19GESO1-PROGRAMMING FOR
PROBLEM SOLVING USING C

by
S.GOPI
Assistant Professor
Department of Information Technology
Muthayammal Engineering College,
Rasipuram-637408, Namakkal,
Tamilnadu.

AGENDA

Introduction to computer

software

INTRODUCTION
TO C
PROGRAMMING

s s A (i
Structure of a C " | Programming
program i \ Language

Writing the first C
program

UNIT - I

Keywords, Identifiers

AGENDA

Basic Data Types in C

INTRODUCTION |

TO C i\
PROGRAMMING Variables, Constants ‘ COmputer
UNIT - I g @ @ T Frourammin

Statements in C | \ \.angllage

Operators in C

Type conversion and

Typecasting

Expansion of computer

- Common
- Operating
- Machine

- Used for
-Technological and

C

O

VI

P - Purposely
U

-

E - Educational
R

-Research

Definition of Computer

A programmable electronic device designed
to accept data, perform prescribed mathematical and
logical operations at high speed, and display the
accurate results of these operations.

What is a computer?

Monitor

Floppy Disk

System Unit
i Drive

CD-ROM/
DVD-ROM Drive

Keyboard

P o | o il])

AR -
it S otks

Charles Babbage

(December 26, 1791 - ctober 18

Father of Computer

nventor & Founder
of Computers

47)

Father of Computer

Father of Computer
Charles Babbage

Who was he? &

[- Mathematician,
- Inventor

- Philosopher

- Mechanical engineer

Inventor

of the first
mechanical computing]

machine ¥ p

in 1821. (1791 - 1871)

Charles Babbage

(December 26, 1791 - October 18, 1871

Hardware ~— Software

Father of Computer
./J Iventor & Founder
g
N | of Computers
Windows

mﬁ

410 ,\,w..)

e T MS Word Antivirus

Aple Computer Design Evolution

History of Computers s

» First counting device

Aol +4861 " AplleSTgh

96 1

»They used sticks, stones and bones as

counting tools.

»As human mind and technology
improved with time more computing

devices were developed.

History of Computers

Abacus

LWas invented approximately 3000 BC
LCandoX, /, +, -

Q Is still in use today in parts of the
world

P —

v

74

History of Computers

Napier’s Bones

@

LWas invented in 1500’s by John Napier

-
s o

P IR CIRO- S N T e

‘,
feog

6.
4
8

=]

LCandoX, /, +, -

» —
-

-

(=
=1

O Is able to do multiplication much
faster than abacus

o

[

e wlw

)
—
A

o

"~

=

History of Computers

Difference Engine

7 : ‘ e JEIET Sy —_ r—— |
i ' e =i
dWas invented in 1842 by Charles R R

Babbage

L Would able to do +, -, X, / as well
as solve polynomial calculations

and logarithms

Ine

Analytical Eng

UER R IR

._____.__z:_._._._______ ‘

Eq

_\\

History of Computers

Analytical Engine

UCharles Babbage began working on it
in 1848
UThis was the worlds first truly

programmable device, and therefore the

world’s first true computer

Father of Modern Digital Computer

FATHER OF COMPUTER SCIENCE

Turing imagined a machine of
extreme purity and simplicity.

It would be able to compute
anything using only two symbols
arranged in a potentially infinite
one-dimensional sequence.

He created this machine in his
mind, as a thought experiment.
Today we are surrounded by
Turing machines,

Alan Turing

* English Mathematician
* Logician

* Cryptanalyst and

* Computer Scientist

* Father of Computer Science and Artificial
Intelligence

Turing machine

* ADA

10.08. 2019

ADA LOVE LACE

MATHEMATICIAN

COMPUTER
ENGINEER

R N N e O O e O e S e NN RN RN RSN

:FIRST:

PROCRARIER

| —

First, Second, Third, Fourth & Fifth

Second Generation Computers

First Generation Computers
From 1956 - 1963
From 1940 - 1956
Transistors
Vacuum Tubes

: . Fifth Generation Computers
Third Generation Computers

Fourth Generation Computers

From 2010
From 1964 - 1971
From 1972-2010 -
- Artificial Intelligence
Integrated Circuits ‘
Micro Processors

Types of Computer

Classification of computer based on work method

Anaslog Computer U.gic:l Computer Hybrid \ompumr

Classification of computer based on size

S ©

picra Computer Minl Computer Mainframe Computer Super Computes

Components of Computer
System

10

‘ Application Software

I

‘ Operating System Software

I

‘ Hardware System

Personal computer system
computer tower

monltor\

external
speaker

keyboard scroll wheel

wireless
internet router

left click right click

cordless mouse © 2013 Encyclopzedia Britannica, Inc.

