
Machine Learning



Machine Learning
according to 

•The ability of a machine to improve its performance based on previous results.

•The process by which computer systems can be directed to improve their 

performance over time. 

•Subspecialty of artificial intelligence concerned with developing methods for software 

to learn from experience or extract knowledge from examples in a database.

•The ability of a program to learn from experience —

that is, to modify its execution on the basis of newly acquired information. 

•Machine learning is an area of artificial intelligence concerned with the 

development of techniques which allow computers to "learn". 

More specifically, machine learning is a method for creating computer 

programs by the analysis of data sets. Machine learning overlaps heavily 

with statistics, since both fields study the analysis of data, but unlike statistics,

machine learning is concerned with the algorithmic complexity of computational implementations. ...



Some Examples

• ZIP code recognition

• Loan application classification 

• Signature recognition

• Voice recognition over phone

• Credit card fraud detection

• Spam filter

• Collaborative Filtering: suggesting other products at Amazone.com 

• Marketing

• Stock market prediction

• Expert level chess and checkers systems

• biometric identification (fingerprints, DNA, iris scan, face)

• machine translation

• web-search

• document & information retrieval

• camera surveillance

• robosoccer

• and so on and so on...



Why is this cool/important?

• Modern technologies generate data at an unprecedented scale.

• The amount of data doubles every year.

“One petabyte is equivalent to the text in one billion books, 

yet many scientific instruments, including the Large Synoptic Survey Telescope, 

will soon be generating several petabytes annually”.  

(2020 Computing: Science in an exponential world: Nature Published online: 22 March 2006)

• Computers dominate our daily lives

• Science, industry, army, our social interactions etc.

We can no longer “eyeball” the images captured by some satellite

for interesting events, or check every webpage for some topic.

We need to trust computers to do the work for us.



Types of Learning

• Supervised Learning

• Labels are provided, there is a strong learning signal.

• e.g. classification, regression.

• Semi-supervised Learning.

• Only part of the data have labels. 

• e.g. a child growing up.

• Reinforcement learning.

• The learning signal is a (scalar) reward and may come with a delay.

• e.g. trying to learn to play chess, a mouse in a maze.

• Unsupervised learning

• There is no direct learning signal. We are simply trying to find structure in data.

• e.g. clustering, dimensionality reduction.

We will be 
concerned 
with these 
topics in thi 

sclass



Ingredients
• Data:

• what kind of data do we have?

• Prior assumptions:

• what do we know a priori about the problem?

• Representation:

• How do we represent the data?

• Model / Hypothesis space:

• What hypotheses are we willing to entertain to explain the data?

• Feedback / learning signal:

• what kind of learning signal do we have (delayed, labels)?

• Learning algorithm:

• How do we update the model (or set of hypothesis) from feedback?

• Evaluation:

• How well did we do, should we change the model?



Supervised Learning I

Example: Imagine you want to classify                       versus  

Data: 100 monkey images and 200 human images with labels what is what.

,
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{ 0}, 1,...,100

{ 1}, 1,...,200
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where x represents the greyscale of the image pixels and

y=0 means “monkey” while y=1 means “human”.

Task: Here is a new image:                            monkey or human? 

http://www.all-creatures.org/saen/monkey-face-02.jpg
http://www.all-creatures.org/saen/monkey-face-02.jpg
http://www.trincoll.edu/~kclark2/images/Jill's Monkey Face.jpg
http://www.trincoll.edu/~kclark2/images/Jill's Monkey Face.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg


1 nearest neighbors
(your first ML algorithm!)

Idea:

1. Find the picture in the database which is closest your query image.

2. Check its label.

3. Declare the class of your query image to be the same as that of the 

closest picture.

query
closest image

http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg


1NN Decision Surface

decision curve



Distance Metric

• How do we measure what it means to be “close”?

• Depending on the problem we should choose an appropriate distance metric.

Hamming distance:
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Remarks on NN methods

• We only need to construct a classifier that works locally for each query.

Hence: We don’t need to construct a classifier everywhere in space.

• Classifying is done at query time. This can be computationally taxing

at a time where you might want to be fast. 

• Memory inefficient (you have to keep all data around).

• Curse of dimensionality: imagine many features are irrelevant / noisy

 distances are always large.

• Very flexible, not many prior assumptions.

• k-NN variants robust against “bad examples”.



Non-parametric Methods

• Non-parametric methods keep all the data cases/examples in memory. 

• A better name is: “instance-based” learning

• As the data-set grows, the complexity of the decision surface grows.

• Sometimes, non-parametric methods have some parameters to tune...

• Very few assumptions (we let the data speak).



Logistic Regression / Perceptron

• Fits a soft decision boundary between the classes.

1 dimension
2 dimensions

(your second ML algorithm!)



The logit / sigmoid

1
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1 exp[ ( )]T
h X

W X b

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Determines the offset

Determines the angle

and the steepness. 



Objective 

• We interpret h(x) as the probability of classifying a data case as 
positive.

• We want to maximize the total probability of the data-vectors:

( 1) ( 0)
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Algorithm in detail

• Repeat until convergence (gradient descend):
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A Note on Stochastic GD

• For very large problems it is more efficient to 

compute the gradient using a small (random)

subset of the data.

• For every new update you pick a new random subset.

• Towards convergence, you decrease the stepsize.

• Why is this more efficient?

The gradient is an average over many data-points.

 If your parameters are very “bad”, every data-point will 

tell you to move in the same direction, so you need only a 

few data-points to find that direction.

Towards convergence you need all the data-points.

 A small step-size effectively averages over many data-points.



Parametric Methods

• Parametric methods fit a finite set of parameters to the data.

• Unlike NP methods, this implies a maximum complexity to the algorithm.

