
1How ‘Heat’ Moves

Review of past terms: 

• Define “Energy”: 

The ability to do work or cause 
change.

• What is the basic unit of measure 
for energy?

Joules.



2How ‘Heat’ Moves

• Define “Heat”: 

Heat is the movement of 
thermal energy from a 
substance at a higher 
temperature to another 
substance at a lower 
temperature.



3The Nature of Heat

Heat moves in only one direction:

• Under normal conditions and in nature, 
heat energy will  ALWAYS flow the 
warmer object to the cooler object. 

• Heat energy will flow from one substance 
to another until the two substances have 
the same temperature.



4How ‘Heat’ Moves

Thermal energy in the form of 
heat can move in three ways.

Conduction

Convection 

Radiation



5Conduction

CONDUCTION: 

• The transfer of heat from one 
particle of matter to another by 
direct particle to particle contact.

– Conduction occurs primarily in solids 
because the particles are tightly packed 
together.

– The particles themselves DO NOT change 
positions.



6Conduction

Example: A metal spoon in a pot of 
water being heated on an electric stove.

a. First, the electrical energy is converted 
to thermal energy by the stove.

b. The rapidly vibrating  particles of the 
hot electric coil collide with the  
particles of the cool pot.

c. Heat energy is transferred, causing the 
particles in the pot to vibrate faster.



7Conduction

d. The rapidly vibrating particles of the pot now 
collide with the particles of the water at the 
bottom of the pot.

e. The water particles absorb energy and vibrate 
and flow more rapidly and its temperature 
increases.

f. Now, the energetic (hot) particles of water 
collide with the particles of the submerged 
end of the spoon.

g. As the particles of the spoon absorb energy
and vibrate more rapidly.  The temperature of 
the spoon increases.



8Conduction

h. As the particles at this end of the spoon 
absorb energy and vibrate faster they 
collide with other particles in the spoon. 
As they collide, energy is transferred to 
the other particles (similar to 
momentum) and they begin to vibrate 
more rapidly.

i. This process of conduction is repeated 
all along the metal spoon until the entire 
metal spoon becomes hot.



9Conduction

Brainstorming: What are other 
examples of conduction?

Application: Describe the process 
of conduction when you place a hot 
spoon into a bowl of ice cream.



10Convection

Convection:  the transfer of 
thermal energy (heat) through 
the bulk movement of matter.

– Convection occurs in FLUIDS (liquids 
and gases).

– Convection produces CURRENTS in 
both gases and liquids.

– Thermal Energy heat is carried by the 
particles as they move from one location to 
another.



11Convection

Example: Heating water:
a. When the water at the bottom of the 

pot (nearest the burner) is heated, the 
particles absorb energy by conduction 
as they touch the hot pot.

b. The water particles vibrate more 
rapidly.

c. The particles also move farther apart 
and the hot water becomes less dense 
than the surrounding cool water.

d. This causes the heated (hot) water to 
rise.



12Convection

e. The surrounding denser cooler water is 
forced downward near the burner by 
the rising hot water.  

f. This process continues to repeat.

g.  This FLOW creates a circular motion 
known as a convection current .

Application:  How do convection 
currents form in a room when the 
heater is turned on? 



13Convection

• The warm air from the heater vent will 
rise. Why?, 

– The warm air is less dense than the 
surrounding cooler air.

• The cool air is pushed down by the rising 
warm air.

What is the best location for a heat vent in a room 
and why?  Near the ceiling or the floor?

Floor:

Because the warm air will rise to the ceiling.

How about the return vent?



14Convection

Convection currents occur in the 
environment as well. They produce:

– Global winds that contribute to Earth’s 
weather.

– Ocean and lake currents



15Convection

Brainstorming: On a hot summer day 
the breeze near the beach blows 
toward the water.  However, later in 
the day the breeze reverses 
direction and blows toward land and 
will get increasingly stronger.  Why?
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Answer: In the morning the water 
may be warmer than the sand 
causing the air over the water to 
rise.

In the afternoon, the sand has 
become much hotter than the water 
and the air above it rises.  The air 
over the water rushes in to fill its 
void causing a wind.
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• Radiation:  the transfer of 
(thermal) energy by electromagnetic 
waves.

– Radiation does not require matter to 
transfer thermal energy. 
• All the sun’s energy that reaches Earth 

travels through millions of kilometers of 
empty space (a vacuum).

– All matter can radiate energy.
• You feel the radiation of thermal energy 

from a bonfire, a heat lamp and a light 
bulb.



18Radiation

• Other examples of the transfer of 
heat by Radiation:

a. Charcoal grill.

b. Hot tin roof.

c. Burner on a stove top.

d. ?

e. ?
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Key Point: For radiation to be felt as 
heat it must first be absorbed by a 
material.