Organization of Computer

Computer organization consist of following parts
» CPU — central processing unit

» Memory

» Input devices
Central Processing Unit
i Von Neumann
» Output devices prchitecture T
Input || | Arithmetic/Logic Unit Output
Device "~ | Device

i

Memory Unit

Central processing unit

 Alternatively referred to as the brain of the computer,
processor, central processor,or microprocessor,
the CPU

* first developed at Intel in the early 1970’s

* The computer CPU is responsible for handling all
instructions it receives from hardware and software
running on the computer

 CPU performs all types of data processing
operations.

* |t stores data, intermediate results and instructions
* |t controls the operation of all parts of computer

CPU itself has following three components
1. ALU (Arithmetic Logic Unit)

All arithmetic calculations and logical operation are
performed using the Arithmetic/Logical Unit or ALU

2. Memory Unit
* A memory is just like a human brain.

* Itis used to store data and instruction Computer

memory is use to Stores information being processed by
the CPU

3. Control Unit

unit help to perform operations of input unit, output
unit, Memory unit and ALU in a sequence.

Input Devices

e A device that can be used to insert data into a
computer system is called as input device.

 Examples : Keyboards, mouse, scanners and digital
cameras

Output Devices

* A device which is used to display result from a
computer is called as output device

e Examples: Printer, Scanner, Monitor, etc.

Examples of software and Hardware

Hardware

Disk,CUP,RAM, etc. ilities

Hardware

Software

Hardware is further divided into
four main categories:

°Input Devices

*Output Devices

*Secondary Storage Devices
*CPU

Software is further divided into
two main categories:
*Application Software

*System Software

Developed using electronic and
other materials

Developed by using a
programming language

When damaged, it can be
replaced with a new component

When damaged it can be installed
once more using a backup copy

Hardware is physical in nature
and hence one can touch and see
hardware

The software cannot be physically
touched but still can be used and
seen

Hardware cannot be infected by
Viruses

The software can be infected by
Viruses

L3 [1
L A

Y U Y o I N

A . .. 1. . _ L e

Types or Computer Language

* Computer language is defined as code or syntax which is
used to write programs or any specific applications

* The computer language is used to communicate with
computers

* Three categories assembly language, machine language,
and high-level language

1. Machine Language

* The Machine language is considered a low-level language

* Other name -machine code or object code

* Which is set of binary digits 0 and 1

* These binary digits are understood and read by a computer system

* Example of machine language for the text “Hello World”.
01001000 0110101 01101100 01101100 01101111 00100000
01010111 01101111 01110010 01101100 01100100

2. Assembly Language

* Intermediate-level language for microprocessors

* |t is second-generation language

3. High-Level Language

* The high-level language is easy to understand and

* human-readable program

* Examples: C++, C, JAVA, FORTRAN, etc..

Computer — Software

» Software Is a set of programs,
which is designed to perform a

well-defined function.

»A program Is a sequence of
Instructions written to solve a

particular problem.

There are two types of software

e System Software

* Application Software

Application software

Database Word Multimedia
Processing applications

Games

System Software

Operating Compilers

Utilities

System Debugging tools

Hardware

CPU/Memory/Network/Hard dicks

System Software

* The system software is a collection of programs

* designed to operate, control, and supports the process
of computer

e System software —Inbuilt in System
* System software written in low-level languages
e Use to Interact with the hardware and software

e |t Serves as the interface between the hardware and
end users

* Examples: Operating System, Compilers, Interpreter,
Assemblers, etc..

System Software

Some examples of system software are Operating
System, Compilers, Interpreter, Assemblers, etc.