• “Assumption heavy”: by choosing the parameterized model you impose

your prior assumptions (this can be an advantage when you have sound assumptions!)

• Classifier is build off-line. Classification is fast at query time.

• Easy on memory: samples are summarized through model parameters. 



Hypothesis Space

• An hypothesis h: X[0,1] for a binary classifier is a function that maps

all possible input values to either class 0 or class 1.

• E.g. for 1-NN the hypothesis h(X) is given by:

• The hypothesis space H, is the space of 

all hypotheses that you are 

willing to consider/search over.

• For instance, for logistic regression, H is given by

all classifiers of the form (parameterized by W,b):

1
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Inductive Bias

• The assumption one makes to generalize beyond the training data.

• Examples:

• 1-NN: the label is the same as that of the closest training example.

• LL: the classification function is a smooth function of the form:

• Without inductive bias (i.e. without assumptions) there is no generalization

possible! (you have not expressed preference for unseen data in any way).

• Learning is hence converting your prior assumptions + the data into a 

classifier for new data.
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Generalization
• Consider the following regression problem:

• Predict the real value on the y-axis from the real value on the x-axis.

• You are given 6 examples: {Xi,Yi}.

• What is the y-value for a new query point X* ?

X*



Generalization



Generalization



Generalization

which curve is best?



Generalization

• Ockham’s razor: prefer the simplest hypothesis consistent 
with data.



Generalization

Learning is concerned with accurate prediction

of future data, not accurate prediction of training data.

(The single most important sentence you will see in the course)



Cross-validation

• You are ultimately interested in good performance on new (unseen) test 
data.

• To estimate that, split off a (smallish) subset of the training data (called 
validation set).

• Train without validation data and “test” on validation data. 

• Repeat this over multiple splits of the data and average results.

• Reasonable split: 90% train, 10% test,  average over the 10 splits.

How do we ensure good generalization,

i.e. avoid “over-fitting” on our particular 

data sample.



UNIT-II

An Overview of RS Image 

Clustering and Classification

by 



What is Remote Sensing and 

Image Classification?

 Remote Sensing is a technology for sampling radiation and force fields to 
acquire and interpret geospatial data to develop information about 
features, objects, and classes on Earth's land surface, oceans, and 
atmosphere (and, where applicable, on the exterior's of other bodies in the 
solar system). 

 Remote Sensing is detecting and measuring of electromagnetic energy 
(usually photons) emanating from distant objects made of various 
materials, so that we can identify and categorize these object by class or 
type, substance, and spatial distribution

 Image Classification has the overall objective to automatically categorize all 
pixels in an image into classes or themes.  The Spectral pattern, or 
signature of surface materials belonging to a class or theme determines an 
assignment to a class.



Reflected 

Light



The “PIXEL”



Wavelength 

(Bands)



Spectral Profile



Spectral Signatures



Band Combinations

3,2,1

4,3,2

5,4,3



Image Classification



1d classifier



Spectral Dimensions



3 band space



Clusters



Dimensionality

N = the number of bands = dimensions

…. an (n) dimensional data (feature) space
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Spectral Distance

* a number that allows two measurement vectors to be 

compared
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Classification Approaches

Unsupervised: self organizing

Supervised: training 

Hybrid: self organization by categories

Spectral Mixture Analysis: sub-pixel variations.



Clustering / Classification

Clustering or Training Stage: 
Through actions of either the analyst’s supervision or an 

unsupervised algorithm, a numeric description of the spectral 
attribute of each “class” is determined (a multi-spectral cluster 
mean signature).

Classification Stage: 
By comparing the spectral signature to of a pixel (the measure 

signature) to the each cluster signature a pixel is assigned to a 
category or class.



terms

Parametric = based upon statistical 
parameters (mean & standard deviation)

Non-Parametric = based upon objects 
(polygons) in feature space

Decision Rules = rules for sorting pixels 
into classes



Resolution 

and 

Spectral 

Mixing





Clustering
Minimum Spectral Distance - unsupervised

ISODATA

I  - iterative

S - self

O - organizing

D - data

A - analysis

T - technique

A - (application)?

Band A

Band B

Band A

Band B

1st iteration cluster mean

2nd  iteration cluster mean



ISODATA 

clusters



Unsupervised 

Classification

ISODATA -
Iterative Self-

Organizing Data 

Analysis 

Technique



Supervised 

Classification



Classification Decision 

Rules

 If the non-parametric test results in 
one unique class, the pixel will be 
assigned to that class.

 if the non-parametric test results in 
zero classes (outside the decision 
boundaries) the the “unclassified rule 
applies … either left unclassified or 
classified by the parametric rule

 if the pixel falls into more than one 
class the overlap rule applies … left 
unclassified, use the parametric rule, 
or processing order

Non-Parametric
•parallelepiped

•feature space

Unclassified Options

•parametric rule

•unclassified

Overlap Options

•parametric rule

•by order

•unclassified

Parametric
•minimum distance

•Mahalanobis distance

•maximum likelihood
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Parametric 

classifiers



Classification Systems

http://boto.ocean.washington.edu/oc_gis_rs/lawrs/classify.html

USGS - U.S. Geological Survey Land Cover Classification Scheme for Remote Sensor Data 

USFW - U.S. Fish & Wildlife Wetland Classification System 

NOAA CCAP - C-CAP Landcover Classification System, and Definitions

NOAA CCAP - C-CAP Wetland Classification Scheme Definitions 

PRISM - PRISM General Landcover  

King Co. - King County General Landcover (specific use, by Chris Pyle)