Example: Why do blue jeans feel 
hotter in the sun than a yellow shirt, 
even though they are both exposed 
to the same amount of sunlight?

– The blue jean fabric absorbs more 
radiant energy from the sun than the 
yellow shirt because of its dark color.
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Conduction, Convection & Radiation
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Energy from the Sun
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Convection, Conduction & Radiation
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The Nature of Heat

What happens when you put ice in a 
warm soft drink?

– The heat energy moves from the soft 
drink into the ice by conduction 
(particle to particle contact) causing 
the ice to melt.
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Describe the three kinds of heat 
transfer.

a. Conduction – transfer of heat energy from 
one particle to another by direct contact.   
(Primarily in solids)

b. Convection – transfer of heat energy in 
fluids-gases and liquids) through the bulk 
movement of matter from one place to 
another.  (Produces currents) 

c. Radiation – transfer of energy through 
electromagnetic waves.  (Matter is not 
required!)  (Radiant & infrared radiation 
from the sun)
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Conduction

• Direct 
contact of 
particles

• Solids/liquids
/gases

• The handle 
of a cooking 
utensil

• Transfer of 
energy by 
waves

• Only radiant 
energy that 
is absorbed 
becomes 
thermal 
energy

• Lightbulb

• Fireplace

• Transfer of 
energy by 
bulk 
movement of 
matter 
(fluids)

• Currents 
(wind,water)

• Hot air 
balloon

Radiation Convection
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•Direct contact of particles
•Solids/liquids/gases
•Solids -good conductors
•Gases -poor conductors

•Transfer of energy by 
bulk movement of 
matter (fluids)
•Currents (wind,water)
•Hot air balloon

•Transfer of energy 
by waves
•Only radiant energy 
that is absorbed 
becomes thermal 
energy
•Shiny/light colors-
reflect
•Dull/dark colors-
absorb

Radiation

Conduction

Convection

Contrast:
Conduction
Convection
Radiation



Free Convection

A free convection flow field is a self-sustained flow driven by the 

presence of a temperature gradient.  (As opposed to a forced 

convection flow where external means are used to provide the 

flow.)  As a result of the temperature difference, the density field 

is  not uniform also.  Buoyancy will induce a flow current due to 

the gravitational field and the variation in the density field.  In 

general, a free convection heat transfer is usually much smaller 

compared to a forced convection heat transfer.  It is therefore 

important only when there is no external flow exists.

hot

cold

T  r
T  r

Flow is unstable and a circulatory

pattern will be induced.



Basic Definitions

Buoyancy effect:

Warm, r

Surrounding fluid, cold, r

Hot plate
Net force=(r- r)gV

The density difference is due to the temperature difference and it can be 

characterized by ther volumetric thermal expansion coefficient, b:
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Grashof Number and Rayleigh Number

Define Grashof number, Gr, as the ratio between the buoyancy force and the 

viscous force: 33
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• Grashof number replaces the Reynolds number in the convection correlation 

equation.  In free convection, buoyancy driven flow sometimes dominates the 

flow inertia, therefore, the Nusselt number is a function of the Grashof number 

and the Prandtle number alone.   Nu=f(Gr, Pr).  Reynolds number will be 

important if there is an external flow.  (see chapter 11.5, combined forced and 

free convection.

• In many instances, it is better to combine the Grashof number and the 

Prandtle number to define a new parameter, the Rayleigh number, Ra=GrPr.  

The most important use of the Rayleigh number is to characterize the laminar 

to turbulence transition of a free convection boundary layer flow.  For 

example, when Ra>109, the vertical free convection boundary layer flow over 

a flat plate becomes turbulent.



Example

Determine the rate of heat loss from a heated pipe as a result of natural (free) 

convection.

Ts=100C

T=0°C D=0.1 m

Film temperature( Tf): averaged boundary layer temperature Tf=1/2(Ts+T )=50 C.

kf=0.03 W/m.K, Pr=0.7, =210-5 m2/s, b=1/Tf=1/(273+50)=0.0031(1/K)
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Heat Transfer/Heat Exchanger
• How is the heat transfer? 

• Mechanism of Convection

• Applications . 

• Mean fluid Velocity and Boundary and their effect on the rate of heat 
transfer.

• Fundamental equation of heat transfer

• Logarithmic-mean temperature difference.

• Heat transfer Coefficients.

• Heat flux and Nusselt correlation 

• Simulation program for Heat Exchanger 



How is the heat transfer?

• Heat can transfer between the surface of a solid conductor 
and the surrounding medium  whenever temperature 
gradient exists.

