP <relative address>; this is unconditional jump

The remaining relative jumps are conditional jumps

• JC <relative address>

• JNC <relative address>

• JB bit, <relative address>

• JNB bit, <relative address>

• JBC bit, <relative address>

• CJNE <destination byte>, <source byte>, <relative address>

• DJNZ <byte>, <relative address>

• JZ <relative address>

• JNZ <relative address>

Short Absolute Jump

In this case only 11bits of the absolute jump address are needed.

In 8051, 64 Kbyte of program memory space is divided into 32 pages of 2

kbyte each. The instruction length becomes 2 bytes.

Long Absolute Jump/Call

The entire program memory from 0000H to FFFFH use long absolute jump.

The absolute address has to be specified in the op-code, the instruction length

is 3 bytes

Another classification of jump instructions is

• Unconditional Jump

• Conditional Jump

The unconditional jump is a jump in which control is transferred

unconditionally to the target location.

LJMP (long jump). This is a 3-byte instruction.

First byte is the op-code and second and third bytes represent the 16-bit target

Address which is any memory location from 0000 to FFFFH.

AJMP(Absolute jump)this causes unconditional branch to the indicated

address, by loading the 11 bit address to 0 -10 bits of the program counter.

SJMP (short jump). This is a 2-byte instruction. First byte is the op-code and

second byte is the relative target address, 00 to FFH

To calculate the target address of a short jump, the second byte is added to the

PC value

Conditional Jump instructions.

JBC Jump if bit ＝ 1 and clear bit JNB Jump if bit ＝ 0

JB Jump if bit ＝ 1

JNC Jump if CY ＝ 0

JC Jump if CY ＝ 1

CJNE reg,#data Jump if byte ≠ #data

CJNE A,byte Jump if A ≠ byte

DJNZ Decrement and Jump if A ≠ 0

JNZ Jump if A ≠ 0

JZ Jump if A ＝ 0

All conditional jumps are short jumps

Bit level jump instructions:

Bit level JUMP instructions will check the conditions of the bit and if condition

is true, it jumps to the address specified in the instruction. All the bit jumps are

relative jumps.

Subroutine CALL And RETURN Instructions

Subroutines are handled by CALL and RET instructions

There are two types of CALL instructions

LCALL address(16 bit)

This is long call instruction which unconditionally calls the subroutine located

at the indicated 16 bit address.

This is a 3 byte instruction.

ACALL address(11 bit)

This is absolute call instruction which unconditionally calls the subroutine

located at the indicated 11 bit address. This is a 2 byte instruction.

RET instruction

RET instruction pops top two contents from the stack and load it to PC.

Bit manipulation instructions.

8051 has 128 bit addressable memory.

Bit addressable SFRs and bit addressable PORT pins.

It is possible to perform following bit wise operations for these bit addressable
locations.

LOGICAL AND

ANL C,BIT(BIT ADDRESS)

ANL C, /BIT;

LOGICAL OR

• ORL C,BIT(BIT ADDRESS)

• ORL C, /BIT

CLR bit

• CLR bit

• CLR C

CPL bit

• CPL bit

• CPL C

ADDRESSING MODES

Various methods of accessing the data are called addressing modes. 8051

addressing modes are classified as follows.

Immediate addressing

Register addressing.

Direct addressing.

Indirect addressing.

Indexed addressing

Relative addressing.

Absolute addressing.

Long addressing.

Bit inherent addressing.

Bit direct addressing.

Immediate addressing.

In this addressing mode the data is provided as a part of instruction itself. In

other words data immediately follows the instruction.

Eg. MOV A,#30H

ADD A, #83

Register addressing.

In this addressing mode the register will hold the data. One of the eight

general registers (R0 to R7) can be used and specified as the operand.

MOV A,R0

ADD A,R6

Direct addressing

There are two ways to access the internal memory. Using direct address and

indirect address.

Using direct addressing mode we can not only address the internal memory but

SFRs also.

In direct addressing, an 8 bit internal data memory address is specified as part

of the instruction

In this addressing mode, data is obtained directly from the memory.

MOV A,60h

ADD A,30h

Indirect addressing

The indirect addressing mode uses a register to hold the actual address that

will be used in data movement.

Registers R0 and R1 and DPTR are the only registers that can be used as data

pointers.

Indirect addressing cannot be used to refer to SFR registers.

Both R0 and R1 can hold 8 bit address

MOV A,R0

ADD A,R1

Indexed addressing.

In indexed addressing, either the program counter (PC), or the data pointer

(DTPR)—is used to hold the base address, and the A is used to hold the offset

address

Indexed addressing is used with JMP or MOVC instructions

MOVC A, @A+DPTR // copies the contents of memory location pointed by

the sum of the accumulator A and the DPTR into accumulator A.

MOVC A, @A+PC // copies the contents of memory location pointed by

the sum of the accumulator A and the program counter into accumulator A.

Relative Addressing

Relative addressing is used only with conditional jump instructions.

The relative address is an 8 bit signed number, which is automatically added to

the PC to make the address of the next instruction.

The advantage of relative addressing is that the program code is easy to

relocate and the address is relative to position in the memory.

SJMP

LOOP1 JC

BACK

Absolute addressing

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL

(Absolute Call) instructions.

These are 2 bytes instructions

The absolute addressing mode specifies the lowest 11 bit of the memory

address as part of the instruction.

AJMP LOOP1

ACALL

LOOP2

Long Addressing

The long addressing mode is used with the instructions LJMP and LCALL

These are 3 byte instructions. The address specifies a full 16 bit destination

address so that a jump or a call can be made to a location within a 64 Kbyte

code memory space.

Eg.LJMP FINISH

LCALL

DELAY

Bit Inherent Addressing

In this addressing, the address of the flag which contains the operand, is
implied in the opcode of the instruction.

Eg. CLR C ;

Bit Direct Addressing

In this addressing mode the direct address of the bit is specified in the

instruction.

The RAM space 20H to 2FH and most of the special function registers are bit

addressable.

Bit address values are between 00H to 7FH.

Eg. CLR 07h ; Clears the bit 7 of 20h RAM space

SETB 07H ; Sets the bit 7 of 20H RAM space.

Timing diagram

The timing diagram provides the information about the various condition of the

signal in which the machine cycle is executed

Machine cycle

It consist of a sequence of 6 states numbered S1 through S6.Each state time

lasts for two oscillator period.

The machine cycle take 12 oscillator period or 1microsecond if the oscillator

frequency is 12MHz.

Each phase divided into Phase1 half and a Phase 2 half.

OSC S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4

ALE

Read next opcode

Read opcode Read next opcode

S1 S2 S3 S4 S5 S6

1 byte 1 cycle instruction ex INC A

S1 S2 S3 S4 S5 S6

2 byte 1 cycle instruction ex ADD A

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

1 byte 2 cycle instruction ex INC DPTR

Normally two programs are fetch are generated during each machine cycle ,

even if the instruction is executed.

If the instruction is executed it does not need more code bytes.

CPU simply the extra fetch and the program counter not incremented

Execution of one cycle instruction begins during State 1 of machine cycle

when the opcode is latched into the instruction register

The second fetch occur during S4 of the same machine cycle

Execution is complete at the end of state 6 of this machine cycle

The MOVX instruction take two machine cycle to execute.

No program fetch is generated during the second cycle of a MOVX instruction

To fetch or execute the sequence of MOVX instruction

To fetch or execute the sequence are same whether the program memory is

internal or external to the chip

Execution time does not depend on the whether the program memory is

internal or external

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

ALE

PSEN

RD

P2

WITHOUT A MOVX

The signals and timing involved in program fetch when memory program is

external

If program memory is external then the program memory read

PSEN is normally activated twice per machine cycle

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

ALE

PSEN

RD

P2

WITH A MOVX

If an access to external data memory two PSEN is skipped because the

address and data bus is mainly used for data memory access

Data memory bus cycle takes twice as much time as Program memory bus
cycle

ALE is used to latch the low address byte from P0 into the address latch

PSEN is not activated and program address are not emitted

ALE continuous to activate twice per machine cycle and is available as an

clock output signal

One ALE skipped during the execution of the MOVX instruction

19EEC09 / MICRO-COMPUTING BASED SYSTEM DESIGN

Prepared by

Dr.S.Saravanan,

Professor,

Department of Electrical and Electronics Engineering,

Muthayammal Engineering College (Autonomous),

Rasipuram – 637 408.