Level 

•1 Urban or Built-Up Land 

•11 Residential 

•12 Commercial and Services 

•13 Industrial 

•14 Transportation, Communications and Utilities 

•15 Industrial and Commercial Complexes 

•16 Mixed Urban or Built-Up 

•17 Other Urban or Built-up Land 

•2 Agricultural Land 

•21 Cropland and Pasture 

•22 Orchards, Groves, Vineyards, Nurseries and 

Ornamental Horticultural Areas 

•23 Confined Feeding Operations 

•24 Other Agricultural Land

http://boto.ocean.washington.edu/oc_gis_rs/lawrs/classify.html


Hybrid Classification



Hybrid - “superblocks”



Feature Space



Ground Truth



Classified Product



Unit-III
Nonparametric Methods 

 Sign Test

 Wilcoxon Signed-Rank Test

 Mann-Whitney-Wilcoxon Test

 Kruskal-Wallis Test

 Rank Correlation



Nonparametric Methods

 Most of the statistical methods referred to as parametric 
require the use of interval- or ratio-scaled data.

 Nonparametric methods are often the only way to 
analyze nominal or ordinal data and draw statistical 
conclusions.

 Nonparametric methods require no assumptions about 
the population probability distributions.

 Nonparametric methods are often called distribution-
free methods.



Nonparametric Methods

 In general, for a statistical method to be classified as 
nonparametric, it must satisfy at least one of the 
following conditions.

• The method can be used with nominal data.

• The method can be used with ordinal data.

• The method can be used with interval or ratio data 
when no assumption can be made about the 
population probability distribution.



Sign Test

 A common application of the sign test involves using 
a sample of n potential customers to identify a 
preference for one of two brands of a product.

 The objective is to determine whether there is a 
difference in preference between the two items being 
compared.

 To record the preference data, we use a plus sign if 
the individual prefers one brand and a minus sign if 
the individual prefers the other brand.

 Because the data are recorded as plus and minus 
signs, this test is called the sign test.



Sign Test:  Small-Sample Case

 The small-sample case for the sign test should be 
used whenever n < 20.

 The hypotheses are

a :  .50H p 

0 :  .50H p 

A preference for one brand
over the other exists.

No preference for one brand
over the other exists.

 The number of plus signs is our test statistic.

 Assuming H0 is true, the sampling distribution for 
the test statistic is a binomial distribution with p = .5.

 H0 is rejected if the p-value < level of significance, a.



Sign Test:  Large-Sample Case

 Using H0: p = .5 and n > 20, the sampling distribution 
for the number of plus signs can be approximated by 
a normal distribution.

 When no preference is stated (H0: p = .5), the sampling 
distribution will have:

 The test statistic is:

 H0 is rejected if the p-value < level of significance, a.

Mean:  m = .50n

Standard Deviation:  .25n 

x
z

m




 (x is the number

of plus signs)



Sign Test:  Large-Sample Case

• Example:  Ketchup Taste Test

A
B

As part of a market research study, a

sample of 36 consumers were asked to taste

two brands of ketchup and indicate a 

preference.  Do the data shown on the next

slide indicate a significant difference in the

consumer preferences for the two brands?



18 preferred Brand A Ketchup
(+ sign recorded)

12 preferred Brand B Ketchup
(_ sign recorded)

6  had no preference

Sign Test:  Large-Sample Case

 Example:  Ketchup Taste Test

A
B

The analysis will be based on

a sample size of 18 + 12 = 30.



• Hypotheses

a :  .50H p 

A B

Sign Test:  Large-Sample Case

0 :  .50H p 

A preference for one brand over the other exists

No preference for one brand over the other exists



• Sampling Distribution for Number of Plus Signs

m = .5(30) = 15

A B

Sign Test:  Large-Sample Case

.25 .25(30) 2.74n   



• Rejection Rule A B

Sign Test:  Large-Sample Case

p-Value = 2(.5000 - .3643) =  .2714

 p-Value

z = (x – m)/ = (18 - 15)/2.74 = 3/2.74 =  1.10

 Test Statistic

Using .05 level of significance:

Reject H0 if p-value < .05



A B

Sign Test:  Large-Sample Case

 Conclusion

Because the p-value > a, we cannot reject H0.   
There is insufficient evidence in the sample to conclude 
that a difference in preference exists for the two brands 
of ketchup.  



Hypothesis Test About a Median
 We can apply the sign test by:

• Using a plus sign whenever the data in the sample 
are above the hypothesized value of the median

• Using a minus sign whenever the data in the 
sample are below the hypothesized value of the 
median

• Discarding any data exactly equal to the 
hypothesized median



Hypothesis Test About a Median

34 yearsH0: Median Age

34 yearsHa: Median Age

 Example:  Trim Fitness Center

A hypothesis test is being conducted

about the median age of female members

of the Trim Fitness Center.

In a sample of 40 female members, 25 are older

than 34, 14 are younger than 34, and 1 is 34.  Is there

sufficient evidence to reject H0?  Assume a = .05.



p-Value = 2(.5000  .4608) =  .0784

m = .5(39) = 19.5

.25 .25(39) 3.12n   

Hypothesis Test About a Median

 p-Value

z = (x – m)/ = (25 – 19.5)/3.12 =  1.76

 Test Statistic

 Mean and Standard Deviation



Hypothesis Test About a Median
 Rejection Rule

 Conclusion

Do not reject H0.  The p-value for this two-tail 
test is .0784.  There is insufficient evidence in the 
sample to conclude that the median age is not 34 for 
female members of Trim Fitness Center.

Using .05 level of significance:

Reject H0 if p-value < .05



Wilcoxon Signed-Rank Test
 This test is the nonparametric alternative to the 

parametric matched-sample test presented in 
Chapter 10.

 The methodology of the parametric matched-sample 
analysis requires:

• interval data, and

• the assumption that the population of differences 
between the pairs of observations is normally 
distributed.