Conduction

Convection

Natural convection 

Forced Convection



Natural and forced Convection

Natural convection occurs whenever heat flows 

between a solid and fluid, or between fluid 

layers.  

As a result of heat exchange

Change in density of effective fluid layers taken 

place, which causes upward flow of heated 

fluid.

If this motion is associated with heat transfer mechanism 

only, then it is called Natural Convection



Forced Convection

 If this motion is associated  by mechanical means such as 

pumps, gravity or fans, the movement of the fluid is 

enforced.

 And in this case, we then speak of Forced convection.



Heat Exchangers
• A device whose primary purpose is the transfer of energy 

between two fluids is named a Heat Exchanger.



Applications of Heat Exchangers

Heat Exchangers 

prevent  car engine 

overheating and 

increase efficiency

Heat exchangers are 

used in Industry for 

heat transfer

Heat 

exchangers are 

used in AC and 

furnaces



• The closed-type exchanger is the most popular one.

• One example of this type is the Double pipe exchanger.

• In this type, the hot and cold fluid streams do not come 

into direct contact with each other.  They are separated by 

a tube wall or flat plate.



Principle of Heat Exchanger
• First Law of Thermodynamic: “Energy is conserved.”
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Q hot Q cold

Th Ti,wall

To,wall

Tc

Region I : Hot Liquid-

Solid Convection

NEWTON’S LAW OF 

CCOLING



dqx  hh . Th Tiw .dA Region II : Conduction 

Across Copper Wall

FOURIER’S LAW



dqx  k.
dT

dr

Region III: Solid –

Cold Liquid 

Convection

NEWTON’S LAW OF 

CCOLING



dqx  hc . Tow Tc .dA

THERMAL

BOUNDARY LAYER

Energy moves from hot fluid 

to a surface by convection, 

through the wall by 

conduction, and then by 

convection from the surface to 

the cold fluid. 



• Velocity distribution and boundary layer

When fluid flow through a circular tube of uniform cross-

suction and fully developed,

The velocity distribution depend on the type of the flow.

In laminar flow the volumetric flowrate is a function of the 

radius. 

V  u2rdr
r0

rD / 2



V = volumetric flowrate

u = average mean velocity



 In turbulent flow, there is no such distribution. 

• The molecule of the flowing fluid which adjacent to the 

surface have zero velocity because of mass-attractive 

forces.  Other fluid particles in the vicinity of this layer, 

when attempting to slid over it, are slow down by viscous 

forces.

r

Boundary 

layer



• Accordingly the temperature gradient is larger at the wall 
and through the viscous sub-layer, and small in the 
turbulent core.

• The reason for this is 

1) Heat must transfer through the boundary layer by 
conduction.

2) Most of the fluid have a low thermal conductivity (k)

3) While in the turbulent core there are a rapid moving 
eddies, which they are  equalizing the temperature.

heating

cooling

Tube wall

Twh

Twc

Tc

Metal

wall


Warm fluid
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h
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Calculating U using Log Mean Temperature
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CON CURRENT FLOW
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

Nu f (Re,Pr,L /D,b /o)

DIMENSIONLESS ANALYSIS TO CHARACTERIZE A HEAT EXCHANGER
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Nu  a.Reb .Prc•Further Simplification:

Can Be Obtained from 2 set of experiments

One set, run for constant Pr 

And second set, run for constant Re
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•For laminar flow

Nu = 1.62 (Re*Pr*L/D)

•Empirical Correlation

14.0

3/18.0 .Pr.Re.026.0 

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o

b
LnNu
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

•Good To Predict within 20%

•Conditions: L/D > 10

0.6 < Pr < 16,700

Re > 20,000

•For turbulent flow



Experimental
Apparatus

• Two copper concentric pipes

•Inner pipe (ID = 7.9 mm, OD = 9.5 mm, L = 1.05 m)

•Outer pipe (ID = 11.1 mm, OD = 12.7 mm)

•Thermocouples placed at 10 locations along exchanger, T1 through T10

Hot Flow 

Rotameters

Temperature

Indicator

Cold Flow 

rotameter

Heat 

Controller

Switch for concurrent 

and countercurrent 

flow

Temperature 

Controller
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Radiation Exchange Between Surfaces:

Enclosures with Nonparticipating Media



Basic Concepts

Basic Concepts

• Enclosures consist of two or more surfaces that envelop a region of space 

(typically gas-filled) and between which there is radiation transfer.  

• A nonparticipating medium within the enclosure neither emits, absorbs,

nor scatters radiation and hence has no effect on radiation exchange

between the surfaces. 

• Each surface of the enclosure is assumed to be isothermal, opaque, diffuse

and gray, and to be characterized by uniform radiosity and irradiation.