Unit – III PROGRAMMING AND ADVANCED CONTROLLERS

Basic programming ALP of 8085

8085 program to sum of two 8 bit number without carry

Assumption

The starting address of the program is 2000.

Memory address of the first number is 2050.

Memory address of the second number is 2051.

Memory address of the result is 2052.

Program

Memory address Mnemonics Comment

2000 LDA 2050 This instruction will load the number

from memory to the accumulator

2003 MOV B,A This instruction will move the content of

accumulator to register B

Memory

address

Mnemonics Comment

2004 LDA 2051 This instruction will load the number from memory to the

accumulator

2007 ADD B This instruction will sum the content of accumulator with

the content of register B

2008 STA 2052 This instruction will store the content of accumulator to

the memory address 2052

200B HLT This instruction will terminate the program

Example

Input 2050 : 03

2051 : 04

Output 2052 : 07

8085 program to subtract two 8 bit number with or without carry

Assumption

First number is at 2500 memory address

Second number is at 2501 memory address

Store the result into 2502

Borrow into 2503 memory address

Memory

address

Mnemonics Comment

2000 MVI C,00 Move is used to transfer the data from memory to accumulator

2002 LHLD 2500 LHLD is used to load register pair directly using 16-bit address

2005 MOV A,H MVI is used to move data immediately into any of the register

2006 SUB L SUB is used to subtract two number where one number is in

accumulator

2007 JNC 200B JNC is used to jump if no borrow

200A INR C INR is used to increase register by 1

200B STA 2502 STA is used to store the content of accumulator into memory

200E MOV A,C The instruction will move the content of C register to

Accumulator

2010 STA 2503 This instruction will store the content of accumulator to memory

address

2013 HLT HLT is used to end the program

Input data

2501 : 03

2500 : 04

Output data

2503 : 01 Borrow

2502 : 01 Result

8085 program to multiply two 8 bit number with or without carry

Two 8 bit number stored at the address 2050 and 2051

Result is stored at the address 3050 and 3051

Memory

address

Mnemonics Comment

2000 LHLD 2050 Load the content of 2051 in H and content of 2050

in L

2003 XCHG Exchange content of H with D and content of L

with E

2004 MOV C,D Move the content of D to C register

2005 MVI D 00 Move immediate the content of 00 to D

2007 LXI H 0000 Load 0000 to H

200A DAD D DAD D add HL and DE and the result store in HL

200B DCR C Decrement the content by 1

200C JNZ 200A JUMP if nozero

200F SHLD 3050 Store the value of H at memory location 3051

and L at 3050

2012 HLT Stop the executing program

Input data

2051 : 07

2050 : 43

Output data

3051 : 01

3050 : D5

8085 program to divide two 8 bit number

Two 8 bit number stored at the address 2050 and 2051

Result is stored at the address 3050 and 3051

Memory

address

Mnemonics Comment

2000 LHI 2050 Load the HL pair register with address 2050 memory location

2003 MOV B,M Move the content of memory to B register

2004 MOV C,00 Move the content of 00 to C register

2006 INX H Increment the register pair HL

2007 MOV A,M Move the content of memory to A register

2008 CMP B Compare the content of accumulator and register B

2009 JC 2011 Jump if address 2011 carry flag is set

200C SUB B Subtract the content of accumulator with B register

200D INR C Increment the register C

200E JMP 2008 Stop the executing program

20011 STA 3050 Store the remainder at memory location 3050

2014 MOV A,C Move the content of C register into accumulator

2015 STA 3051 Store the remainder at memory location 3051

2018 HLT Stop the program

Input data

FF 2051

FF 2050

Output data

01 3051

FE 3050

Introduction to 8051 Programming in Assembly language

Assembly language is a low-level programming language.

It is used to write the program code in terms of mnemonics

Even though there are many high level language that are currently in demand

Assembly Programming language is popularly used in many applications.

It can be used for direct hardware manipulations

In 8051 programming code is a less number of clock cycle by consuming less

memory when compared to other high-level languages.

8051 Programming in assembly language

The assembly language is a fully hardware related programming languages

The assembly language is developed by mnemonics therefore users cannot

understand it easily to modify the program

Microcontroller can understand only binary language in the form of 0’s and 1’s

An assembler convert the assembly language to binary language and then it

stores the microcontroller memory

Rules of Assembly language

The assembly code must be written in upper case letter

The label must be followed by colon

All symbols and labels must begin with a letter

All comments are typed in lower case

The last line of the program must be the end directive

The assembly language mnemonics are in the form of opcode such as
MOV,ADD,JMP which is used to perform operation

Example MOV a,b

Where MOV is opcode

And a,b is operand

OPCODE

The opcode is a single instruction that can be executed by CPU.Here the

opcode is a MOV instruction

OPERAND

The operand are single piece of data that can be operated by the op-code

Example : multiplication operation is performed by the operand

MUL a,b

Elements of Assembly Language program

Assembler Directives

Instruction set

Addressing modes

Assembler Directives

The assembling directive gives the direction to the CPU.

The 8051 microcontroller consist of various kinds of assembly directive to give

the direction to control unit

The most useful directive are 8051 programming such as

ORG

DB

EQU

END

ORG (origin)

The directive indicates the Start of the program.This is used to set the register
address during assembly

Syntax : ORG0000h

ORG directive

0000h memory address

DB Define Byte

Define Byte is used to allow a strings of byte.

Example : DB”EDGEFX”

DB is directive

EDGEFX is string

EQU Equivalent

Equivalent directive is used to Equate the address of the variable

Ex reg,equ,0h

END

End directive is used to indicate the end of the program

Ex reg,equ,0h

END

Addressing mode

Direct addressing

Register addressing

Indirect addressing

Indexed addressing

Instruction set

Data Transfer Instruction

Arithmetic Instruction

Logical Instruction

Branching Instruction

LOOP STRUCTURE WITH COUNTING AND INDEXING

The program is an implementation of certain logic by executing group of
instructions

To implement program logic we need to help some of programming techniques

like looping,counting,indexing and code conversion

Looping, counting and indexing

Looping

In this technique program is instructed to execute certain set of instruction

repeatedly to execute a particular task number of times.

For example To add ten number the result will be stored in consecutive memory

location we have to perform addition ten times

Counting

This technique allow the programmer to count how many times the instruction

/set of instruction is executed.

Indexing

This technique allow the programmer to point or refer the data stored in

sequential memory location one by one.

Let us see the program loop to understand looping, counting and indexing.

The program loop is the basic structure which forces the processor to repeat a

sequence of instruction

Loop have four sections

1.Initialization section

2.Processing section

3.Loop control section

4.Result section

Flow chart

No

Yes

Start

Intialization

section

Processing

section

Loop control

section

Is

Looping

Over ?

Result

section

End

Yes

No

Start

Intialization

section

Processing

section

Loop control

section

Is

Looping

Over ?

Result

section

End

The initialization section establishes the starting values of

Loop counter for counting how many loops is executed

Address registers for indexing which gives pointer to memory location and

other variables

The actual data manipulation occurs in the processing section

The loop control structure update counters and pointers for next instruction

The result section can analyze and store the result

The processor can executes initialization section and result section only once

while it may executes processing section and loop control section many times.

The execution time of loop will be mainly dependent on the execution time of

processing section and loop control section

Example program for looping

Calculate sum of series of numbers

The length of the series is in memory location 2200H and the series itself

begins from memory location 2201H

1.Assume the sum to be 8 bit number. Store the sum at memory location

2300H

2.Assume the sum to be 16bit number. Store the sum at memory location

2300H and 2301H

Sample problem

2200H =04H

2201H=20H

2202H=15H

2203H=13H

2204H=22H

Result = 20+15+13+22=60H

2300H=60H

Program

LDA 2200H

MOV C,A - Initialize counter JNZ BACK – If counter = 0

SUB A -Sum =0 STA 2300H – store sum

LXI 2201H -Initialize pointer HLT – End of the program

back ADD M - sum = sum+data

INX H - Increment pointer

DCR C - Decrement counter

No

Yes

Start

Sum=0 Pointer=2201H

Counter=2200H

Sum=sum+pointer

Pointer =pointer+1

Count=count-1

Is

counter=1

2300H=sum

End

Indexing

Indexing means referring the data in sequential manner.Datas are stored in the

consecutive memory location

Example : Data transfer from Memory block B1 to Memory Block B2

Transfer ten bytes of data from memory to another memory block .Source

memory blocks starts from memory location 2200H whereas destination

memory block starts from memory location 2300H

No

Yes

Start

Initialize counter=10

Initialize source memory pointer

Store byte in the destination

memory block

Is

counter=0

?