* Close to the system

Fast in speed
 Difficult to design

* Difficult to understand
* Less interactive

* Smaller in size

» Difficult to manipulate

* Generally written in low-level language

IIVUHIV I wf W | TV NV

Appllcatlon Software

e Application software products are designed to satisfy
a particular need of a particular environment

* It is a collection of programs, often called a software
package, which work together to accomplish user
task, such as a spreadsheet package

* Some examples: Payroll Software , Student Record
Software , Income Tax Software and Railways
Reservation Software

Application Software

* Application software products are designed
to satisfy a particular need of a particular

environment.

* All software applications prepared in the

Ao

computer lab can come under the category

of Application software. SOﬂware

* Application software may consist of a single
program, such as Microsoft's notepad for

writing and editing a simple text.

Wi educhacom

Application Software

Examples of Application software are the

following -

Payroll Software

Student Record Software

Inventory Management Software

Income Tax Software

Railways Reservation Software

Microsoft Office Suite Software

Microsoft Word

* Microsoft Excel

Microsoft PowerPoint

EJ
Microsoft' e

0ﬁ|ce

Key System Software | Application Software
Definition |System Software is the Application Software is the
type of software which is |type of software which runs
the interface between as per user request. It runs
application software and |on the platform which is
system provide by system software
Developme |low level language high level language

nt Language

Usage System software is used |Application software is used
for operating computer |by user to perform specific
hardware task

Installation [Installed on the computer [Application software are
when operating system is |installed according to user’s
installed requirements

Dependenc |System software can run |Application software can’t

y independently, It provides|run independently. They

platform for running

. .
P (- T A of I

can’t run without the
nnnnnnnnn i o T af EE

A (ot

BT Hoganni
ML i

Algorithm

A (e

Y P
language. ,// \ Language

Qualities of a good algorithm

3. Algorithm should be most effective among many

different ways to solve a problem.

4.An algorithm shouldn't have computer code.
Instead, the algorithm should be written in such a
way that, it can be used in similar programming

languages

Examples Of Algorithms In

Programming

Step 1: Start

A (i

Step 2: Declare variables numl, num? and sum
Step 3: Read values num! and num2.
Step 4: Add num! and num?2 and assign the resulf to sum

. AMBYY oy
Step 5: Display sum i | Language

Step 6: Stop

Examples Of Algorithms In

Programming

Whrite an algorithm to find the largest among three different numbers entered by user.

Step 1. Start

Step 2: Declare variables a.b and c.
Step 3: Read variables a.b and c.
Step 4: If a>b

A1 Oy
AT o

Display c 1s the largest number.
Else
Ifb>c
Display b 1 the largest number.
Else
Display c 1s the greatest number.
Step 5: Stop

i

Flowchart

A (i
1t Fogrnming

representation of an algorithm, a step-by-step

'
approach to solving a task. W Language
* The flowchart shows the steps as boxes of various 4

kinds, and their order by connecting the boxes

with arrows.

Symbols Used In Flowchart

Symbol Purpose Description

. Indicates the flow of logic by connecting
Flow line , > ;
symbols.

e
e

TS St Represents the start and the end of a
erminal{Stop/Start} :
flowchart.

Input/Output Used for input and output operation.

0la0e

b : Used for arithmetic operations and data-
rocessin w
9 manipulations.

aige Used for decision making between two or more
Decision

‘100

alternatives.

Symbols Used In Flowchart

Decision

On-page

Connector

Off-page
Connector

Predefined
Process/Function

Used for decision making between two or more
alternatives.

Used to join different flowline

Used to connect the flowchart portionona
different page.

Represents a group of statements performing
one processing task.

Lompite

gt
g

Guidelines for Developing
Flowcharts

* On-page connectors are referenced using numbers
* Off-page connectors are referenced using alphabets

* General flow of processes is top to bottom or left to

right

* Arrows should not cross each other

1. Add two numbers entered by the user.

Declare variables nl, n2 and sum

Read nl and n2

sum ¢ nl+n2

Display sum

Flowchart to add two numbers

Lompite

g
g

2. Find the largest among three different numbers entered by the user.

Declare variables a, band ¢

Reada,bandc

False False

print a

.‘

Stop

Guidelines for Developing
Flowcharts

* On-page connectors are referenced using numbers
* Off-page connectors are referenced using alphabets

* General flow of processes is top to bottom or left to

right

* Arrows should not cross each other

Pseudocode

L (i

1 Horaming

‘ h \
to keep everyone in the company on the same ' \ Language

some companies use specific pseudocode syntax

page.
e Syntax is a set of rules on how to use and organize

statements in a programming language

Advantages of Pseudocode

L (i

CtS as a Dbridge petween € program an

1 Horaming

algorithm or flowchart.