Virtual,

as well as real, surfaces may be introduced to form an enclosure.



View Factor Integral

The View Factor (also Configuration or Shape Factor)

• The view factor,        is a geometrical quantity corresponding

to the fraction of the radiation leaving surface i that is intercepted by 

surface j.
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• The view factor integral provides a general expression for      .ijF Consider exchange

between differential areas i  :jdA and dA
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View Factor Relations

View Factor Relations

• Reciprocity Relation. With
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• Summation Rule for Enclosures.
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• Two-Dimensional Geometries (Table 13.1) For example,

An Infinite Plane and a 

Row of Cylinders
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View Factor Relations (cont)

• Three-Dimensional Geometries (Table 13.2). For example,

Coaxial Parallel Disks
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Blackbody Enclosure

Blackbody Radiation Exchange

• For a blackbody, .i biJ E

ij i j j iq q q  

ij i ij bi j ji bjq A F E A F E 

 4 4

ij i ij i jq A F T T 

net rate at which radiation

leaves surface i due to its

interaction with j

or net rate at which surface

j gains radiation due to its

interaction with i

• Net radiation transfer from surface i due to exchange with all (N) 

surfaces of an enclosure:

 4 4

1

N

i i ij i j
j

q A F T T


 

• Net radiative exchange between two

surfaces that can be approximated as

blackbodies



General Enclosure Analysis

General Radiation Analysis for Exchange between the N

Opaque, Diffuse, Gray Surfaces of an Enclosure 
 1i i i    

• Alternative expressions for net radiative

transfer from surface i:

   Fig. (b)i i i iq A J G   (1)

   Fig. (c)i i i i iq A E G   (2)

 
 Fig. (d)
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Suggests a surface radiative

resistance of the form:  1 /i i iA 



General Enclosure Analysis (cont)

 
 
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1 1

N N
i j
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q A F J J

A F
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    (4)

Suggests a space or geometrical

resistance of the form:  
1

i ijA F


• Equating Eqs. (3) and (4) corresponds to a radiation balance on surface i:
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which may be represented by a radiation network of the form 



General Enclosure Analysis (cont)

• Methodology of an Enclosure Analysis

 Apply Eq. (4) to each surface for which the net radiation heat rate      is known.
iq

 Apply Eq. (5) to each of the remaining surfaces for which the temperature    ,  

and hence        is known.
iT

,biE

 Evaluate all of the view factors appearing in the resulting equations.

 Solve the system of N equations for the unknown radiosities, 1 2, ,...., .NJ J J

 Use Eq. (3) to determine     for each surface of known                 for  

each surface of known    .  
iq  and i iT T

iq

• Treatment of the virtual surface corresponding to an opening (aperture) of area     ,

through which the interior surfaces of an enclosure exchange radiation with large

surroundings at      :

iA

surT

 Approximate the opening as blackbody of area,      temperature,          

and properties,                 .

,iA ,i surT T

1i i  



Two-Surface Enclosures

Two-Surface  Enclosures

• Simplest enclosure for which radiation exchange is exclusively between two

surfaces and a single expression for the rate of radiation transfer may be

inferred from a network representation of the exchange.
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Two-Surface Enclosures (cont)

• Special cases are presented in Table 13.3. For example,

 Large (Infinite) Parallel Plates

1 2
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F
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 4 4
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 Note result for Small Convex Object in a Large Cavity.



Radiation Shield

Radiation Shields

• High reflectivity (low          ) surface(s) inserted between two surfaces for which 

a reduction in radiation exchange is desired.

 

• Consider use of a single shield in a two-surface enclosure, such as that associated with

large parallel plates:

Note that, although rarely the case, emissivities may differ for opposite surfaces

of the shield.



Radiation Shield (cont)

• Radiation Network:

 4 4
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• The foregoing result may be readily extended to account for multiple shields

and may be applied to long, concentric cylinders and concentric spheres,

as well as large parallel plates.



Reradiating Surfaces

The Reradiating Surface

• An idealization for which .R RG J Hence,  and 0 .R R bRq J E 

• Approximated by surfaces that are well insulated on one side and for which

convection is negligible on the opposite (radiating) side.

• Three-Surface Enclosure with a Reradiating Surface:

 

   

4 4

1 2

1 2
1 2

1

1 1 2 21 12 1 1 2 2

1 11

1 1/ /R R

T T
q q

A AA F A F A F



 

 


  

 
 

   



Reradiating Surfaces (cont)

• Temperature of reradiating surface      may be determined from knowledge

of its radiosity       .  
RT

RJ With             , a radiation balance on the surface yields          0Rq 
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Multimode Effects

Multimode Effects

• In an enclosure with conduction and convection heat transfer to or from 

one or more surfaces, the foregoing treatments of radiation exchange may 

be combined with surface energy balances to determine thermal conditions.