End

Initialize destination memory pointer

Get the byte from source memory block

Increment source memory pointer Increment destination memory Pointer

and decrement counter

Program

MOVI C,0AH - Initialize counter

LXI 2200H -Initialize source memory pointer

LXI 2300H -Initialize destination memory pointer

back MOV A,M -Get byte from source memory block

STAX D - Store byte in destination memory block

INX H - Increment pointer

INX D - Increment destination memory pointer

DCR C - Decrement counter

JNZ BACK – if counter =/0 repeat

HLT – End of the program

Example for looping and counting

Find the largest of given number

The length of the block in memory location 2200H and block itself start from
memory location 2201H.Store the maximum number in memory location
2300H.

Consider adding array of 8-bit number

LXI H,9000H

MOV C,M

INX H

XRA A

MOV B,A

LOOP ADD M

JNC INCR

INR B

INCR INX H

DCR C

JNZ LOOP

MOV M,B

INX H

MOV M,A

HLT

No

No

start

Count =2200H
pointer-=2201H max =0

Is Max<
pointer

2300H=Max

Pointer=Pointer+1
Counter =
counter-1

Is count
=0

2300H=Max

End

Problem

2200H =04H

2201H=34H

2202H=A9H

2203H=78H

2204H=56H

Result = 2202H =A9H

Program

LDA ,2200H

MOV C,A –Initialize counter

XRA A Maximum=Maximum possible value0

BACK CMP M Is number> maximum

JNC SKIP

MOV A,M Yes replace

SKIP INX H

DCR C

JNZ BACK

STA 2300H store maximum number

HLT end of the program

SUBROUTINE

The group of instruction are written to perform these operation and the group

of instruction are known as Subroutine

This also called as main program

When a main program calls a subroutine the program execution is transferred

to the subroutine and after the completion of the subroutine the program

execution return to the main program

Subroutine Instruction

The subroutine mainly implemented into two instruction namely CALL and

RET.

CALL is used to call a subroutine and the call instruction is written into a

main program

RET is used to return a subroutine and the return Instruction is written in the

subroutine to return to the main program

When subroutine called the content of program counter are stored on stack the

program execution transferred to the subroutine address

When return instruction is executed at the end of the subroutine the memory

address stored in the stack is retrieved and the sequence of execution is

resumed in the main program

CALL

Call subroutine in conditional located at the memory address specified in 16-

bit operation

This instruction place the address of next instruction on the stack and transfer

the program execution to the subroutine address

RET

Return unconditionally from the subroutine

This instruction locates the return address on the top of the stack and transfers

the program execution back to the calling program

The general characteristics of CALL and RET

instruction

1. The CALL instructions are 3-byte instruction .The second byte specifies

the low order byte , and the third byte specifies the high order byte of the

subroutine address

The Return instruction are 1-byte instruction

A CALL instruction must be used in conjunction with a RETURN instruction

in the subroutine

Type of subroutine are

1.Multiple call subroutine

2.Nested subroutine

3.Multiple ending subroutine

Multiple Call Subroutine

This is a subroutine called from many location in the main program.

Example : DELAY routine is a multiple call subroutine

These type of routine are easy to trace and need minimal stack space

When CALL instruction starts to execute the subroutine is called as 8050

memory location

The return address is stored on the stack and the stack pointer is decremented

by two location

8000 sUBROUTINE

8001

8002 8050

8003

8004

8056

CALL

80

50

CALL

80

50

RET

Nested Subroutine

When subroutine called by another subroutine it is called nested subroutine.

When a subroutine calls another subroutine all return address are stored on

stack.

Therefore the number of available stack location limits the extending of

nesting

SUBROUTINE 1 SUBROUTINE 2

8050

8051 8150 8250

8052

8053 8190

8191

8192

8193

CALL

51

50

CALL

52

50

RET

RET

Multiple Ending Subroutine

When a subroutine can be terminated at more than one place it is called a

multiple ending subroutine

8000

8050

8090

80A0

RZ

RC

RET

Subroutine parameters passing

Various information is passed between a calling program and a subroutine a

procedure called parameter passing

Therefore it is important to document a subroutine clearly and carefully

The documentation include

1.Function of subroutine

2.Input/Output parameters

3.Regiters used or modified

4.List of other subroutine called by this subroutine

Example program for subroutine

Find the factorial of a number

Write a program to calculate the factorial of a number between 0 to 8

Program

LXI SP,27FFH Initialize stack pointer

LDA 2200H Get the number

CPI02H Check if the number is quarter than1

OC LAST

MVI D,00H Load number as a result

MOV E,A

DCR A

MOV C,A Load counter one less than number

CALL FACTO Call subroutine factor

XCHG Get the result in HL

SHLD 2201H Store the result in memory

JMP END

LAST LXIH,0001H

SHLD 2201H Store result =01

END HLT

Yes

No

Start

Intialization stack

pointer

Get the number

Call Facto

If

number<?

Store Result

End

Load counter initialize result

Result=1

PIC MICROCONTROLLER AND ITS ARCHITECHTURE

Peripheral Interface Controller (PIC) is microcontroller developed by

Microchip, PIC microcontroller is fast and easy to implement program when

we compare other microcontrollers like 8051.

It is easy to interfacing with other peripherals PIC became successful

microcontroller.

We know that microcontroller is an integrated chip which consists of RAM,

ROM, CPU, TIMERS, COUNTERS etc.

PIC is a microcontroller which also consists of ram, rom, CPU, timers,

counter, ADC (analog to digital converters), DAC (digital to analog

converter).

PIC also supports the protocols like CAN, SPI, UART for interfacing with

other peripherals.

PIC mainly used modified Harvard architecture and also supports RISC

(Reduced Instruction Set Computer)

ARCHITECTURE OF PIC16C6X/7X

PIC 16CXX are 8 bit microcontrollers.

The arithmetic and logic unit of these devices is 8-bit wide.

It can perform operation on temporary working register and any register file.

When the instruction is executed the ALU may affect the various flag namely

Carry(C),Digital Carry(DC),Zero(Z)

CPU (Central Processing Unit):

CPU is not different from other microcontrollers

PIC microcontroller’s CPU consists of

Arithmetic logic unit (ALU)

Memory unit (MU)

Control unit (CU)

Accumulator

ALU mainly used for arithmetic operations and taking the logical decisions.

memory used for storing the instruction which is to processed and also storing

the instructions after processing

Control unit is used for controlling the all the peripherals which are connected

to the CPU both internal peripherals and external peripherals.

Accumulator is used for storing the results and used for further processing.

PIC micro controller supports the RISC architecture that is reduced instruction
set computer.

• RISC has very few instructions (approx. ~ 35) which are used in the

program.

• Length of the instruction is small and fixed and takes same amount of time

for processing.

• As the instruction is small it will take less time to process another words

CPU will be fast.

• Compiler need not be complex and debugging will be very easy in the

programmer point of view.

W register

W means working register .

It consist of 8-bit wide

It contain one of the source operand during the execution of instruction and

may serve as the destination for the result of operation

It can be used only for ALU operation

STATUS REG

RP0 – Register bank select

TO-Reset status bit(Time out bit)

PD – Reset status bit(Power down bit)

0 0 RP0 TO PD Z DC C

Z-Zero bit

DC-Digital carry / Borrow bit

C-Carry / Borrow bit

Carry bit

When 8 bit operand are added a 9 bit result can occur

During subtraction if borrow occurs the carry bit is cleared otherwise carry is
set

A borrow will not occur if the result of subtraction greater than zero

Digital carry

The bit carry from the lower 4th bit during 8 bit addition.

Example subtraction of BCD number there is borrow from 3rd or 4th bit

position DC is cleared otherwise DC is set

DIFFERENT BLOCKS OF PIC MICROCONTROLLER

 Power ON reset and brown out reset

Watch dog timer

 Input/output ports

Analog to digital conversionADC

 Interrupt control

USART

EEPROM/OTP/ROM

 Program memory

 STATUS register

 Program counter stack

 FSR register

POWER ON RESET AND BROWN OUT RESET:

 Power on and brown out reset make sure that the chip operate only when

the supply within limit.