\
 The main goal of a pseudo code is to explain what i Language

exactly each line of a program should do,

* Hence making the code construction phase easier for

the programmer.

Advantages of Pseudocode

How to write a Pseudo-code?
Example:
if"lll
print response
Do’s :
"I am case 1" . Use control structures
. Use proper naming convention
. Indentation and white spaces are the
key
if"2" . Keep it simple.
. Keep it concise.
print response
"I o Don’ts :
HERED . Don’t make the pseudo code abstract.
. Don’t be too generalized.

Example

SumOfTwoNumbers()
Begin

Set sum =0;
Read: a, b;
Set sum =a + b;
Print sum;

End

ALGORITHM
VERSUS

PSEUDOCODE

ALGORITHM

An unambiguous
specification of how to
solve a problem

Helps to simplify and

understand the problem

PSEUDOCODE

An informal high-level
description of the operating
principle of a computer
program or other algorithm

A method of developing an
algorithm

Visit www.PEDIAA.com

PSEUDOCODE
VERSUS

FLOWCHART

PSEUDOCODE FLOWCHART

An informal high-level A diagrammatic
description of the representation that

operating principle of an illustrates a solution
algorithm model to a given problem

Written in natural Written using various
language and symbols
mathematical notations
help to Write pSCUdOCOde Visit www.PEDIAA.com

History of C Language

L (i

1 Horaming

 Dennis Ritchie is known as the founder of the ¢

VLY Ly

* It was developed to overcome the problems of

previous languages such as B, BCPL, etc.

AL i
B oy
IR i

C- compiler

* There are many compilers available for c and c++.
You need to download any one. Here, we are

going to use Turbo C++.

ile 0] ions Yindow H 1p

= File Edit Sea

omp LG Pr

F1 Help F2 S%ave F3 Open Alt-F9 Compile F? Make Fi8 Menu
T

https://www.javatpoint.com/how-to-install-c
https://www.javatpoint.com/how-to-install-c
https://www.javatpoint.com/how-to-install-c
https://www.javatpoint.com/how-to-install-c

Compilation process in ¢

L (o
W Mg

code is error-free, then it generates the object | Language

code.

#include=stdio.h> 01000000000000
main() 011111111111111
{ , " 01010101101010
printf("'Hello javaTpoint"): Vv 00000011111111

return 0: 00000111111111
} 00000010101011

Compilation process in ¢

executable form:

1. Preprocessor
2. Compiler
3. Assembler

4. Linker

Compilation process in ¢

Source code

0 N
assembly code » | g' Programming
b L

UL

Other object objectcode . o ties
files

executable code

Compilation process in ¢

Preprocessor

e The source code is the code which is written
in a text editor and the source code file is

given an extension ".c.

 This source code is first passed to the
preprocessor, and then the preprocessor

expands this code.

 After expanding the code, the expanded

code is passed to the compiler.

Compilation process in ¢

Compiler

e The code which is expanded by the
preprocessor is passed to the compiler.
The compiler converts this code into

assembly code.

* Or we can say that the C compiler
converts the pre-processed code into

assembly code.

Compilation process in ¢

Assembler

 The assembly code is converted into object
code by using an assembler. The name of the
object file generated by the assembler is the

same as the source file.

 The extension of the object file in DOS is
'.obj,' and in UNIX, the extension is 'o'. If the
name of the source file is 'hello.c', then the

name of the object file would be 'hello.obj'.

Compilation process in ¢

Linker

* Mainly, all the programs written in C use library

functions.

* These library functions are pre-compiled, and the
object code of these library files is stored with

"lib' (or '.a') extension.

* Therefore, we conclude that the job of the linker
is to link the object code of our program with the

object code of the library files and other files.

Compilation process in ¢

Linker

* The output of the linker is the executable file. The
name of the executable file is the same as the

source file but differs only in their extensions.

 In DOS, the extension of the executable file is

.exe’,

* For example, if we are using printf() function in a
program, then the linker adds its associated code

in an output file.