 If the assumption of normally distributed differences 
is not appropriate, the Wilcoxon signed-rank test can 
be used.



 Example:  Express Deliveries
Wilcoxon Signed-Rank Test

A firm has decided to select one

of two express delivery services to

provide next-day deliveries to its

district offices.

To test the delivery times of the two services, the

firm sends two reports to a sample of 10 district 

offices, with one report carried by one service and the

other report carried by the second service.  Do the data

on the next slide indicate a difference in the two

services?



Wilcoxon Signed-Rank Test

Seattle

Los Angeles

Boston

Cleveland

New York

Houston

Atlanta

St. Louis

Milwaukee

Denver

32 hrs.

30

19

16

15

18

14

10

7

16

25 hrs.

24

15

15

13

15

15

8

9

11

District Office OverNight NiteFlite



Wilcoxon Signed-Rank Test

 Preliminary Steps of the Test

• Compute the differences between the paired 
observations.

• Discard any differences of zero.

• Rank the absolute value of the differences from 
lowest to highest.  Tied differences are assigned 
the average ranking of their positions.

• Give the ranks the sign of the original difference 
in the data.

• Sum the signed ranks.

. . . next we will determine whether the

sum is significantly different from zero.



Wilcoxon Signed-Rank Test

Seattle

Los Angeles

Boston

Cleveland

New York

Houston

Atlanta

St. Louis

Milwaukee

Denver

7

6

4

1

2

3

1

2

2

5

District Office Differ. |Diff.| Rank    Sign. Rank

10

9

7

1.5

4

6

1.5

4

4

8

+10

+9

+7

+1.5

+4

+6

1.5

+4

4

+8

+44



Wilcoxon Signed-Rank Test
 Hypotheses

H0:  The delivery times of the two services are the 

same; neither offers faster service than the other.

Ha:  Delivery times differ between the two services; 

recommend the one with the smaller times.



 Sampling Distribution of T for Identical Populations

mT = 0

( 1)(2 1) 10(11)(21)
19.62

6 6
T

n n n


 
  

Wilcoxon Signed-Rank Test

T



Wilcoxon Signed-Rank Test
 Rejection Rule

Using .05 level of significance,

Reject H0 if p-value < .05

 Test Statistic

 p-Value

z = (T - mT )/T = (44 - 0)/19.62 =  2.24

p-Value = 2(.5000 - .4875) =  .025



 Conclusion

Reject H0.  The p-value for this two-tail test is 
.025.  There is sufficient evidence in the sample to 
conclude that a difference exists in the delivery times 
provided by the two services. 

Wilcoxon Signed-Rank Test



Mann-Whitney-Wilcoxon Test
 This test is another nonparametric method for 

determining whether there is a difference between 
two populations.

 This test, unlike the Wilcoxon signed-rank test, is not
based on a matched sample.

 This test does not require interval data or the 
assumption that both populations are normally 
distributed.

 The only requirement is that the measurement scale 
for the data is at least ordinal.



Mann-Whitney-Wilcoxon Test

Ha:  The two populations are not identical

H0:  The two populations are identical

 Instead of testing for the difference between the 
means of two populations, this method tests to 
determine whether the two populations are identical.

 The hypotheses are:



Mann-Whitney-Wilcoxon Test
 Example:  Westin Freezers

Manufacturer labels indicate the

annual energy cost associated with

operating home appliances such as

freezers.

The energy costs for a sample of

10 Westin freezers and a sample of 10

Easton Freezers are shown on the next slide.  Do the

data indicate, using a = .05, that a difference exists in

the annual energy costs for the two brands of freezers?



Mann-Whitney-Wilcoxon Test

$55.10    
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53.20
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55.50

54.90

55.80

54.00

54.20

55.20

$56.10    

54.70

54.40

55.40

54.10

56.00

55.50

55.00

54.30

57.00

Westin Freezers Easton Freezers



Mann-Whitney-Wilcoxon Test
• Hypotheses

Ha:  Annual energy costs differ for the two

brands of freezers.

H0:  Annual energy costs for Westin freezers

and Easton freezers are the same.



Mann-Whitney-Wilcoxon Test:
Large-Sample Case

 First, rank the combined data from the lowest to 

the highest values, with tied values being assigned 
the average of the tied rankings.

 Then, compute T, the sum of the ranks for the first 
sample.

 Then, compare the observed value of T to the 
sampling distribution of T for identical populations.  
The value of the standardized test statistic z will 
provide the basis for deciding whether to reject H0.



Mann-Whitney-Wilcoxon Test:
Large-Sample Case

1 2 1 2
1 ( 1)12T n n n n   

Approximately normal, provided

n1 > 10 and n2 > 10

mT = 1n1(n1 + n2 + 1)

 Sampling Distribution of T for Identical Populations

• Mean

• Standard Deviation

• Distribution Form



Mann-Whitney-Wilcoxon Test

$55.10    

54.50

53.20

53.00

55.50

54.90

55.80

54.00

54.20

55.20

$56.10    

54.70

54.40

55.40

54.10

56.00

55.50

55.00

54.30

57.00

Westin Freezers Easton Freezers

Sum of Ranks Sum of Ranks

Rank Rank

86.5 123.5

1

2

12

8

15.5

10

17

3

5

13

19

9

7

14

4

18

15.5

11

6

20



 Sampling Distribution of T for Identical Populations

mT = ½(10)(21) = 105

Mann-Whitney-Wilcoxon Test

1 2 1 2
1 ( 1)12

1    (10)(10)(21)12

    13.23

T n n n n   





T



 Rejection Rule

Using .05 level of significance,

Reject H0 if p-value < .05

 Test Statistic

 p-Value

z = (T - mT )/T = (86.5  105)/13.23 =  -1.40

p-Value = 2(.5000 - .4192) =  .1616

Mann-Whitney-Wilcoxon Test



Mann-Whitney-Wilcoxon Test
 Conclusion

Do not reject H0.  The p-value > a.  There is 
insufficient evidence in the sample data to conclude 
that there is a difference in the annual energy cost 
associated with the two brands of freezers.