 In brown out reset mode, when the power supply goes below a specified

voltage it reset the PIC.

WATCH DOG TIMER:

A watch dog timer reset the processor, if any malfunctions in the

software program and program deviates from normal operation.

INPUT/OUTPUT PORTS:

Each port has a bidirectional capability, input and output ports are

Multiplexed with alternate functions for peripheral devices on the

microcontroller.

ANALOG TO DIGITAL CONVERSION ADC:

An ADC converts an analog signal into an equivalent digital values.

INTERRUPT CONTROL :

 PIC microcontroller has one vectored interrupt location (i.e. 0004H) but

has 12 independent interrupt source can control, when the central

processing unit will deal with each source.
There is no interrupt priority, only one interrupt is served at a time.

However interrupts can be masked.

USART:

A universal synchronous asynchronous receiver transmission when the
serial data is transmitted asynchronously, data stream is generated with the
transmitter clock.

The receiver must synchronize the incoming data stream to the receiver
clock.

Memory:

Memory module in the PIC consists of RAM, ROM and STACK

RAM (Random Access Memory) which is a volatile memory used for storing

the data temporarily in its registers.

The RAM registers is divided into 2 types.

They are General purpose registers (GPR) and Special purpose registers

(SPR).

GPR: general purpose registers as the name implies for general usage. For

example if we want to multiply any two numbers using PIC we generally take

two registers for storing the numbers and multiply the two numbers and store

the result in other registers.

So general purpose registers will not have any special function or any special

permission, CPU can easily access the data in the registers.

SPR

Special function registers are having the specific functions, when we use

this register they will act according to the functions assigned to them.

They cannot be used like normal registers.

For example you cannot use STATUS register for storing the data, STATUS

registers are used for showing the status of the program or operation.

User cannot change the function of the Special function register

ROM

ROM (Read Only memory) is a non volatile memory used for storing the data
permanently.

In microcontroller ROM will store the complete instructions or program,

according the program microcontroller will act.

Rom is also called program memory in this memory user will write the program

for microcontroller and save it permanently and get executed by the CPU.

According to the instruction executed by the CPU the PIC microcontroller will

perform the task.

In ROM there are different types which are used in different PIC

microcontrollers.

EEPROM

In the normal ROM we can write the program for only one time we cannot

reuse the Microcontroller for another time where as in the EEPROM

(Electrically Erasable Programmable Read Only Memory) we can program

the ROM for number of times.

Flash Memory

Flash memory is also PROM in which we can read write and erase the

program more than 10,000 times. Mostly PIC microcontroller uses this type of

ROM.

Bus

Bus is mainly used for transferring and receiving the data from one peripheral

to another.

There are two types of buses.

Data Bus

It is used to transfer/receive only the data.

Address Bus

It is used to transmit the memory address from peripherals to CPU.

I/O pins are used for interfacing the external peripherals, UART and USART

is serial communication protocol which is used for interfacing serial devices

like GPS, GSM, IR, Bluetooth etc.

Advantages of PIC Microcontroller:

• They are reliable and malfunctioning of PIC percentage is very less.

• The performance of the PIC is very fast because of using RISC architecture.

• Power conception is also very less when compared to other micro controllers.

• The programmer point of view interfacing is very easy, also we can connect

analog devices directly with out any extra circuitry and use them.

• Programming is also very easy when compared to other microcontrollers.

Disadvantages of PIC Microcontroller:

• The length of the program will be big because of using RISC (35

instructions).

• Program memory is not accessible and only one single accumulator is

present.

19EEC09 / MICRO-COMPUTING BASED SYSTEM DESIGN

Prepared by

Dr.S.Saravanan,

Professor,

Department of Electrical and Electronics Engineering,

Muthayammal Engineering College (Autonomous),

Rasipuram – 637 408.

UNIT – IV PROGRAMING AND INTERFACING OF 8085 AND 8051

Programmable peripheral interface (8255)

Architecture of 8255

The parallel input-output port chip 8255 is also called as programmable

peripheral input- output port.

The Intel’s 8255 is designed for use with Intel’s 8-bit, 16-bit and higher

capability microprocessors.

It has 24 input/output lines which may be individually programmed in two

groups of twelve lines each, or three groups of eight lines.

The two groups of I/O pins are named as Group A and Group B.

Each of these two groups contains a subgroup of eight I/O lines called as 8-bit

port and another subgroup of four lines or a 4-bit port.

Thus Group A contains an 8-bit port A along with a 4-bit port. C upper.

The port A lines are identified by symbols PA0-PA7 while the port C lines are

identified as PC4-PC7.

Similarly, Group B contains an 8-bit port B, containing lines PB0-PB7 and a

4-bit port C with lower bits PC0- PC3.

The port C upper and port C lower can be used in combination as an 8-bit port
C.

Both the port C are assigned the same address.

Thus one may have either three 8-bit I/O ports or two 8-bit and two 4-bit ports

from 8255.

All of these ports can function independently either as input or as output ports.

This can be achieved by programming the bits of an internal register of 8255

called as control word register (CWR).

This buffer receives or transmits data upon the execution of input or output

instructions by the microprocessor.

The control words or status information is also transferred through the buffer.

Pin Diagram of 8255

The signal description of 8255 are briefly presented as follows:

PA7-PA0

These are eight port A lines that acts as either latched output or buffered input

lines depending upon the control word loaded into the control word register.

PC7-PC4

Upper nibble of port C lines. They may act as either output latches or input

buffers lines. This port also can be used for generation of handshake lines in

mode 1 or mode 2.

PC3-PC0

These are the lower port C lines, other details are the same as PC7-PC4 lines.

PB0-PB7

These are the eight port B lines which are used as latched output lines or

buffered input lines in the same way as port A.

RD

This is the input line driven by the microprocessor and should be low to

indicate read operation to 8255.

WR

This is an input line driven by the microprocessor. A low on this line indicates

write operation.

CS

This is a chip select line. If this line goes low, it enables the 8255 to respond to

RD and WR signals, otherwise RD and WR signal are neglected.

A1-A0

These are the address input lines and are driven by the microprocessor.

These lines A1-A0 with RD, WR and CS from the following operations for

8255.

These address lines are used for addressing any one of the four registers, i.e.

three ports and a control word register

In case of 8086 systems, if the 8255 is to be interfaced with lower order data

bus, the A0 and A1 pins of 8255 are connected with A1 and A2 respectively.

D0-D7

These are the data bus lines those carry data or control word to/from the

microprocessor.

RESET

A logic high on this line clears the control word register of 8255. All ports are

set as input ports by default after reset.

Operational Modes of 8255

There are two main operational modes of 8255:

Input/output mode

Bit set/reset mode

Input / Output Mode

There are three types of the input/output mode. They are as follows:

Mode 0

In this mode, the ports can be used for simple input/output operations without

handshaking

If both port A and B are initialized in mode 0, the two halves of port C can be

either used together as an additional 8-bit port, or they can be used as

individual 4-bit ports.

Since the two halves of port C are independent, they may be used such that

one-half is initialized as an input port while the other half is initialized as an

output port.

The input output features in mode 0 are as follows:

O/p are latched.

I/p are buffered not latched.

Port do not have handshake or interrupt capability.

Mode 1

When we wish to use port A or port B for handshake (strobed) input or output

operation, we initialize that port in mode 1 (port A and port B can be initialized

to operate in different modes, ie, for eg., port A can operate in mode 0 and port

B in mode 1).

Some of the pins of port C function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or

output port), PC0, PC1 and PC2 pins function as handshake lines.

If port A is initialized as mode 1 input port, then, PC3, PC4 and PC5 function

as handshake signals.

Pins PC6 and PC7 are available for use as input/output lines.

The mode 1 which supports handshaking

Two ports i.e. port A and B can be used as 8-bit I/O port.

Each port uses three lines of port c as handshake signal and remaining two

signals can be function as I/O port.

Interrupt logic is supported.

Input and Output data are latched.

Mode 2

Only group A can be initialized in this mode. Port A can be used for

bidirectional handshake data transfer.

This means that data can be input or output on the same eight lines (PA0 –

PA7).

Pins PC3 - PC7 are used as handshake lines for port A.

The remaining pins of port C (PC0 - PC2) can be used as input/output lines if

group B is initialized in mode 0.

In this mode, the 8255 may be used to extend the system bus to a slave

microprocessor or to transfer data bytes to and from a floppy disk controller.