Compilation process in ¢

Let's understand through an example.

hello.c

#include <stdio.h> g " compurer
\
. in() | i'?’-‘“Ja% |
" Y P
/ ’l'sh‘ L
printf("Hello javaTpoint"); '// ‘ anguage

return O;

}

Compilation process in ¢

| T Prograsms hellc.c
T ——______
l"‘-,_?‘m“:-_d—r".

T

Expanded source cosde Fedloi

- AL (i
=" BT Poyzin

. AN Ly
- M

Structure of ¢ program

* The main() function

* Local Declarations

* Program Statements & Expressions

e User Defined Functions

First C Program

) NG

/ yann
LY angne

printf("Hello, World!\n");

}

the program before compiling the source-code. // /. Computer
Void — the function returns null :
main() - The main() is the main function where program | ~ | Programmmg
execution begins. Every C program must contain only one ‘

main function.

¥ g

Braces - Two curly brackets "{...}" are used to group all
statements.

printf() - Itis a function in C, which prints text on the screen.

| [Name of Program >
#includecstdio.h } ;
#include<conio.h>
#define max 1() se—
void add) } g
int x=100;
int main() 5
{ int a=100; 3
printf{"Hello Main”);
refurn (;)
}
void add(){

printf’Hello ad); s
}

Documentation section

Preprocessor Directives

Definition section
Global declaration section

main () Function section / Entry Point
Variable declaration

Body of Main function

Function Definition

A (i

1 Py
A

Compile and Execute C Program

e Alt + F9 — Compile

e Ctrl + F9 — Compile & Run

Input and output statements

e printf() and scanf() functions are

declared in “stdio.h” header file

in C library.

 All syntax in C language
including printf() and scanf()

functions are case sensitive.

Tokens - small individual unit

C TOKENS

WYY Ry

Special Symbols |dentifiers

A L

Keywords in C

(oo

auto int struct

break else long switch

i

case enum register typedef \

char extern return union ' | nguage
const, float short unsigned

continue for signed void

default goto sizeof volatile
do if static while

C ldentifiers

* For example:

* 1. int money;
* 2. double accountBalance;
* Here, money and accountBalance are identifiers.

* Also remember, identifier names must be different from
keywords. You cannot use int as an identifier because int

is a keyword.

Rules for naming identifiers

e 2. The first letter of an identifier should be either

a letter or an underscore.
* 3. You cannot use keywords as identifiers.

* 4. There is no rule on how long an identifier can
be. However, you may run into problems in some
compilers if the identifier is longer than 31

characters.

Variables in C

* Let's see the syntax to declare a variable:

type variable_list;

* The example of declaring the variable is given below:
* inta;

* float b;

* chargc;

Variables in C

A (i
1Y fannig

* int a=10,b=20;//declaring 2 variable of integer

type
* float f=20.8;

e charc='A";

Variables in C

underscore only. It can't start with a digit.

* No whitespace is allowed within the variable

name.

e A variable name must not be any reserved word

or keyword, e.g. int, float, etc.

Variables in C

) N

R Hyanning
VLY Ly

int x=10;//local variable

}

Variables in C

variable. It is available to all the functions.

int value=20;//global variable
void main(){

int x=10;//local variable

}

Constants in C

#define identifier value

Example
#define LENGTH 10

#define WIDTH 5

Using const keyword.

Syntax:

const type var

const int LENGTH = 10;
const int WIDTH = 5;

Data Types in C

A data type specifies the type of data that
a variable can store such as Integer,
floating, character ') computer

Data Types in C r Programming

// \\ E iy

Basic Enumeration Void

Data Types in C

A Oy

R Hyanning

« \oid Data Type - void '/’ \ Language

Format specifier

» The Format specifier is a string used in
the formatted input and output functions.

» The format string determines the format
of the input and output.

» The format string always starts with a '%'
character.

EXAMPLE:
%d - Int
%f - float

%cC - char

Size(bytes] Range Format String

thar 1 128t0 127 e
unsigned char 1 Oto 255 %
short ! -32, 768 t0 32,167 %d
unsigned short] 0to 65535 il
int / 32,168 t0 32,76/ %d
unsigned int] 0to 65535 "
ong : 4T o T
Unsinged long 4 0t 4204967795 hlu
float 4 -34e-38 10 +3.4e-38 Ut
double 8 1.7¢e-308 to 1.7 e+308 %If
long double 10 34e-932 to 1.1 e+4932 it

INPUT OUTPUT (I/O) STATEMENTS

int main()

{
// Displays the string inside quotations

printf("C Programming");
return O;

}

Output statement in C

function. The function sends formatted output to the screen.