• Consider a general surface condition for which there is external heat addition

(e.g., electrically), as well as conduction, convection and radiation.

, , , ,i ext i rad i conv i radq q q q  

Appropriate analysis for -surface, two-surface, etc., enclosure.,i radq N



Problem:  Furnace in Spacecraft Environment

Problem 13.88:   Power requirement for a cylindrical furnace with two

reradiating surfaces and an opening to large surroundings.

KNOWN:  Cylindrical furnace of diameter D = 90 mm and overall length L = 180 mm.  

Heating elements maintain the refractory lining (  = 0.8) of section (1), L1 = 135 mm, at T1 = 

800C.  The bottom (2) and upper (3) sections are refractory lined, but are insulated.  Furnace 

operates in a spacecraft vacuum environment. 

FIND:  Power required to maintain the furnace operating conditions with the surroundings at 

23C. 



Problem:  Furnace in Spacecraft Environment (cont)

SCHEMATIC:   

 

ASSUMPTIONS:  (1) All surfaces are diffuse gray, and (2) Uniform radiosity over the 

sections 1, 2, and 3. 

ANALYSIS:  By defining the furnace opening as the hypothetical area A4, the furnace can be 

represented as a four-surface enclosure.   

The power required to maintain A1 at T1 is q1, the net radiation leaving A1.  

To obtain q1, we must determine the radiosity at each surface by simultaneously solving 

radiation energy balance equations of the form 
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Problem:  Furnace in Spacecraft Environment (cont)

However, since 4 = 1, J4 = Eb4, and only three energy balances are needed for A1, A2, and A3.  

A1: 
 

b1 1 1 31 2 1 4

1 1 1 1 12 1 13 1 14

E J J JJ J J J

1 / A 1/ A F 1/ A F 1/ A F 

  
  


     (3) 

A2: 
2 32 1 2 4

2 21 2 23 2 24

J JJ J J J
0

1/ A F 1/ A F 1/ A F

 
          (4) 

A3: 
3 1 3 2 3 4

3 31 3 32 3 34

J J J J J J
0

1/ A F 1/ A F 1/ A F

  
          (5) 

where q2 = q3 = 0 since the surfaces are insulated (adiabatic) and hence reradiating.   

From knowledge of J1, q1 can be determined using Eq. (1).   

Of the N
2
 = 4

2
 = 16 view factors,  N(N – 1)/2 = 6 must be independently evaluated, while the 

remaining can be determined by the summation rule and appropriate reciprocity relations.  The 

six independently determined Fij are: 

By inspection:  (1)  F22 = 0  (2)  F44 = 0 



Problem:  Furnace in Spacecraft Environment (cont)

Coaxial parallel disks: From Table 13.2, 

          

(3)   
1/ 2

22
24 4 2F 0.5 S S 4 r / r 0.05573  

       
 

where 

2 2
4

2 2 4 42 2
2

1 R 1 0.250
S 1 1 18.00 R r / L 45 /180 0.250 R r / L 0.250

R 0.250

 
           

Enclosure 1-2-2: From the summation rule for A2, 

 

(4) F21 = 1 – F22′ = 1 – 0.09167 = 0.9083 

where F22 can be evaluated from the coaxial parallel disk relation, Table 13.2, with R2 = r2/L1 = 

45/135 = 0.333, R2 = r2/L1 = 0.333, and S = 11.00.   

From the summation rule for A1, 

(5) F11 = 1 – F12 – F12 = 1 – 0.1514 – 0.1514 = 0.6972 

From symmetry F12 = F12 and using reciprocity 

    12 2 21 1F A F / A 0.090m 2/ 4 0.9083/ 0.090m 0.135m 0.1514        

Enclosure  2 -3-4:  From the summation rule for A4, 

(6) F43 = 1 – F42 –  F44 = 1 – 0.3820 – 0 = 0.6180 

where F44 = 0 and using the coaxial parallel disk relation from Table 13.2,  F42 =0.3820 with R4 = 

r4/L2 = 45/45 = 1, R2 = r2/L2 = 1, and S = 3. 



Problem:  Furnace in Spacecraft Environment (cont)

From knowledge of the relevant view factors, the energy balances, Eqs. (3, 4, 5), can be 

solved simultaneously to obtain the radiosities, 

 
2 2 2

1 2 3J 73,084 W / m J 67,723W / m J 36,609 W / m    

The net heat rate leaving A1 can be evaluated using Eq. (1) written as 

 
 

 

 

2
b1 1

1 2
1 1 1

75,159 73,084 W / mE J
q 317 W

1 / A 1 0.8 / 0.8 0.03817 m 


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  
    < 

where Eb1 = 
4

1T  = (800 + 273K)
4
 = 75,159 W/m

2
 and A1 = DL1 =   0.090m  0.135m = 

0.03817 m
2
. 