Bit Set/Reset (BSR) mode

In this mode only port b can be used (as an output port).

Each line of port C (PC0 - PC7) can be set/reset by suitably loading the

command word register no effect occurs in input-output mode.

The individual bits of port c can be set or reset by sending the signal OUT

instruction to the control register.

Programmable Interrupt Controller (8259)

Features

8 levels of interrupts.

Can be cascaded in master-slave configuration to handle 64 levels of interrupts.

Internal priority resolver.

Fixed priority mode and rotating priority mode.

Individually maskable interrupts.

Modes and masks can be changed dynamically.

Accepts IRQ, determines priority, checks whether incoming priority > current

level being serviced, issues interrupt signal.

In 8085 mode, provides 3 byte CALL instruction.

In 8086 mode, provides 8 bit vector number.

Polled and vectored mode.

Starting address of ISR or vector number is programmable.

No clock required.

Pinout

IRR

The interrupt at IRQ input lines are handled by Interrupt request internally

IRR stores all the interrupt request it is in order to serve them one by one

on the priority basis

IR0-IR7

This pin act as input to accept interrupt request to the CPU. In edge

triggered mode an interrupt service it is requested by raising and IR pin as

Low to a high state

ISR

This stores all the interrupt request those are being served ISR keep a track

of the requests being served

Priority Resolver

This unit determines the priorities of the interrupt requests appearing

simultaneously.

The highest is selected and stored into selected and stored into the

corresponding bit of ISR

IMR

This register store the bit required to mask the interrupt inputs

Interrupt Control Logic

This block manages the interrupt and interrupt acknowledgement signal to be

sent to the CPU for serving one of the eight interrupt request

INTA-bar

This pin is an input used to strobe in 8259 interrupt vector on to the data bus

Data bus buffer

This tristate bidirectional buffer interface internal 8259 bus to the

microprocessor system data bus.

D0-D7

This pin from a bidirectional data bus that carries 8 bit data either to control

word or from status word register

Read/Write control register

This circuit accepts and decodes command from CPU

CS

This is an active low chip select signal for enabling RD and WR operation

WR

This pin is an active low write enable input to 8259

RD

This pin is an active low read enable input to 8259

Cascade buffer / Comparator

This blocks store and compare the ID of all the 8259 used in the

microprocessor system.

The three i/o pins CASO-2 are output when the 8259 is used as master

CAS0-CAS2

A signal 8259 provides eight vectored inputs.

If more interrupts are required the 8259 is used in cascaded mode

PS/EN

This pin is a dual purpose pin .When chip is used in buffered mode it can be

used as buffered enable to control buffer

INT

This pin goes high whenever a valid interrupt request is asserted.This is used

to interrupt the CPU and is connected to the interrupt input to the CPU

Interrupt sequence in an 8085 system

One or more IR lines are raised high that set corresponding IRR bits

8259A resolves priority and sends an INT signal to CPU

The CPU acknowledgement with INTA pulse

Upon receiving INTA signal from the CPU the highest priority ISR bit is set

and the corresponding IRR bit is reset.

8259A does not drive data during this period

Command word of 8259

The command word of 8259 classified into two groups

Initialization command word(ICW)

Operation Command word(OCW)

Initialization command word(ICW)

Before it starts functioning the 8259 must be initialized by writing two or four

command word into respective command word register

These are called as Initialization command word

The initialization command word can be defined into two types of

Initialization command word 1

Initialization command word 2

Initialization command word 1(ICW1)

If A0=0 and D4=1 the control word is recognized as ICW1.It contain control

bits for edge/level triggered mode

Initialization command word 1(ICW2)

If A0=1 the control word recognized as ICW2.The ICW2 store the details

regarding interrupt vector address

NO

YES

NO

YES

ICW1

ICW2

In
Cascade

mode

ICW3

Is
ICW4
neede

d

ICW4

Ready to accept
interrupt request

A0 D7 D6 D5 D4 D3 D2 D1 D0

ICW1

0 A7 A6 A5 1 LTIM ADI SNGL IC4

A7-A5 of Interrupt vector

address MCS 80/85 mode

only

1-Level Triggered

0-Edge triggered

I=ICW4

Needed

0=No ICW4

1-Sngle

0-cascaded

Call address Interval

1-Interval of 4bytes

0-Interval of 8 bytes

ICW2

A0 D7 D6 D5 D4 D3 D2 D1 D0

ICW3

A0 D7 D6 D5 D4 D3 D2 D1 D0

ICW4

A0 D7 D6 D5 D4 D3 D2 D1 D0

1 T7 T6 T5 T4 T3 A10 A9 A8

1 S7 S6 S5 S4 S3 S2 S1 S0

1 0 0 0 SFNM BUF M/S AEOI PM

Operating modes of 8259

The different modes of operation can be programmed by setting or resetting the

appropriate bits of ICW or OCW

The different modes of operation are

1.Fully nested mode

2.End of Interrupt

3.Automatic Rotation

4.Automatic EOI Mode

5.Specific Rotation

6.Special Mask Mode

7.Edge and Level Triggered mode

8.Reading 8259 Status

End of Interrupt

The ISR bit can be reset either with AEOI bit of ICW1 or by EOI command

issued before returning from the interrupt service routine

There are two types of EOI command

1.Specific command

2.Non-specific command

When 8259 can be operated in the fully nested mode it can determine the ISR
bit

is to be reset on EOI

When non-specific EOI command is issued to 8259 it will automatically reset

the highest ISR bit

Automatic Rotation

This used in the application of all the interrupt device are of equal probability

In this mode an Interrupt request level receives the priority after it served at the

time next device to be served gets the highest priority sequence

Automatic EOI Mode

Till AEOI = 1 in ICW4 the 8259 operates in AEOI mode.

This mode only used in nested multi level interrupt structure.

Specific Rotation

In this mode at bottom priority level can be selected using L2,L1 and L0.

The selected bottom priority can fixes other priority

Special Mask mode

In special mask mode when a mask bit is set in OCW1 it inhibit further interrupt

at the level and enable the interrupt from other level

Edge and Level triggered

This mode decides whether the interrupt should be edge triggered or level

Triggered. If the bit of ICW1=0 they are edge triggered otherwise the interrupt

are level triggered

Reading of 8259 Status

The status of internal register of 8259 can be read using this mode..OCW3 can

read IRR and ISR while OCW1 is used to read IMR

9.Poll Command

10.Specially Fully Nested Mode

11.Buffered mode

12.Cascaded mode

Fully Nested Mode

This is the default mode of operation of 8259.

IR0 has the higher priority and IR7 has the lowest one.

When the interrupt priority like the highest priority request is determined and

the vector is placed on the data bus

If the ISR bit is set all the priority interrupts are inhibited but higher level

priority will generate an interrupt then the interrupt can be acknowledge only if

the microprocessor interrupt enable the flag IF is set

8251 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER

TRANSMITTER (USART)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver

Transmitter) for serial data communication.

As a peripheral device of a microcomputer system, the 8251receives parallel

data from the CPU and transmits serial data after conversion.

This device also receives serial data from the outside and transmits parallel

data to the CPU after conversion.