» The printf() is a library function to send formatted output to
the screen. The function prints the string inside the
guotations.

» To use printf() in our program, we need to include stdio.h
header file using #include <stdio.h> statement.

EXAMPLE

L (i

T o
* Output:Number=5 ' “ Language

* We use %d format specifier to print int types.

* Here, the %d inside the quotations will be
replaced by the value of testinteger

Example 3: float and double Output!

O

R Hyanning
VLY Ly

printf("number2 = %If", number2);

}

Print Characters

A (ot

BN Rogioni

Output i 1\
character = a '// A Language

To print char, we use %c format specifier

INPUT OUTPUT (I/O) STATEMENTS

void main()

{

int a;

// Displays the string inside quotations
printf("C Programming");

//getting input from the user
scanf(“%d”,&a);

printf(“Given data is %d”,a);

}

C Input

B} (i

void main()

{

int testinteger;

{ g
! iy

printf("Enter an integer: ");
scanf("%d", &testinteger);
printf("Number = %d“testInteger);
}

Output

Enter an integer: 4

Number =4

C Input

* Notice, that we have used &testIinteger inside
scanf(). It is because &testintegergets the address
of testIinteger, and the value entered by the user is

stored in that address.

C Input

printf("Enter a number: ");
scanf("%f", &num1);
printf("Enter another number: ");
scanf("%lf", &num?2);

printf("num1 = %f\n", numprintf("num2 = %If",
num?2);

return O;}

C Input

A Oy

1% Poyinmi
scanf("%c",&chr);

\
printf("You entered %c", chr); ' \ Language
}

Output
Enter a character: g

You entered g.

The Syntax for input and output for these are:

¢ Integer:
Input: scanf("%d", &intVariable),
Qutput: printf("%d", intVariable);
¢ Float:

Input: scanf("%f", &floatVariable);
Qutput: printf("%f", floatVariable);

o Character:

Input: scanf("%c", &charVariable),
OQutput: printf("%c", charVariable);

C Input

| (i

an integer value (ASCIl value) is NN Programming
stored. |

Language

« And when we display that value using
%c text format, the entered character Is
displayed. If we use %d to display the

character, it's ASCII value is printed.

ASCI| Value

printf("You entered %c.\n",chr);

/*When %d is used, ASCII value is displayed */
printf("ASCII value is % d.", chr);

return O;

}

Output

Enter a character: g

You entered g.
ASCII value is 103.

/O Multiple Values

L (i

1 Horaming

scanf("%d%f", &a, &b);

| |
printf("You entered %d and %f", a, b); :.h"‘ ‘ Lan ua e
return O;) g g

}
Output

Enter integer and then a float: -3
3.4

You entered -3 and 3.400000

Format Specifiers for I/0
Data Type Format Specifier

short int %hd

unsigned int %u
long int %li
long long int %lli
unsigned long int %lu
unsigned long long int %llu
signed char %cC

unsigned char %cC

¢ N

1 g
b L

C Operators

ere are following types of operators to
perform different types of operations in C
language.

et perao Y o

= Relational Operators
F Lngiae

(e

= Shift Operators

= Logical Operators

= Bitwise Operators

= Ternary or Conditional Operators
= Assignment Operator

= Misc Operator

Arithmetic Operators

» The following table shows all the arithmetic operators
supported by the C language.
» Assume variable A holds 10 and variable B holds 20 then

(e

Operator Description Example f | y
|
it Adds two operands. A+B=30 , | ng ra m m | ng
= Subtracts second operand from the first. A-B=-10
i Multiplies both operands. A*B=200 | | Language
/ Divides numerator by de-numerator. B/A=2 ‘
% Modulus Operator and remainder of after an integer B%A=0
division.
+ Increment operator increases the integer value by one. [At+=11
Decrement operator decreases the integer value by one.