Kruskal-Wallis Test
 The Mann-Whitney-Wilcoxon test has been extended 

by Kruskal and Wallis for cases of three or more 
populations.

 The Kruskal-Wallis test can be used with ordinal data 
as well as with interval or ratio data.

 Also, the Kruskal-Wallis test does not require the 
assumption of normally distributed populations.

Ha:  Not all populations are identical

H0:  All populations are identical



Kruskal-Wallis Test
• Test Statistic



 
   

 


2

1

12
3( 1)

( 1)

k
i

T
iT T i

R
W n

n n n

where:   k = number of populations

ni = number of items in sample i

nT = Sni = total number of items in all samples

Ri = sum of the ranks for sample i



Kruskal-Wallis Test
 When the populations are identical, the sampling 

distribution of the test statistic W can be approximated 
by a chi-square distribution with k – 1 degrees of 
freedom.

 This approximation is acceptable if each of the sample 
sizes ni is > 5.

 The rejection rule is:  Reject H0 if  p-value < a



Rank Correlation
 The Pearson correlation coefficient, r, is a measure of 

the linear association between two variables for 
which interval or ratio data are available.

 The Spearman rank-correlation coefficient, rs ,  is a 
measure of association between two variables when 
only ordinal data are available.

 Values of rs can range from –1.0 to +1.0, where

• values near 1.0 indicate a strong positive 
association between the rankings, and

• values near -1.0 indicate a strong negative 
association between the rankings.



Rank Correlation
• Spearman Rank-Correlation Coefficient, rs

2

2

6
1

( 1)

i

s

d
r

n n
 





where:  n = number of items being ranked

xi = rank of item i with respect to one variable

yi = rank of item i with respect to a second variable

di = xi - yi



Test for Significant Rank Correlation

0 :  0sH p 

a :  0sH p 

 We may want to use sample results to make an 
inference about the population rank correlation ps.

 To do so, we must test the hypotheses:

(No rank correlation exists)

(Rank correlation exists)



Rank Correlation

0
sr

m 

1

1sr n
 



Approximately normal, provided n > 10

 Sampling Distribution of rs when ps = 0

• Mean

• Standard Deviation

• Distribution Form



Rank Correlation

 Example:  Crennor Investors

Crennor Investors provides 

a portfolio management service

for its clients.  Two of Crennor’s

analysts ranked ten investments

as shown on the next slide.  Use

rank correlation, with  a = .10, to

comment on the agreement of the two analysts’

rankings.



Rank Correlation

Analyst #2 1      5      6      2      9     7      3    10     4     8

Analyst #1 1      4      9      8      6     3      5     7      2    10

Investment A     B     C     D     E     F     G    H     I      J

 Example:  Crennor Investors

0 :  0sH p 

a :  0sH p 

(No rank correlation exists)

(Rank correlation exists)

• Analysts’ Rankings

• Hypotheses



Rank Correlation

A
B
C
D
E
F
G
H
I
J

1
4
9
8
6
3
5
7
2
10

1
5
6
2
9
7
3
10
4
8

0
-1
3
6
-3
-4
2
-3
-2
2

0
1
9
36
9
16
4
9
4
4

Sum = 92

Investment
Analyst #1
Ranking

Analyst #2
Ranking Differ. (Differ.)2



 Sampling Distribution of rs

Assuming No Rank Correlation

Rank Correlation

1
.333

10 1sr
  



mr = 0
rs



Rank Correlation

• Test Statistic
2

2

6 6(92)
1 1 0.4424

( 1) 10(100 1)

i

s

d
r

n n
    

 



z = (rs - mr )/r = (.4424 - 0)/.3333 =  1.33

 Rejection Rule

With .10 level of significance:

Reject H0 if p-value < .10

 p-Value

p-Value = 2(.5000 - .4082) =  .1836



Rank Correlation

Do no reject H0.  The p-value > a.  There is not a 
significant rank correlation.  The two analysts are 
not showing agreement in their ranking of the risk 
associated with the different investments.

 Conclusion



End of Chapter 



UNIT- IV

Multilayer Percetrons
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Multilayer Perceptrons

Architecture

Input

layer

Output

layer

Hidden Layers
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A solution for the XOR problem 

1

1

-1

-1

x1

x2

x1 x2 x1 xor x2

-1 -1 -1

-1 1 1

1 -1 1

1 1 -1

+1

+1
+1

+1
-1

-1

x1

x2

1     if v > 0

(v) = 

-1    if v  0

 is the sign function.

-1

-1

0.1
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NEURON MODEL

• Sigmoidal Function

• induced field of neuron j

• Most common form of activation function

• a     threshold function

• Differentiable

jave


1

1

j)(v

-10   -8   -6   -4   -2     2    4    6    8    10 

jv

)( jv
1

Increasing a

i

,...,0

jijv yw
mi






jv
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LEARNING ALGORITHM 

• Back-propagation algorithm

• It adjusts the weights of the NN in order to 

minimize the average squared error.