Need for PCI

The three modes of data transmission are

Simplex

Duplex

Half duplex

Simplex

In this mode data ca be transmitted by in one direction over a single

communication channel

Duplex

In this mode data can be transferred between two transceivers in both

directions simultaneously

Half duplex

In this mode data transmission take place in either direction but at a time data

may be transmitted only in one direction

Features

It is a universal synchronous and asynchronous Communication Controller

It support the standard protocols like

5 to 8 bit character format

Odd even or no parity generation

Baud rate from DC to 19.2k baud

False start bit detection

Break character generation

It allow full duplex transition

Block diagram

Data bus buffer

It interfaces the internal bus of 8251 with the system bus

D0-D7

This is 8 bit data bus used to read or write status command word or data

from or to the 8251

Read/Write Control logic

It controls the operation of the peripheral depending upon the operation

initiated by CPU

C/D control word data

This pin together with RD and WR inputs inform 8251 that the word on the

data bus is either a data or control word / status information

RD

This is active low signal and it inform 8251 that the CPU is reading either

data or status information from internal register

WR

This is active low signal and its inform 8251 that the CPU is reading either

data or control word to 8251

CS

It is an active low select input

If it is high no read or write operation can be carried out on 8251

CLK

It is used to generate internal device timing and is connected to the clock

generator output

RESET

A high on this input forces 8251 into an idle state and remains idle till it is

low again and a new control word

Modem Control

It handles the modem handshake signal to coordinate the communication

between the modem and USART

DSR

It is used to check if the data set is ready when communicating with a modem

DTR

It is used to indicate that the device is ready to accept data when 8251 is

communicating with a modem

RTS

It indicate the modem that the receiver is ready to receive data byte from the

modem

CTS

If this low the 8251 is enabled to transmit the serial data

Transmit control

It transmit the data byte received by the data buffer from the CPU for further

serial communication

TXC

It control the rate at which the character is to be transmitted

TXRDY

It indicates CPU that the transmit buffer is ready to accept a new character for

the transmission from the CPU

TXE

When high it indicates that transmit buffer does not have any character to

transmit

Transmit buffer

It receives parallel data and converter is it to serial data

TXD

This carries serial data bits along with other information like start, stop bit

and parity bit

Receiver buffer

It converts serial data to parallel data gives to the microprocessor

RXD

It receives the composite stream of data to be received by 8251

Receiver control

This decided the receiver frequency as controlled by RXC input frequency

RXRDY

It indicates that 8251 contains a character to be ready

RXC

This controls the rate at which the character to be received

8251 Operating modes

8251 can be programmed to operate in its various mode using the mode
control

A set of control word may be written in the internal register

Once 8251 is programmed as required the TXRDY is raised high to signal of

CPU

8251 is ready to receive data byte from it to be converted serial format and

transmitted

In receiver mode 8251 receives serial data byte from modem or I/O device

After receiving the data byte the RXRDY signal is raised high to inform the

CPU

The RXRDY signal is automatically reset after the CPU read the received

Byte

The control word of 8251 are divided into

Mode Instruction control word

Command word instruction control word

Mode Instruction control word

Mode Instruction control word define the general operation characteristics of

the 8251

After the internal or external reset must be written to configure the 8251

Once written to the configure 8251 SYNCH command instruction can be

Programmed

To change the mode of operation from synchronous to asynchronous

Asynchronous mode(Transmission)

When a data character is sent to 8251 by the CPU it starts the bits prior to the serial

data bit followed by optional parity bit and stop bit using the asynchronous

mode instruction control

This sequence is transmitted by using TXD output pin

When no data character are sent by the CPU to8251

Asynchronous mode(Receive)

An RXD input line marks a start bit.

A baud rate of 16X and 64X this start bit is again checked at the center of the

start bit pulse and if detect the low it is a valid start bit and the bit counter starts

counting

The bit counters can locate at the data bit , parity bit and stop bit.

If a low level can be detected in the stop bit the framing error flag is set

RXRDY pin is then realized high to indicate to the CPU that the character is

ready

Synchronous mode(Transmission)

The TXD output is high until the CPU send a character to 8251 .

When CTS line goes low the first character is serially transmitted out

Synchronous mode(Receiver)

In this mode character synchronization can be achieved internally or externally

If this mode is programmed then ENTER HUNT command should be included

in the first command instruction word written into CPU

Command instruction Format

EN If 1 HUNT for SYNC Character

IR Internal reset high forces 8251 to mode instruction

format

RTS Request to send

If 1 RTS =0

ER Reset error flag PE , OE , FE if ER =1

SBRK Send Brake character

1-TxD force 0

0-Normal operation

EN IR RTS ER SBRK RXE DTR TXEN

RXE Receive Enable

1-Enable 0-Disable

DTR Data Terminal Ready

If 1 DTR =0

TXEN 1-Transmit enable

0-Disable

Status Read Instruction format

It is used by CPU to read the status of the active 8251 to conform if any

error condition or other condition like the requirement of processor

service has been deleted during the operation

DSR SYNDET FE OE PE TxEMPTY ExRDY TxRDY

DSR This indicates that DSR is at zero level

FE Framing error Framing error flag is set when a valid stop bit is not

detected at the end of every character and reset by ER command instruction

OE Over run Error

This flag is set when the CPU does not read a character before the next one

becomes available and is reset by command instruction

PE Parity error

This is set if error detected . Reset by ER bit of command instruction

TxRDY This pin indicates that USART is ready to accept a data character or

command

8254 PROGRAMMABLE INTERVAL TIMER

The 8254 is a programmable interval timer/counter specially designed for

use in real time applications for timing and counting function such as

binary counting , generation of accurate time delay

FEATURES

Compatible with all Intel Microprocessor

Handles input from DC to 10 MHz

Clock frequency is 10MHz

Status Read Back command

Three Independent 16-Bit counter

The 8254 is a programmable interval timer / counter designed for use with

Intel microcomputer system

In general multi-timing element that can be treated as an array of I/O ports in

the system software

It consist of three identical counting circuits each of which has CLK and

GATE inputs and OUT outputs

It solves the most common problem in any microcomputer system the

generation of accurate time delay under software control

8254 to match the requirement and program one of the counter for the desired

Delay

After the desired delay 8254 will interrupt the CPU

Some of other counter/timer function common to microcomputer which can

be implemented with the 8254 are

Real time clock

Event-counter

Programmable rate generator

Square wave generator

Complex waveform generator

DATA BUS BUFFER

This is 3-state bidirectional 8-bit buffer is used to interface the 8254 to the

system bus

READ/WRITE LOGIC

The read/write logic accepts the input from the system bus and generate the

Control signal for the other functional block of the 8254

A1 and A0 select one of the three counter or the control word register to be

read /write

A low on the RD input tells the 8254 that the CPU is reading one of the

counter

A low on the WR input tells the 8254 that the CPU is writing either a control

word or an initial count

CONTROL WORD REGISTER

The control word is selected by the read/write logic when A1,A0 =11

CPU does a write operation to the 8254 the data is stored in the control word

register

Control word is used to define the operation of the counters

Control word register is used only for written cannot be used for read

COUNTER 0,COUNTER 1,COUNTER 2

These three functional blocks are identical in operations so only single
counter are described

The counters are fully independent .

Each counter may operate in a different mode

Each counter has 3 logical line CLOCK,GATE and OUT

CLOCK and GATE are input signal and OUT are output signal

The function of these lines changes depending on how the device is initialized

Gate signal act as a start pulse depending on the mode of operation of the
counter

Clock act as clock input to the counter

The counter can easily read by the CPU

Read/Write control logic signal

Counter RD WR A0 A1 Function

counter0 1 0 0 0 Load counter 0

0 1 0 0 Read counter 0

Counter 1 1 0 0 1 Load counter 1

0 1 0 1 Read counter 1

Counter 2 1 0 1 0 Load counter 2

0 1 1 0 Read counter 2

control word 1 0 1 1 Write control

word register

Read/Write control supports five control signal RD,WR,A0,A1 and CS

Address line A0 and A1 selects counter0 or counter1 or counter2 or the control

word register

Based on the RD or WR signals are enabled at the particular time determined

the selected counter or control word register to perform read or write operation

Control word format

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 RL1 RL0 M2 M1 M0 BCD

SC-Select Counter

SC0 SC1 M2 M1 M0

BCD

0 0 Select counter 0

0 1 Select counter 1

1 0 Select counter 2

1 1 Read back

command

0 Hexadecimal count

1 Binary coded decimal

0 0 0 Mode 0

0 0 0 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 0 Mode 5

RL0 RL1

Read Back Command

This command allows the user to check the count value

0 0 Counter latch

0 1 Read/Write least significant bytes only

1 0 Read/Write most significant bytes only

1 1 Read/Write least significant bytes only first them

most significant byte

Operating modes of 8254

Each of the three counters of 8254 can be operated in one of the following six

modes of operation

Mode 0 : Interrupt of Terminal Count TC

Mode 1 : Programmable On shot

Mode 2 : Rate generator

Mode 3 : Square wave generator

Mode 4 : Software Triggered Strobe

Mode 5 : Hardware Triggered Strobe

Mode 0

In this mode output is initially low after the mode is set

The OUT remains low even after the count value is loaded in the counter

Counter starts decrementing the count value after the falling edge of the
clock if the GATE input is high