COMMENTS:  Recognize the importance of defining the furnace opening as the 

hypothetical area A4 which completes the four-surface enclosure representing the furnace.  

The temperature of A4 is that of the surroundings and its emissivity is unity since it absorbs all 

radiation incident on it. 

The View Factors:  Using summation rules and appropriate reciprocity relations, the remaining 10 

view factors can be evaluated.  Written in matrix form, the Fij are 

  0.6972*  0.1514  0.09704 0.05438 
  0.9083*  0*  0.03597 0.05573* 

  0.2911  0.01798 0.3819  0.3090 

  0.3262  0.05573 0.6180*  0* 

The Fij shown with an asterisk were independently determined. 



Problem 13.93

Problem 13.93:    Assessment of ceiling radiative properties for an ice rink

in terms of ability to maintain surface temperature above 

the dewpoint.

KNOWN:  Ice rink with prescribed ice, rink air, wall, ceiling and outdoor air conditions. 

FIND:  (a) Temperature of the ceiling, Tc, for an emissivity of 0.05 (highly reflective panels) or 

0.94 (painted panels); determine whether condensation will occur for either or both ceiling 

panel types if the relative humidity of the rink air is 70%, and (b) Calculate and plot the ceiling 

temperature as a function of ceiling insulation thickness for 0.1  t  1 m; identify conditions 

for which condensation will occur on the ceiling. 



Problem 13.93 (cont)

SCHEMATIC:   
 

D = 50 m

Ice (i), T  = - 5 Ci
o

Walls (w)
     = 15 CoT  w

Ceiling (c), T ,  = 0.05 or 0.94c 

Insulation, k = 0.035 W/m-K, thickness t = 0.3m

L = 10 m h = 5 W/m -K i 
2

T   = 15 C,i
o

oo

T   = -5 C,o
o

oo

Rink air

 

qrad,cqconv,c

Ceiling, k

qo Energy balance on ceiling   Outdoors  

Rink air 
A , Tc c

T   ,ooo

+ qrad,cqconv,c

Rcond

Tc

qo

ASSUMPTIONS:  (1) Rink comprised of the ice, walls and ceiling approximates a three-

surface, diffuse-gray enclosure, (2) Surfaces have uniform radiosities, (3) Ice surface and 

walls are black, (4) Panels are diffuse-gray, and (5) Thermal resistance for convection on the 

outdoor side of the ceiling is negligible compared to the conduction resistance of the ceiling 

insulation. 



Problem 13.93 (cont)

PROPERTIES:  Psychometric chart (Atmospheric pressure; dry bulb temperature, Tdb = T,i 

= 15C; relative humidity, RH = 70%):  Dew point temperature, Tdp = 9.4C. 

ANALYSIS:  Applying an energy balance to the inner surface of the ceiling and treating all 

heat rates as energy outflows, 

  E Ein out  0  

    q q qo conv,c rad,c 0         (1) 

From Table 13.2 for parallel, coaxial disks 

 Fic  0 672.  

From the summation rule applied to the ice (i) and the reciprocity rule, 

 F F F F  (symmetry)ic iw iw cw  1  

 F Fcw ic 1  

 F A A F A A  1 Fwc c w cw c w ic   / / .b g b gb g 0 410  

where Ac =  D
2
/4 and Aw =  DL. 

where the rate equations for each process are 

  o c ,o cond cond cq T T / R R t / kA                  (2,3) 

   
 conv,c i c c ,iq h  A  T T          (4) 

   

Since the ceiling panels are diffuse-gray,  = .

q  E  T A  A  F  E  T  A  F  E  Trad,c b c c w wc b w i ic b i    bg b g bg (5)



Problem 13.93 (cont)

Using the foregoing energy balance, Eq. (1), and the rate equations, Eqs. (2-5), the ceiling 

temperature is calculated using radiative properties for the two panel types, 
 
  Ceiling panel      Tc (C) 
 
  Reflective  0.05    14.0 

  Paint   0.94      8.6  Tc < Tdp  < 

.  Condensation will occur on the painted panel since Tc < Tdp. 

(b) Applying the foregoing model for 0 1 1 0 m. . ,t  the following result is obtained 
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Problem 13.93 (cont)

For the reflective panel ( = 0.05), the ceiling surface temperature is considerably above the 

dew point.  Therefore, condensation will not occur for the range of insulation thicknesses.  

For the painted panel ( = 0.94), the ceiling surface temperature is always below the dew 

point, and condensation occurs for the range of insulation thicknesses. 