Function signals

Forward Step

Error signals

Backward Step
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Average Squared Error
• Error signal of output neuron j at presentation of n-th

training example:

• Total energy at time n:

• Average squared error:

• Measure of learning

performance:

• Goal: Adjust weights of NN to minimize EAV

(n)y-(n)d(n)e jjj 

(n)eE(n)
Cj

2

j2

1










N

1n
N

1

AV (n)EE

C: Set of 

neurons

in output 

layer

N: size of 

training set
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Notation

je

jy

i

,...,0

jijv yw
mi




 Induced local 

field of neuron j

Error at output of neuron j

Output of neuron j
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Weight Update Rule

ji

ji
w

-w





E
 Step in direction opposite to the gradient

Update rule is based on the gradient descent method

take a step in the direction yielding the maximum 

decrease of E

With         weight associated to the link from neuron i 

to neuron j 
jiw
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Definition of the Local 

Gradient of neuron j

j

j
v

-





E
 Local Gradient

)v(e jjj  We obtain

because

)v(')1(e
v

y

y

e

ev
j

j

j

j

j

jj


















 j

EE
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Update Rule

•
ij y jiw

i

j
y

v






jiw

ji

j

jji w

v

vw 










 EE

We obtain

because

j

j

E







v
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Compute local gradient of 

neuron j

• The key factor is the calculation of ej

• There are two cases:

– Case 1): j is a output neuron

– Case 2): j is a hidden neuron 
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Error ej  of output neuron 

• Case 1: j output neuron

jjj y-de 

)(v')y-d( jjj j 

Then 
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Local gradient of hidden 

neuron 

• Case 2: j hidden neuron

• the local gradient for neuron j is recursively 

determined in terms of the local gradients of 

all neurons to which neuron j is directly 

connected



15
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Use the Chain Rule

j

j

j

j
v

y

y
-










E


j

k

Ck k

k
k

Ck j

k
k

j y

v

v

e
e

y

e
e

y 
























 



E

)v('
v

y
j

j

j 




kj

j

k
k

k

k w
y

v
      )v('

v

e










 from

We obtain 








Ck

kjk

j

w
y


E

(n)eE(n)
Ck

2

k2

1








17

Local Gradient of hidden 

neuron j





Ck

kjkjj w)v( 

’(v1)

’(vk)

’(vm)

1

k

m

w1j

wkj

wm j

e1

ek

em

Signal-flow 

graph of 

back-

propagation 

error signals 

to neuron j

j ’(vj)

Hence



18

Delta Rule

• Delta rule wji = j yi

C: Set of neurons in the layer following the one 

containing j

j
)y(d)v( jjj 





Ck

kjkj w)v( 

IF j output node

IF j hidden node
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Local Gradient of neurons

]y1[ay)v(' jjj  a > 0

j
]y[d]y1[ay jjjj 


k

kjkjj w ]y[1ay  if j hidden node

If j output node
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Backpropagation algorithm 

• Two phases of computation:

– Forward pass: run the NN and compute the error for 

each neuron of the output layer.

– Backward pass: start at the output layer, and pass 

the errors backwards through the network, layer by 

layer, by recursively computing the local gradient of 

each neuron.
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Summary
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• Sequential mode (on-line, pattern or

stochastic mode):

– (x(1), d(1)) is presented, a sequence of 

forward and backward computations is 

performed, and the weights are updated 

using the delta rule.

– Same for (x(2), d(2)), … , (x(N), d(N)).

Training
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Training

• The learning process continues on an epoch-

by-epoch basis until the stopping condition is 

satisfied. 

• From one epoch to the next choose a 

randomized ordering for selecting examples in 

the training set.
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Stopping criterions

• Sensible stopping criterions:

– Average squared error change: 

Back-prop is considered to have 

converged when the absolute rate of 

change in the average squared error per 

epoch is sufficiently small (in the range 

[0.1, 0.01]).

– Generalization based criterion: 

After each epoch the NN is tested for 

generalization. If the generalization 

performance is adequate then stop.
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Early stopping
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Generalization

• Generalization: NN generalizes well if the I/O 

mapping computed by the network is nearly 

correct for new data (test set).

• Factors that influence generalization:

– the size of the training set.

– the architecture of the NN.

– the complexity of the problem at hand.

• Overfitting (overtraining): when  the NN 

learns too many I/O examples it may end up 

memorizing the training data.
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Generalization
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Expressive capabilities of NN

Boolean functions:

• Every boolean function can be represented by 

network with single hidden layer

• but might require exponential hidden units

Continuous functions:

• Every bounded continuous function can be 

approximated with arbitrarily small error, by network 

with one hidden layer 

• Any function can be approximated with arbitrary 

accuracy by a network with two hidden layers
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Generalized Delta Rule

• If  small  Slow rate of learning

If  large  Large changes of weights

 NN can become unstable 

(oscillatory)

• Method to overcome above drawback: 

include a momentum term in the delta 

rule

n)(n)y()1n(wn)(w ijjiji  
Generalized

delta

function

momentum constant
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Generalized delta rule

• the momentum accelerates the descent in steady 

downhill directions.

• the momentum has a stabilizing effect in 

directions that oscillate in time.
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 adaptation

Heuristics for accelerating the convergence of 

the back-prop algorithm through  adaptation:

• Heuristic 1: Every weight should have its own .

• Heuristic 2: Every  should be allowed to vary from 

one iteration to the next.
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• Data representation

• Network Topology

• Network Parameters

• Training 

• Validation

NN DESIGN 
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• How are the weights initialised?

• How is the learning rate chosen?

• How many hidden layers and how many neurons?

• Which activation function ?

• How to preprocess the data ?

• How many examples in the training data set? 

Setting the parameters 
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Some heuristics (1)

• Sequential x Batch algorithms: the 

sequential mode (pattern by pattern) is 

computationally faster than the batch 

mode (epoch by epoch)
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Some heuristics (2)

• Maximization of information content: 

every training example presented to the 

backpropagation algorithm must 

maximize the information content.

– The use of an example that results in the 

largest training error.