The counting process continues till the terminal count is reached

When terminal count TC is reached OUT goes high

The high OUT signal can be used to interrupt the processor

If the GATE signal is high at the time the counting is high

If the GATE signal is low counting is terminated

Mode 1

This mode of operation is called programmable one shot

8254 can be used as a monostable multivibrator

The monostable multivibrator is decided by count loaded into count register

GATE input is used as trigger input

OUT remains high till the count is loaded in the count register

OUT remains low till the count becomes zero

Mode 2

This mode is called rate generator or divide by N counter

If N is loaded as count value the OUT becomes low only for one clock

cycle

The OUT signal is initially high

The GATE signal is low the gate signal force the OUT signal as high

The counter can generates the low pulses

The count down can starts at the time count becomes zero

The low pulses are equal to one clock cycle

Mode 3

In this mode 8254 can act as a square wave generator

When the count N loaded is even then for half of the count N/2 pulses the

OUT is high and for remaining N/2 pulses is low

If the count N loaded is odd then for N+1/2 pulses the OUT is high for

remaining pulses OUT remains low

Mode 4

This mode can be termed as software triggered strobe

If the mode is set the OUT is high

When a count is loaded counting down starts

In terminal the OUT goes low for one clock cycle

If the low pulses can be used as strobe peripheral are interfaced with

microprocessor

If the new count is loaded into count register the previous counting is progress

If the counting can proceeds according to the new count

Mode 5

This mode of operation is called hardware triggered strobe

In this mode signal is generated at the rising edge

This mode can be used to generate the strobe

If the OUT goes high the count can be loaded

The counter starts counting the rising edge

The OUT low when TC is reached

8237

It is also called as DMA controller

DMA mode of transfer is the fastest among all the mode of data transfer

In this mode the device may transfer data directly / memory without any
interface from CPU

DMA is initiated only after receiving HLDA signal from CPU

DMA mode of data transfer between several device DMA controller is used

The chip supports four DMA channel i.e four peripheral device can

independently request for DMA data transfer through these channel

It has an 8-bit internal data buffer read / write unit control unit priority

resolving unit along with set of register

I/O buffer

The 8-bit bidirectional data buffer is interfaced with internal bus of 8237 and

also with external data bus

Timing and control unit

The control logic unit control the sequence of DMA operations of the

following control signals are AEN,MEMR,MEMW

EOP

END OF PROCESS

End of Process is an active low bidirectional signal.

The 8237A allows an external signal to terminate an active DMA service

The 8237A also generates a pulse when the terminal count (TC) for any

channel is reached.

The reception of EOP, either internal or external, will cause the 8237A

The mask bit and TC bit in the status word will be set

RESET

Reset is an active high input which clears the Command, Status, Request and

Temporary registers.

CS

Chip Select is an active low input used to select the 8237A as an I/O device

during the Idle cycle.

This allows CPU communication on the data bus.

READY

Ready is an input used to extend the memory read and write pulses from the

8237A to accommodate slow memories or I/O peripheral devices.

CLOCK INPUT

Clock Input controls the internal operations of the 8237A and its rate of data

transfers.

The input may be driven at up to 5 MHz

AEN

ADDRESS ENABLE

Address Enable enables the 8-bit latch containing the upper 8 address bits onto

the system address bus.

AEN can also be used to disable other system bus drivers during DMA

transfers.

ADSTB

ADDRESS STROBE

The active high, Address Strobe is used to strobe the upper address byte into an

external latch.

MEMR

MEMORY READ:

The Memory Read signal is an active low three- state output used to access

data from the selected memory location during a DMA Read or a memory-to-

memory transfer.

MEMW

MEMORY WRITE:

The Memory Write is an active low three-state output used to write data to the

selected memory location during a DMA Write or a memory-to-memory

transfer.

IOR

I/O READ:

I/O Read is a bidirectional active low three-state line.

In the Idle cycle, it is an input control signal used by the CPU to read the

control registers.

In the Active cycle, it is an output control signal used by the 8237A to access

data from a peripheral during a DMA Write transfer.

IOW

I/O WRITE:

I/O Write is a bidirectional active low three-state line. In the Idle cycle, it is an

input control signal used by the CPU to load information into the 8237A

In the Active cycle, it is an output control signal used by the 8237A to load

data to the peripheral during a DMA Read transfer

DREQ0 – DREQ3

DMA REQUEST

The DMA Request lines are individual asynchronous channel request inputs

used by peripheral circuits to obtain DMA service.

In fixed Priority, DREQ0 has the highest priority and DREQ3 has the lowest

priority

HLDA

HOLD ACKNOWLEDGE:

The active high Hold Acknowledge from the CPU indicates that it has

relinquished control of the system busses.

HRQ

HOLD REQUEST:

This is the Hold Request to the CPU and is used to request control of the

system bus.

If the corresponding mask bit is clear, the presence of any valid DREQ causes

8237A to issue the HRQ.

DACK0 – DACK3

DMA ACKNOWLEDGE:

DMA Acknowledge is used to notify the individual peripherals when one has

been granted a DMA cycle.

The sense of these lines is programmable.

Reset initializes them to active low.

DB0 – DB7

DATA BUS:

The Data Bus lines are bidirectional three-state signals connected to the system
data bus.

The outputs are enabled in the Program condition during the I/O Read to

output the contents of an Address register, a Status register, the Temporary

register or a Word Count register to the CPU.

The outputs are disabled and the inputs are read during an I/O Write cycle

when the CPU is programming the 8237A control registers

In memory-to-memory operations, data from the memory comes into the

8237A on the data bus during the read-from- memory transfer.

In the write-to-memory transfer, the data bus outputs place the data into the

new memory location.

A0 –A3

ADDRESS:

The four least significant address lines are bidirectional three-state signals. In

the Idle cycle they are inputs and are used by the CPU to address the register

to be loaded or read.

In the Active cycle they are outputs and provide the lower 4 bits of the output

address.

A4–A7

ADDRESS:

The four most significant address lines are three-state outputs and provide 4

bits of address. These lines are enabled only during the DMA service.

PIN5:

This pin should always be at a logic HIGH level.

An internal pull-up resistor will establish a logic high when the pin is left

floating.

It is recommended however, that PIN5 be connected to VCC.

VCC

POWER: a5V supply.

VSS

GROUND: Ground.

Register of 8237

Current Address register

It consist of four DMA channel and also it consist of 16 bit address register

It is used to hold the memory address can be accessed the DMA

The address is automatically incremented or decremented after the data

transfer

The current address register can be initialized after the EOP

Current Word count register

It consist of 16 bit memory address

It is used to hold the number of bytes to be transferred

The word count is decremented after each data transfer

When count become zero the EOP will be generated

Current word count register can initialize after the EOP

Base address register

It consist of 16 bit address register

It hold the initialize address of the current data transfer

Base Word count Register

It consist of 16-bit address register

It hold the initialize word count of the current data transfer

Command register

It consist of 8-bit register i.e D0-D7

It controls the complete operation of 8237

D0 - If the input is 1 memory to memory can be enable

D1 – If the input is 1 channel 0 address hold enable

D2 – If the input is 1 controller enable is selected

D3 – If the input is 1 compressed timing can be selected

D4 – If the input is 1 rotating priority is selected

D5 – If the input is 1 extended write operation

D6 – If the input is 1 DREQ can sensed

D7 – DACK and Acknowledge high

Mode set register

It consist of 8 bit register

It is written by the CPU in program mode

Demand mode select 0 0 00 – Verify transfer 00 – Control 0 select

Single mode select 0 1 01 – Write transfer 01 – Control 1 select

Block mode select 1 0 10-Read transfer 10-Control 2 select

Cascaded mode select 1 1 11 – illegal 11-Control 3 select

1-Auto initialize enable

1-Address decrement start

D7 D6 D5 D4 D3 D2 D1 D0

Single mode

In this mode only one bit is transferred per request

Burst mode

In this mode operation of microprocessor is temporarily suspended at the time

the external device can access the memory

When a block is ready for data transfer the DMA can send the HOLD signal to

microprocessor

The DMA controller take control of buses and transfer data directly between

I/O device and memory

This mode is called as visible mode

When there is a significant time delay between the transfer of two successive

data bytes

In this mode data transfer only one or two bytes can be transferred at the time

During the data transfer operation the microprocessor performing instruction

decoding

When an I/O device is ready to transfer the data using DMA

It can request the MP for DMA cycle

Once the request is granted the I/O device data transfer one or two bytes of

data to memory

After some times when the device is again ready to data transfer it repeat the

process again and again

Block Mode

Block of data can be transferred until a TC is reached zero

Demand mode

This mode is similar of block mode

Block of data can be transferred until a TC is reached zero or an EOP is

detected

Cascaded mode

More than one 8237 can be connected together to provide more than four

DMA channel

Memory-Memory transfer mode

Data cannot be transferred from one set of memory address to the other set of

memory for this it uses one temporary register in between the destination and

source

Request register

Each channel has request associated

Set request bit – 1 Channel select

Reset request bit – 0

D3-D7 do not care

D1-D0

00 – Channel 0 has requested the register

01- Channel 1 has requested

10-Channel 2 has requested

11-Channel 3 has requested

x x x x x

Mask register

Clear mask bit – 0

00 – Channel 0 has selected

01- Channel 1 has selected

10-Channel 2 has selected

11-Channel 3 has selected

x x x x x

Status register

D7 D6 D5 D4 D3 D2 D1 D0

D0-If 1 ch0 reached TC

D1-If 1 ch1 reached TC

D2-If 1 ch2 reached TC

D3-If 1 ch3 reached TC

D4 -If 1 ch3 has requested

D5-If 1 ch2 has requested

D6-If 1 ch1 has requested

D7-If 1 ch0 has requested

Priorities of DMA

Fixed priority

Rotating Priority scheme

Fixed priority

In fixed priority each device connected to a channel then the channel is
assigned a fixed priority