COMMENTS:  From the analysis, recognize that radiative exchange between the ice and the 

ceiling has the dominant effect on the ceiling temperature.  With the reflective panel, the rate 

is reduced nearly 20-fold relative to that for the painted panel.  With the painted panel ceiling, 

condensation will occur for most of the conditions likely to exist in the rink. 



Diffusion Mass Transfer



General Considerations

General Considerations
• Mass transfer refers to mass in transit due to a species concentration gradient

in a mixture.

 Must have a mixture of two or more species for mass transfer to occur.

 The species concentration gradient is the driving potential for transfer.

 Mass transfer by diffusion is analogous to heat transfer by conduction.

• Physical Origins of Diffusion:

 Transfer is due to random molecular motion.

 Consider two species A and B at the same T and p,

but initially separated by a partition.

– Diffusion in the direction of decreasing 

concentration dictates net transport of

A molecules to the right and B molecules

to the left.

– In time, uniform concentrations of A and

B are achieved.



Definitions

Definitions

:iC Molar concentration of species i. 3kmol/m

:i Mass density (kg/m3) of species i.

:iM Molecular weight (kg/kmol) of species i.

i i iC M

* :iJ Molar flux of species i due to diffusion. 2kmol/s m

 Transport of i relative to molar average velocity (v*) of mixture.

:iN  Absolute molar flux of species i. 2kmol/s m

 Transport of i relative to a fixed reference frame.

:ij Mass flux of species i due to diffusion. 2kg/s m

 Transport of i relative to mass-average velocity (v) of mixture.

 Transport of i relative to a fixed reference frame.

:ix Mole fraction of species i  / .i ix C C

:im Mass fraction of species i  / .i im  

Absolute mass flux of species i. 2kg/s m:in



Property Relations

Property Relations

• Mixture Concentration:

i
i

C C  1i
i

x 

• Mixture Density:

i
i

   1i
i

m 

• Mixture of Ideal Gases:

i
i

i

p
C

T



i
i

i

p

RT
 

i
i

p p 

i i
i

C p
x

C p
 



Diffusion Fluxes

Molar and Mass Fluxes of Species A due to Diffusion

in a Binary Mixture of Species A and B

• Molar Flux of Species A:

 By definition:

 AJ v vA AC  

A Bv v vA Bx x  

 From Fick’s law (mass transfer analog to Fourier’s law):

JA AB ACD x   

Binary diffusion coefficient or mass diffusivity (m2/s)

• Mass Flux of Species A:

 By definition:

 Av vA Aj  

Av = v vA B Bm m

 From Fick’s law:

A AB Aj D m  



Absolute Fluxes

Absolute Molar and Mass Fluxes of Species A

in a Binary Mixture of Species A and B

• Molar Flux of Species A:

AvA AN C  vA AJ C  

 J v vA A A A A B BN C x x   

 A AB A A A BN CD x x N N      

• Mass Flux of Species A:

vA A An   j vA A 

 v vA A A A A B Bn j m m   

 A AB A A A Bn D m m n n      

• Special Case of Stationary Medium:

v 0 A AN J   

v 0 A An j  

 Achieved to a good approximation for    (or ) 1 and  (or ) 0.A A B Bx m N n  



Conservation of Species

Conservation of Species

• Application to a Control Volume at an Instant of Time:

, , , ,
A

A in A out A g A st
dM

M M M M
dt

   

 rate of transport across the control surfaces, ,,A in A outM M 

homogeneous chemical rea rate of generation of A due to 
occurring in the con

ct
trol volume

ions,A gM 

 rate of accumulation of A in the control volume,A stM 

• Application in Cartesian Coordinates to a Differential Control Volume for a

Stationary Medium of Constant DAB and C or :

 Species Diffusion Equation on a Molar Basis:

2 2 2

2 2 2

1A A A A A

AB AB

C C C N C

x y z D D t

   
   

   

 Species Diffusion Equation on a Mass Basis:

2 2 2

2 2 2

1A A A A A

AB AB

n

x y z D D t

      
   

   



Conservation of Species (cont)

• Boundary Conditions (Molar Basis):

 Consider a Gas (A) / Liquid (B) or

Gas (A) / Solid (B) Interface.