Arithmetic Operators

#include <stdio.

int main()

{
int a = 9,b
c = atb;
printf(“"a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n",c);

= a*b;
printf("a*b = %d \n",c);
c = a/b;
printf(“"a/b = %d \n",c);
c = a%b;
printf("Remainder when a divided by b = %d \n",c);
return ©;

1.
25
3
4.
5.
6.
78
8.

a+b 13

a-b 2

a*b 36

a/b 2

Remainder when a divided by b=1

Relational Operators

Operator Description Example

L Checks if the values of two operands are equal or not. If yes, (A==B) is not
then the condition becomes true. true.

N Checks if the values of two operands are equal or not. If the (A'=B)is
values are not equal, then the condition becomes true. true.

" Checks if the value of left operand is greater than the value of | (A > B) is not
right operand. If yes. then the condition becomes true. true.

< Checks if the value of left operand is less than the value of right | (A < B) is true.
operand. If yes. then the condition becomes true.
Checks if the value of left operand is greater than or equal to (A>=B) is not

>= the value of right operand. If yes, then the condition becomes | true.
true.

g Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

Relational Operators

A relational operator checks the relationship between two
operands. If the relation is true, it returns 1; if the relation is
false, it returns value 0.

1. #include <stdio.h>

2. int main()

3. {

4. inta=5, b=5, c = 10;

G printf("%d == %d is %d \n", a, b, a == b);
6. printf("%d == %d is %d \n", a, c, a == ¢);
7 & printf("%d > %d is %d \n", a, b, a > b);
8. printf("%d > %d is %d \n", a, c, a > c);
9. printf("%d < %d is %d \n", a, b, a < b);
10. printf("%d < %d is %d \n", a, ¢, a < c);
11. printf("%d !'= %d is %d \n", a, b, a != b);
12. printf("%d != %d is %d \n", a, c, a !'= c);
13. printf("%d >= %d is %d \n", a, b, a >= b);
14. printf("%d >= %d is %d \n", a, c, a >= c);
15. printf("%d <= %d is %d \n", a, b, a <= b);
16. printf("%d <= %d is %d \n", a, c, a <= c);
17 return 9;

18. }

Relational Operators

) HM\“

A O
5 ==54is 1 Y 1
== is ‘ \

S >5 1is 0

:’-“Jp{‘vr 1
S > 10 is 0 \ ’\,
5 <5 is 0 \ A)
5 < 10 is 1 "
5 1= 533 0 /
5 1= 10 is 1 m . L
5 >= 5 is 1 / \
| \
KT
/ g

Logical Operators

An expression containing logical operator returns either O or
1 depending upon whether expression results true or false.
Logical operators are commonly used in decision making in

C programming.

Operator Meaning

Logical AND. True only if all
operands are true

&&

Logical OR. True only if either
one operand is true

Logical NOT. True only if the
operand is 0

Example

If ¢ =5 and d = 2 then, expression

((c==5) && (d=5)) equalstoO.

Ifc =5and d = 2 then, expression
((c==5) || (d=5)) equalstol.

If ¢ = 5 then, expression | !(c==5) equalsto
0.

1. #include <stdio.h>
2. int main()
3. {
4 int a=5,b=>5, c =10, result;
5. result = (a == b) & & (c > b);
6 printf(“(a == b) & (c > b) is %d \n",
7 result = (a == b) & (c < b);
8 printf("(a == b) & (c < b) is %d \n",
9 result = (a ==b) || (c < b);
10. printf("(a == b) || (c < b) is %d \n",
11. result = (a !=b) || (c < b);
) printf(“(a !'=b) || (c < b) is %d \n",
13. result = !(a != b);
14. printf("!(a == b) is %d \n", result);
15. result = !(a == b);
16. printf("!(a == b) is %d \n", result);
17 return 0;
18. }

Output

(a == b) && (c > b) 1is 1

(a == b) && (c < b) is 0

(& ==Db) || (¢ <b) is 1

(a 1= b) || (¢ <b) 1s 0

!(a !'=b) is 1
!(a == b) is 0

result);

result);

result);

result);

e

iy
angang

(a == b) && (c > 5) evaluates to 1 because both

operands (a == b) and (c > b) is 1 (true).

(a == b) && (c < b) evaluates to 0 because

operand (c < b) is O (false).