– The use of an example that is radically 

different from all those previously used.
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Some heuristics (3)
• Activation function: network learns 

faster with antisymmetric functions 

when compared to  nonsymmetric 

functions.

 
ave


1

1
v Sigmoidal function is

nonsymmetric

)tanh((v) bva Hyperbolic tangent

function is

nonsymmetric
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Some heuristics (3)



38

Some heuristics (4)

• Target values: target values must be 

chosen within the range of the sigmoidal 

activation function.

• Otherwise, hidden neurons can be 

driven into saturation which slows down 

learning
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Some heuristics (4)

• For the antisymmetric activation 

function it is necessary to design  Є

• For a+:

• For –a:

• If a=1.7159 we can set Є=0.7159 then 

d=±1

 ad j

 ad j
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Some heuristics (5)

• Inputs normalisation:

– Each input variable should be processed 

so that the mean value is small or close to 

zero or at least very small when compared 

to the standard deviation.

– Input variables should be uncorrelated.

– Decorrelated input variables should be 

scaled so their covariances are 

approximately equal.
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Some heuristics (5)
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Some heuristics (6)

• Initialisation of weights:

– If synaptic weights are assigned large 

initial values neurons are driven into 

saturation. Local gradients become small 

so learning rate becomes small.

– If synaptic weights are assigned small 

initial values algorithms operate around the 

origin. For the hyperbolic activation 

function the origin is a saddle point.              
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Some heuristics (6)

• Weights must be initialised for the 

standard deviation of the local induced 

field v lies in the transition between the 

linear and saturated parts.

1v

2/1 mw m=number of weights
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• Learning rate:

– The right value of  depends on the application. 

Values between 0.1 and 0.9 have been used in 

many applications.

– Other heuristics adapt  during the training as 

described in previous slides.

Some heuristics (7)
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• How many layers and neurons

– The number of layers and of neurons depend 

on the specific task. In practice this issue is 

solved by trial and error.

– Two types of adaptive algorithms can be used:

• start from a large network and successively 

remove some neurons and links until  network 

performance degrades.

• begin with a small network and introduce new 

neurons until performance is satisfactory.

Some heuristics (8)



46

• How many training data ?

– Rule of thumb: the number of training examples 

should be at least five to ten times the number 

of weights of the network.

Some heuristics (9)
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Output representation and 

decision rule

• M-class classification problem

Yk,j(xj)=Fk(xj), k=1,...,M

MLP

Y1,j

Y2,j

YM,j
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Data representation









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MLP and the a posteriori class 

probability

• A multilayer perceptron classifier 

(using the logistic function) 

aproximate the a posteriori class 

probabilities, provided that the size 

of the training set is large enough.
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The Bayes rule
• An appropriate output decision rule is 

the (approximate) Bayes rule generated 

by the a posteriori probability 

estimates:

• xЄCk if Fk(x)>Fj(x) for all 
kj 





















)(

)(

)(

)(

xF

xF

xF

xF




UNIT- V
An Introduction to Ensemble Methods

Bagging, Boosting, Random Forests, and More



Supervised Learning

• Goal: learn predictor h(x) 

– High accuracy (low error)

– Using training data {(x1,y1),…,(xn,yn)}



Person Age Male? Height > 55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

x =
age

1[gender=male]

é

ë

ê
ê

ù

û

ú
ú
y =

1 height > 55"

0 height £ 55"

ì
í
ï

îï

Male?

Age>9? Age>10?

1 0 1 0

Yes

Yes Yes No

No

No



Different Classifiers

• Performance
– None of the classifiers is perfect

– Complementary
• Examples which are not correctly classified 

by one classifier may be correctly classified 
by the other classifiers

• Potential Improvements?
– Utilize the complementary property

CS 4700, Foundations of  Artificial Intelligence, Carla P. Gomes



Ensembles of Classifiers

• Idea
– Combine the classifiers to improve the 

performance

• Ensembles of Classifiers
– Combine the classification results from 

different classifiers to produce the final 
output
• Unweighted voting

• Weighted voting

CS 4700, Foundations of  Artificial Intelligence, Carla P. Gomes



Example: Weather Forecast

Reality

1

2

3

4

5

Combine

X X X

X X X

X X X
X X

X X

CS 4700, Foundations of  Artificial Intelligence, Carla P. Gomes



Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging

– Random Forests

• Ensemble methods that minimize bias
– Functional Gradient Descent

– Boosting

– Ensemble Selection



Generalization Error

• “True” distribution: P(x,y) 

– Unknown to us

• Train: h(x) = y 

– Using training data S = {(x1,y1),…,(xn,yn)}

– Sampled from P(x,y)

• Generalization Error:

– L(h) = E(x,y)~P(x,y)[ f(h(x),y) ]  

– E.g., f(a,b) = (a-b)2



Person Age Male? Height > 55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height > 55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Margare
t

10 0 1

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1… L(h) = E(x,y)~P(x,y)[ f(h(x),y) ]  

Generalization Error:
h(x)y



Bias/Variance Tradeoff

• Treat h(x|S) has a random function 

– Depends on training data S

• L = ES[ E(x,y)~P(x,y)[ f(h(x|S),y) ] ]

– Expected generalization error

– Over the randomness of S



Bias/Variance Tradeoff

• Squared loss: f(a,b) = (a-b)2

• Consider one data point (x,y)

• Notation: 

– Z = h(x|S) – y 

– ž = ES[Z]

– Z-ž = h(x|S) – ES[h(x|S)]

ES[(Z-ž)2] = ES[Z
2 – 2Zž + ž2]

= ES[Z
2] – 2ES[Z]ž + ž2

= ES[Z
2] – ž2

ES[f(h(x|S),y)] = ES[Z
2]

= ES[(Z-ž)2] + ž2

BiasVariance

Expected Error

Bias/Variance for all (x,y) is expectation over P(x,y).

