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Topics to be covered today

@ Propositional Equivalences

@ Predicates >

@ Quantifier



Propositional Equivalences

Tautology
A compound proposition that 1s always true

No matter what the truth values of the propositions are

Contradiction

A compound proposition that 1s always false

Contingency
A compound proposition that is neither a tautology nor a contradiction




Logical Equivalences

Compound propositions that have the same truth values in all possible

cases

Avao nnllor] 1 nn;nal]'u Enn;\t-\laﬂi—

Show that —=(p V ¢) and —p A —q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Becat
the truth values of the compound propositions —(p Vv ¢) and —p A —¢q agree for all possit
combinations of the truth values of p and ¢, it follows that ~(p Vv ¢) < (—p A —g)isatautolo
and that these compound propositions are logically equivalent.




Logical Equivalences

Show that p — ¢ and —p V g are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the

truth values of =p v ¢ and p — ¢ agree, they are logically equivalent.

<

TABLE 4 Truth Tables for —p V ¢ and
Pp—4q.

P q P A ¥—ry
T n o E B T |  §




Logical Equivalences

Show that p v (g Ar) and (p v q) A(p Vv r) are logically equivalent. This is the distributive

law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p v (g Ar)and (p v g) A (p V r) agree, these compound propositions are
logically equivalent. <

Equivalent.

TABLE 5 A Demonstration That p VV (g Ar)and (p V ¢) A (p V r) Are Logically

P q9

qAr

pVigAr)

rVy

pVvr

V@AV




Logical Equivalences

TABLE 6 Logical Equivalences.

Equivalence Name
pAT=p Identity laws
pvFmsp

pvT=T Domination laws
prF=F

pvp=p Idempotent laws
PAp=mp

~(=p)=p Double negation law
pvVQ=gVvp Commutative laws
PAQ®mqAp

(pvq)vrspvigvr) Associative laws
Pl s, vl B v e e’ A Fas- b aal 1




De Morgan’s Law

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
—(p V g) = —p A —q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence —~(p A ¢) =
—p Vv —q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

TABLE 2 De Morgan’s

L e



Logical Equivalences

Show that —(p — ¢) and p A —q are logically equivalent.

—(p—>q)=—(—pVyq) by Example 3
= —(=p) A —q by the second De Morgan law
=pA—q by the double negation law

Show that =(p Vv (—=p A ¢)) and =p A —g are logically equivalent by developing a series of
logical equivalences.

~(pV(—pAg)=—-pA-(—pA q) by the second De Morgan law
=—-pA[=(=p)V —q] by the first De Morgan law




Logical Equivalences

Show that (p A ¢) — (p V q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(PAg)—=> (pVg)=—(pAq)V(pVg)  byExample3
=(—-pV-g)V(pVq) bythefirst De Morgan law
= (-pV p)V(—gVg) bytheassociative and commutative
laws for disjunction
=TvT by Example 1 and the commutative

law for disjunction
. o e % i e Bin ol ae Raean d




Predicates

Statements involving variables, such as

.‘x > 3.” ux = _V + 3:9 r + v o "

The statement “x is greater than 3" has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3" by P(x),
where P denotes the predicate “is greater than 3™ and x is the variable. The statement P(x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider

Examples | and 2.




Predicates

Similarly, we can let R(x, y, z) denote the statement “x + y = z” When values are assigned
to the variables x, y, and z, this statement has a truth value.

What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1,2,3) is obtained by setting x =1, y = 2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “] 4+ 2 = 3 which is true. Also
note that R(0, 0, 1), which is the statement “0 + 0 = 1.” is false. <

I nanaial o statarnont inonlknac the n variables 1. x5 . . v.. can be denoted by



Quantifiers

Universal Quantifier

The universal quantification of P(x) is the statement
“P(x) for all values of x in the domain.”

The notation Vx P(x) denotes the universal quantification of P(x). Here V is called the
universal quantifier. We read ¥x P(x) as “for all x P(x )" or “for every x P(x).” An element
for which P(x) is false is called a counterexample of Vx P(x).

Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification Vx P(x),



Universal Quantifier

Let O(x) be the statement “x < 2.”” What is the truth value of the quantification Yx Q(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement Vx Q(x). Thus

VxQ(x)

I Qunnnca thar Die\ fo a2 o. NP Ta chanr thiat tha ctatemant Wy Plv) e faled swwhara tha amat.



Universal Quantifier

What is the truth value of ¥x P(x), where P(x) is the statement “x* < 10" and the domain

consists of the positive integers not exceeding 4?

Solution: The statement Vx P(x) is the same as the conjunction

P(I) A P(2)AP(3) A P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement

“42 < 10.” is false, it follows that Vx P(x) is false.

4




Existential Quantifier

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

The existential quantification of P(x) is the proposition
“There exists an element x in the domain such that P(x).”

We use the notation 3x P(x) for the existential quantification of P(x). Here 3 is called the
existential quantifier.

A domain must always be specified when a statement 3x P(x) is used. Furthermore, the
meaning of 3x P(x) changes when the domain changes. Without specifying the domain, the



Existential Quantifier

Let P(x) denote the statement “x > 3. What is the truth value of the quantification 3x P(x),
where the domain consists of all real numbers?

Solution: Because “x > 3" is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is 3x P(x), is true. 4

Observe that the statement 3x P(x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, 3x P(x) is false if and only P(x) is false for every element of

the domain. We illustrate this observation in Example 15.

Let QO(x) denote the statement “x = x + 1.” What is the truth value of the quantification
3x Q(x), where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),




Existential Quantifier

What is the truth value of 3x P(x), where P(x) is the statement “x* > 10" and the universe of
discourse consists of the positive integers not exceeding 47

Solution: Because the domain is {1, 2, 3,4}, the proposition 3xP(x) is the same as the
disjunction

P(l)v P(2)v P(3) v P(4).

Because P(4), which is the statement “4% > 10.” is true, it follows that 3x P(x) is true. E

TABLE 1 Quantifiers.
Canicr | Whis Towe? | When Faise?




Binding Variables

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the

formula that specifies this variable.

In the statement 3x(x + y = 1), the variable x is bound by the existential quantification 3x, but

R N & T, /. DU, [ SR E—_ ) . L A TR



Negative Quantified Expression

We will qﬂen want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,
VxP(x),

where P(x) is the statement “x has taken a course in calculus™ and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

3y - P(x).




Nested Quantifiers

quantifiers are nested if one is within the scope of the other, such as
Vx3dy(x + y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

Vxdy(x +y =0)

is the same thing as Vx Q(x), where Q(x) is 3y P(x, ), where P(x,y)is x +y = 0.
Assume that the domain for the variables x and y consists of all real numbers. The statement

VxVy(x+y=y+x)

P gy & a o ommd o » - > " | . .



Nested Quantifiers

TABLE 1 Quantifications of Two Variables.

Statement

When True?

When False?

VxVyP(x, v)
VyVx P(x, y)

P(x, y) is true for every pair x, y.

There is a pair x, y for
which P(x, y) is false.

Vx3yP(x, y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x, y) is false for every y.
IxVyP(x, y) There is an x for which P(x, y) For every x there is a y for

FLoER |