Known surface concentration:

 0 ,A A sx x

For weakly soluble conditions of a gas A in liquid B,

,
A

A s

p
x

H
 (Henry’s law)

Henry's const  (Table 9ant A. )H 

For gas A in a uniform solid B,

 0A AC Sp

 3  kmol/m bar  solubility  (Table A.10)  S  

 Heterogeneous (surface) reactions (Catalysis)

 
0

0 A
A A AB

x

dx
N N CD

dx 

  



Special Cases

Special Cases for One-Dimensional , Steady-State Diffusion

in a Stationary Medium
• Diffusion without Homogeneous Chemical Reactions

 For Cartesian coordinates, the molar form of the species diffusion equation is
2

2
0Ad x

dx


 Plane wall with known surface concentrations:

   2 1 1, , , , , ,A A s A s A s
xx x x x x
L

  

 1 2, , , ,

, ,

AB A s A sA
A x A x AB

D C Cdx
N J CD

dx L




    

 1 2, , , , , ,
AB

A x A x A s A s

D A
N AN C C

L
  

,m diff

AB

LR
D A



(1)

Results for cylindrical and spherical shells            Table 14.1



Special Cases (cont)

 Planar medium with a first-order catalytic surface:

Assuming depletion of species A at the catalytic surface (x = 0),

   10 0,A x AAN N k C    

Reaction rate constant (m/s)

 1

0

0A
AB A

x

dx
D k x

dx 

  



Special Cases (cont)

Assuming knowledge of the concentration at a distance x=L from the surface,

  ,A A Lx L x

Solution to the species diffusion equation (1) yields a linear distribution for   :Ax x

   
 

1

1

1

1,

/

/

AB
A

A L AB

xk Dx x

x Lk D






Hence, at the surface,

 

 1

0 1

1, /

A

A L AB

x

x Lk D




 
 

1

0
1

0
1

,

/

A LA
A AB

x
AB

k Cxdx
N CD

dx Lk D


    



Limiting Cases:

– Process is reaction limited:

1 0k    1 1/ ABLk D

 

 

0
1A

A

x

x L
   10 ,A A LN k Cx  



Special Cases (cont)

– Process is diffusion limited:

1k     1 1/ ABLk D

 0 0Ax 
 0 ,AB A L

A

CD x
N

L
  

 Equimolar counterdiffusion:

Occurs in an ideal gas mixture if p and  T, and hence C, are uniform.

, ,A x B xN N  

0 0, , , ,
,

A A L A A LAB
A x AB

C C p pD
N D

L T L

 
  





Special Cases (cont)

• Diffusion with Homogeneous Chemical Reactions

For Cartesian coordinates, the molar form of the species diffusion equation is
2

2
0A

AB A

d C
D N

dx
 

For a first-order reaction that results in consumption of species A,

1A AN k C 

and the general solution to the diffusion equation is

  1 2

mx mx

AC x C e C e   
1 2

1

/
/ ABm k D

Consider diffusion and homogeneous reaction of gas A in a liquid (B) container

with an impermeable bottom:



Special Cases (cont)

Boundary conditions 

  00 ,A AC C 0A

x L

dC

dx 



Solution

   0, cosh tanh sinhA AC x C mx ml mx 

  00, , tanhA x AB AN D C m ml 



Column Evaporation

Evaporation in a Column: A Nonstationary Medium

 Special Features:

– Evaporation of A from the liquid interface  0 v, , ( ) ,A A sat A Lx x x 

– Insolubility of species B in the liquid.  Hence downward motion by diffusion

must be balanced by upward bulk motion (advection) such that the absolute

flux is everywhere zero.

0,B xN  

– Upward transport of A by diffusion is therefore augmented by advection.



Column Evaporation (cont)

 Solution:

0 0

11

1 1

/

,

, ,

x L

A LA

A A

xx

x

 
  

  

0

1
1n

1

,
,

,

A LAB
A x

A

xCD
N

L x

 
   

 



Transient Diffusion

One-Dimensional, Transient Diffusion in a Stationary Medium

without Homogeneous Chemical Reactions

• Species Diffusion Equation in Cartesian coordinates

2

2
A A

AB

C C
D

x t

 


 

• Initial and Boundary Conditions for a Plane Wall with Symmetrical Surface Conditions

 

 

0

0

0

,

,

,

,

A A i

A A s

A

x

C x C

C L t C

C

x 










• Nondimensionalization

,

, ,

A A s

A i A s

C C

C C
  




xx
L

 
2

AB
m m

D t
t Fo

L

  

Mass transfer Fourier number



Transient Diffusion (cont)

 Species Diffusion Equation
2

2

mx Fo

  



 


 

 Initial and Boundary Conditions

 

 

0

0 1

1 0

0

,

, m

x

x

Fo

x









 


















• Analogous to transient heat transfer by conduction in a plane wall with symmetrical

surface conditions for which              and hence                ,Bi  .sT T

Hence, the corresponding one-term approximate solution for conduction may be

applied to the diffusion problem by making the substitutions

mFo Fo

  



• Table 14.2 summarizes analogy between heat and mass transfer variables.