Can also incorporate measurement noise.

(Similar flavor of analysis for other loss functions.)
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ES[(h(x|S) - y)2] = ES[(Z-ž)2] + ž2

Variance

Z = h(x|S) – y 
ž = ES[Z]

Bias

VarianceBias VarianceBias VarianceBias

Expected Error



Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging

– Random Forests

• Ensemble methods that minimize bias
– Functional Gradient Descent

– Boosting

– Ensemble Selection



Bagging

• Goal: reduce variance

• Ideal setting: many training sets S’

– Train model using each S’

– Average predictions

ES[(h(x|S) - y)2] = ES[(Z-ž)2] + ž2

Variance BiasExpected Error

Z = h(x|S) – y 
ž = ES[Z]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

“Bagging Predictors” [Leo Breiman, 1994]

Variance reduces linearly
Bias unchanged

sampled independently
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S’
P(x,y)

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf


Bagging

• Goal: reduce variance

• In practice: resample S’ with replacement

– Train model using each S’

– Average predictions

ES[(h(x|S) - y)2] = ES[(Z-ž)2] + ž2

Variance BiasExpected Error

Z = h(x|S) – y 
ž = ES[Z]

from S

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

“Bagging Predictors” [Leo Breiman, 1994]

Variance reduces sub-linearly
(Because S’ are correlated)
Bias often increases slightly
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S’S

Bagging = Bootstrap Aggregation

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf


“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999) 

Variance

Bias Bias

DT Bagged DT
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Random Forests

• Goal: reduce variance

– Bagging can only do so much

– Resampling training data asymptotes

• Random Forests: sample data & features!

– Sample S’

– Train DT

• At each node, sample features (sqrt)

– Average predictions

“Random Forests – Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Further de-correlates trees

http://oz.berkeley.edu/~breiman/random-forests.pdf
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r

Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008



Structured Random Forests

• DTs normally train on unary labels y=0/1 

• What about structured labels?

– Must define information gain of structured labels

• Edge detection:

– E.g., structured label is a 16x16 image patch

– Map structured labels to another space 

• where entropy is well defined

“Structured Random Forests for Fast Edge Detection”
Dollár & Zitnick, ICCV 2013



Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging

– Random Forests

• Ensemble methods that minimize bias
– Functional Gradient Descent

– Boosting

– Ensemble Selection



Functional Gradient Descent

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf

h(x) = h1(x)

S’ = {(x,y)}

h1(x)

S’ = {(x,y-h1(x))}

h2(x)

S’ = {(x,y-h1(x) - … - hn-1(x))}

hn(x)

…

+ h2(x) + … + hn(x)

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf


Coordinate Gradient Descent

• Learn w so that h(x) = wTx

• Coordinate descent

– Init w = 0

– Choose dimension with highest gain

• Set component of w

– Repeat



Coordinate Gradient Descent
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Coordinate Gradient Descent
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– Init w = 0

– Choose dimension with highest gain
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Coordinate Gradient Descent

• Learn w so that h(x) = wTx

• Coordinate descent

– Init w = 0
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Coordinate Gradient Descent

• Learn w so that h(x) = wTx

• Coordinate descent

– Init w = 0

– Choose dimension with highest gain

• Set component of w 

– Repeat
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Coordinate Gradient Descent

• Learn w so that h(x) = wTx

• Coordinate descent

– Init w = 0

– Choose dimension with highest gain

• Set component of w

– Repeat
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Functional Gradient Descent

…+

…+

…+

…+

…+

…+
…+

…+

…+
…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

…+

“Function Space”
(All possible DTs)…+

…+

…+

…+

…+

…+
…+

…+

…+

Coordinate descent in function space
Restrict weights to be 0,1,2,…

h(x) = h1(x) + h2(x) + … + hn(x)



Boosting (AdaBoost)

h(x) = a1h1(x)

S’ = {(x,y,u1)}

h1(x)

S’ = {(x,y,u2)}

h2(x)

S’ = {(x,y,u3))}

hn(x)

…

+ a2h2(x) + … + a3hn(x)

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

u – weighting on data points
a – weight of linear combination

Stop when validation 
performance plateaus
(will discuss later)

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


Theorem: training error drops exponentially fast

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Initial Distribution of Data

Train model

Error of model

Coefficient of model

Update Distribution

Final average

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


DT

AdaBoost

B
et

te
r

Bagging

Variance

Bias Bias

Boosting often uses weak models
E.g, “shallow” decision trees
Weak models have lower variance

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999) 



Ensemble Selection

“Ensemble Selection from Libraries of Models”
Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004
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Training S’

Validation V’

H = {2000 models trained using S’}

h(x) = h1(x) + h2(x) + … + hn(x) 

Maintain ensemble model as combination of H:

Add model from H that maximizes performance on V’

+ hn+1(x) 

Repeat

S

Denote as hn+1

Models are trained on S’
Ensemble built to optimize V’



Method Minimize Bias? Minimize Variance? Other Comments

Bagging Complex model class. 
(Deep DTs)

Bootstrap aggregation 
(resampling training data)

Does not work for 
simple models.

Random 
Forests

Complex model class.
(Deep DTs)

Bootstrap aggregation
+ bootstrapping features

Only for decision trees.

Gradient
Boosting
(AdaBoost)

Optimize training 
performance.

Simple model class.
(Shallow DTs)

Determines which 
model to add at run-
time.

Ensemble 
Selection

Optimize validation 
performance

Optimize validation
performance

Pre-specified dictionary 
of models learned on 
training set.

• State-of-the-art prediction performance
– Won Netflix Challenge

– Won numerous KDD Cups

– Industry standard

…and many other ensemble methods as well.
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