In this scheme DREQ is the lowest priority and the next DrQ0 is the highest

Priority

Rotating Priority

In Rotating Priority mode the priority is assigned to the channel are not
fixed .

In this scheme DRQ0 is the highest priority and DRQ3 is the lowest priority

Then after the device at channel 0 get a priority then the priority goes down and

the channel 0 become a lowest priority channel

Channel 1 is now become the highest priority

DMA operation

The 8237 is able to perform three types of operation such a verify DMA

operation i.e read operation and write operation

The complete DMA operation of 8237 in single byte data transfer can be

Described

DMA Execution

The process of data transfer from the peripheral to the system memory under the

DMA controller can be classified into two modes

1.Slave mode

2.Master mode

1.Slave mode

In slave mode the DMA controller is treated as a peripheral

The microprocessor select the DMA controller through the chip select

The microprocessor write the control word in channel register and

command/status register by using control signal IOW and IOR

In this mode the output signal of 8237 such as A7-A4 ,MEMW and MEMR

2.Master mode

In 8237 master mode keep checking for a DMA request and the steps in

data transfer are as

When the peripheral is ready for data transfer it send a high signal to DRQ

When DRQ has been received at the time channel has been enabled the

control logic set HRQ high

In the next the HLDA signal send to 8237

After receiving HLDA signal the DMA output are 16-bit address on the bus

The DMA can send DACK to the peripheral

The DMA controller continues the data transfer

At the end of data transfer the EOP signal can low and the peripheral device can

complete the data transfer

DMA Transfer and operation

The 8237 is able to accomplish three types of operation

1.Verify DMA

2.Write operation

3.Read operation

A single byte transfer using 8237 may be requested by an i/o device using any

one of the 8237 DRQ inputs

8237 sense the HRQ signal to the CPU and its HLD input

If HLDA signal is received by DMA controller it indicates the bus is available

for transfer

The DMA controller generate the read and write command to transfer the bytes

from i/o device

If more then one channel request service simultaneously transfer will occur in

burst transfer

The 8237 has a READY input to interface it with low speed devices

The 8237 can be interfaced as a memory or I/o devices

8237 Command and Programming

Clear First / Last

It can exists in internal flip-flop of 8237 is called First/Last Flip flop

This flip flop output decides whether the lower byte or upper byte

It can also selected the 16-bit register will be read or write

Thus the clearing this command of CPU will address the higher or lower bytes in

appropriate sequence

Clear Mask register

A mask set register is set the DMA channel is disable so that the DMA request

not entered

If the mask register is cleared individually or collectively the DMA channel are

Enabled

Master Clear Command

Using this command all the internal register of 8237 are cleared when the mask

register are set

After executing the command the DMA controller disable all the DMA channel

can enter into the idle cycle

8279 KEYBOARD / DISPLAY CONTROLLER

Intel 8279 is a general purpose keyboard display controller that simultaneously

drives the display of a system and interface a keyboard with the CPU

The keyboard display interface scan the keyboard to identify the if any key has

been pressed and send the code of the pressed key to the CPU

It also transmits the data received from the CPU to the display device

The keyboard is interfaced either in the interrupt or polled method

In the interrupt mode the processor is requested service only if any is key

Pressed otherwise the CPU can proceed

In the polled mode the CPU periodically read an internal flag of 8279 to check

for a key pressure

The keyboard section can interface an array of maximum 64 keys with the

CPU

The keyboard entries are debounce and stored in an 8 bit FIFO RAM that is

further accessed by the CPU

If more than eight character are entered into the FIFO the over run status is set

If a FIFO contains the valid key entry the CPU is interrupted or the CPU

check the status to the read entry

Once the CPU read the key entry the FIFO is updated

The 8279 normally provide a maximum of 16 7 segment display interface

with CPU

It contain 16 byte display RAM that can be used either as an integrated block

of the 16x8 bits or two 16x4 bit block of RAM

The data entry to RAM block is controlled by CPU using the command word of

8279

The keyboard display controller chip 8279 provides

A set of four scan lines or eight return lines for interfacing keyboards

A set of eight output lines for interfacing the display

I/O control and Data bus

The I/O control section controls the flow of data to the 8279

The data bus buffer interface the external bus of the system with internal bus of

8279

The I/O is enabled only if CS is low

The pin A0,RD and WR select the command status or read / write operation

carried out by the CPU with 8279

DB0-DB7

These are bi directional data bus lines . The data and command word to the CPU

are transferred

CS

Chip select A low on this line enables 8279 for normal read or write operation

Otherwise the pin is high

A0

A high on this line indicates the transfer of a command or status information

A low on this line indicates the transfer of data

This is used to select one of the internal register of 8279

RD,WR

Input /output , Read / Write

The input pins enable the data buffer to receive or send data over the data bus

Control and Timing Register

The register store the keyboard and display mode and other operating

conditions performed by CPU

The registers are A0=1 and WR=0

CLK

This is a clock input used to generate internal timing required by 8279

RESET

This pin is used to reset 8279.

A high on this line reset 8279

BD

The output pin is used to blank the display during digital switching

Scan counter

There are two ways in which scan line can be interfaced to the keyboard

The scan counter has two modes to scan key matrix and refresh the display

Encoded mode

Decoded mode

In encoded mode the counter provides binary count is to be externally

decoded to provide scan line for keyboard and display

In decoded scan mode the counter internally decodes the least significant bit

SL0-SL3

These line is used to scan the keyboard matrix and display digits

These line can be programmed as encoded or decoded using the mode control
register

Return buffer and keyboard debounce and control

This section scan for a key closure row wise.If a key closer is detected the

keyboard debounce unit debounce the key entry

After the debounce if the key continues to detect the code of pressed key

The four scan line are interfaced to the rows of keyboard

RL0-RL7Return lines

These are input lines which is connected t one terminal of key and the other

terminal of key are connected to decoded scan lines

SHIFT

The shift input lines is stored along with each key code in FIFO in scanned

keyboard

It is pulled up internally to keep high and pulled low with a key closure

CNTL/STB-CONTROL/STROBED I/P MODE

In keyboard mode this line is used as a control input and stored in FIFO on a

key closure

FIFO sensor RAM and status logic

In keyboard or stored input this block acts a 8 byte FIFO RAM.

Each key code of the pressed key is entered in the order of the entry and in

mean time read by the CPU till the RAM become empty

IRQ

This interrupt output line goes high where the data in the FIFO sensor RAM

The interrupt line goes low with each FIFO RAM read operation but if the

FIFO RAM further contain any key code entry to read CPU this pin again

goes high to generate an interrupt to the CPU

Display Address Register and Display RAM

The display address register hold the address of the word currently being

written or read by the CPU to or from the display RAM

OUT A0 – OUT A3 and OUT B0 – OUT B3

These are output port for two 16*4 and 16*8 internal display refresh register

The two 4 bit port may also as one 8 bit port

Modes of operation

There are two types of mode

Input mode

Output mode

Keyboard mode

Display mode

Input mode

Scanned keyboard mode

Scanned sensor matrix

Strobed input

Output mode

Display scan

Display entry

Keyboard mode

Scanned keyboard mode with 2 key lockout

Scanned keyboard with N-key rollover

Display mode

Left entry mode

Right entry mode