(@a==Db) || (c < b) evaluates to 1 because (a = b)

is 1 (true).

g
angang

(a!=b) || (c < b) evaluates to 0 because both i

operand (a !=b) and (c < b) are 0 (false). \\

I(a = b) evaluates to 1 because operand (a !=

b) is O (false). Hence, !(a !=b) is 1 (true).

I(a == b) evaluates to 0 because (a==b)is 1

(true). Hence, !(a == b) is O (false).

conditional operator

(condition) ? expressionl : expression2

If the condition is true then expressionl is executed
else expression?2 is executed

true

(condition) ? exp

A \;\(

For example:

(x>y?"xis greater" : "y is greater");

A (i

1t Fognming
! g

Example

#include <stdio.h> 4\
int main() 4\
i{nt mark: ‘ compurer
printf("Enter mark: "); \

scanf("%d". &mark);

Pl:tls(mgfk >= 40 ? "Passed" : "Failed"): | Programming
§ Lang g

}

Output

Enter mark: 39
Failed

Type Conversion in C

« The type conversion process in C is basically
converting one type of data type to other to
perform some operation.

« The conversion Is done only between those
datatypes wherein the conversion is possible

« EX —char to int and vice versa.
 There are two types of type conversion

1) Implicit Type Conversion
2) Explicit Type Conversion

1.Implicit Type Conversion

 This type of conversion is usually performed by the
compiler when necessary without any commands
by the user. Thus it is also called "Automatic
Type Conversion".

« The compiler usually performs this type of
conversion when a particular expression contains
more than one data type.

 In such cases either type promotion or demotion
takes place.

[long double

[double

float

41 oyt

unsigned int

J
J
[)
=0
[]
[J

=1 I B Aoy
L JC D LY Lingay

Whenever the compiler deals with different data types in an
expression, the operand which is present at the lower rank
will be converted to the corresponding datatype of the
operand with the higher rank.

Rules...

o

. char or short type operands will be converted to int during an operation
and the outcome data type will also be int.

2. If an operand of type long double is present in the expression, then the
corresponding operand will also be converted to long double same for
the double data type.

3. If an operand of float type is present then the corresponding operand in
the expression will also be converted to float type and the final result
will also be float type.

4. If an operand of unsigned long int is present then the other operand will
be converted to unsigned long int and the final result will also be
unsigned long int.

5. If an operand of long int is present then the other operand will be
converted to long int and the final result will also be long int.

»

. If an operand of unsigned int is present then the other operand will be
converted to unsigned int and the final result will also be unsigned int.

Example

int a = 20;
double b = 20.5;
a+b;

L (i

» Here, first operand is int type and other is of type | Programming
double. ‘ ([

\l
» S0, as per rule 2, the variable a will be converted to i Language
double. |

» Therefore, the final answer is doublea + b =

40.500000.

2) Explicit Type Conversion

e Explicit type conversion rules out
the use of compiler for converting
one data type to another instead
the user explicitly defines within the |
program the datatype of the |
operands in the expression.

2) Explicit Type Conversion

Example:

double da=4.5;
double db = 4.6:
double dc =4.9;

//explicitly defined by user
int result = (int)da + (int)db + (int)dc:
printf("result = %d". result);

Output:

1.

Thus, in the above example we find that the output result is
12 because in the result expression the user has explicitly
defined the operands (variables) as integer data type.
Hence, there is no implicit conversion of data type by the
compiler.If in case implicit conversion was used the result
would be 13.

C - Type Casting

 Type casting is a way to convert a variable
from one data type to another data type.

* For example, if you want to store a 'long'
value into a simple integer then you can type
cast 'long' to 'int'.

 You can convert the values from one type to
another explicitly using the cast operator as
follows —

* (type_name) expression

Example:

#include <stdio.h>

main() {

intsum =17, count =5;

double mean;

mean = (double) sum / count;
printf("Value of mean : %f\n", mean);

}

 When the above code is compiled and
executed, it produces the following result

e Value of mean : 3.400000

At (i
L

! g

Integer Promotion

Integer promotion is the process by which values of integer
type "smaller" than int or unsigned int are converted either
to int or unsigned int.

A (i

#include <stdio.h>

\ |
main() { P
inti=17; N | rogrammmg
char c ="'c'; /* ascii value is 99 */ ‘
Il
sum=i+g; ;

printf("Value of sum : %d\n", sum);

}

Value of sum: 116

A (it

AT oo
R

