Machine Learning



Machine Learning

according to C.Ougle

*The ability of a machine to improve its performance based on previous results.

*The process by which computer systems can be directed to improve their
performance over time.

*Subspecialty of artificial intelligence concerned with developing methods for software
to learn from experience or extract knowledge from examples in a database.

*The ability of a program to learn from experience —
that is, to modify its execution on the basis of newly acquired information.

*Machine learning is an area of artificial intelligence concerned with the
development of techniques which allow computers to "learn".

More specifically, machine learning is a method for creating computer
programs by the analysis of data sets. Machine learning overlaps heavily

with statistics, since both fields study the analysis of data, but unlike statistics,

machine learning is concerned with the algorithmic complexity of computational implementations. ...



Some Examples

» ZIP code recognition

 Loan application classification

* Signature recognition

* Voice recognition over phone

* Credit card fraud detection

» Spam filter

» Collaborative Filtering: suggesting other products at Amazone.com
» Marketing

» Stock market prediction

» Expert level chess and checkers systems

 biometric identification (fingerprints, DNA, iris scan, face)
* machine translation

» web-search

» document & information retrieval

« camera surveillance

* robosoccer

« and so on and so on...



Why is this cool/important?

» Modern technologies generate data at an unprecedented scale.
* The amount of data doubles every year.

“One petabyte is equivalent to the text in one billion books,
yet many scientific instruments, including the Large Synoptic Survey Telescope,
will soon be generating several petabytes annually”.

(2020 Computing: Science in an exponential world: Nature Published online: 22 March 2006)

« Computers dominate our daily lives
» Science, industry, army, our social interactions etc.

We can no longer “eyeball” the images captured by some satellite
for interesting events, or check every webpage for some topic.

We need to trust computers to do the work for us.



Types of Learning

» Supervised Learning )
* Labels are provided, there is a strong learning signal.
* e.g. classification, regression. d

» Semi-supervised Learning. P
» Only part of the data have labels.
* e.g. a child growing up. g

* Reinforcement learning. .
* The learning signal is a (scalar) reward and may come with a delay.
- e.g. trying to learn to play chess, a mouse in a maze.

» Unsupervised learning L
* There is no direct learning signal. We are simply trying to find structure in data.
* e.g. clustering, dimensionality reduction.



Ingredients

e Data:
* what kind of data do we have?

 Prior assumptions:
« what do we know a priori about the problem?

* Representation:
* How do we represent the data?

» Model / Hypothesis space:
* What hypotheses are we willing to entertain to explain the data?

* Feedback / learning signal:
» what kind of learning signal do we have (delayed, labels)?

» Learning algorithm:
« How do we update the model (or set of hypothesis) from feedback?

 Evaluation:
» How well did we do, should we change the model?



Supervised Learning |

Example: Imagine you want to classify

Data: 100 monkey images and 200 human images with labels what is what.
{x.y, =0}, i=1,.,100
{xj-,yj =1}, j =1,..,200

where X represents the greyscale of the image pixels and
y=0 means “monkey” while y=1 means “human”.

| | AR
Task: Here is a new image: z - 5' ”
. L

\ /s
: : &4

monkey or human?


http://www.all-creatures.org/saen/monkey-face-02.jpg
http://www.all-creatures.org/saen/monkey-face-02.jpg
http://www.trincoll.edu/~kclark2/images/Jill's Monkey Face.jpg
http://www.trincoll.edu/~kclark2/images/Jill's Monkey Face.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg

1 nearest neighbors
(your first ML algorithm!)

ldea:
1. Find the picture in the database which is closest your query image.

2. Check its label.

3. Declare the class of your query image to be the same as that of the
closest picture.

closest image


http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg
http://z.about.com/d/politicalhumor/1/0/D/e/bush_ookook.jpg
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Distance Metric

*  How do we measure what it means to be “close”?

 Depending on the problem we should choose an appropriate distance metric.

Hamming distance:

D(X,. X)) =| X, = X, |

nhs " m

{x =discrete}

Scaled Euclidean Distance:
D(x,,x )=(x, —-x_ Y A(X, —X_) {x =cont};



Remarks on NN methods

* We only need to construct a classifier that works locally for each query.
Hence: We don’t need to construct a classifier everywhere in space.

» Classifying is done at query time. This can be computationally taxing
at a time where you might want to be fast.

« Memory inefficient (you have to keep all data around).

 Curse of dimensionality: imagine many features are irrelevant / noisy
—> distances are always large.

* Very flexible, not many prior assumptions.

* k-NN variants robust against “bad examples”.



Non-parametric Methods

* Non-parametric methods keep all the data cases/examples in memory.
A better name is: “instance-based” learning

* As the data-set grows, the complexity of the decision surface grows.

« Sometimes, non-parametric methods have some parameters to tune...

» Very few assumptions (we let the data speak).



Logistic Regression / Perceptron

(your second ML algorithm!)

* Fits a soft decision boundary between the cl:
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The logit / sigmoid

——— — A - ——— 1
h(X) =
(X 1+exp[-W'™ X +b)]
— //'
B i Determines the offset
) 0T6 01.8

Determines the angle
and the steepness.



Objective

 We interpret h(x) as the probability of classifying a data case as
positive.

* We want to maximize the total probability of the data-vectors:

0= Y log[h(x)]+ ¥ log[1-h(x,)]

positive negative
examples examples
(yn=1) (yn=0)



Algorithm in detail

e Repeat until convergence (gradient descend):

00 00
W «W+np—— — = 1- (X)) x — f(x ) X
Tow oW pz( ()%= 2, F06) %
examples examples
(y =1) (yn=0)
00
beb+n=— —= Y [A-f(x)) = > F(x,)
8b posm\I/e negatl}/e
examples examples

(yn :1) (yn :0)



A Note on Stochastic GD

 For very large problems it is more efficient to
compute the gradient using a small (random)
subset of the data. )

 For every new update you pick a new random subset.

]
=
=

» Towards convergence, you decrease the stepsize.

* Why is this more efficient?

—->The gradient is an average over many data-points.

- If your parameters are very “bad”, every data-point will
tell you to move in the same direction, so you need only a
few data-points to find that direction.

—> Towards convergence you need all the data-points.

- A small step-size effectively averages over many data-points.



Parametric Methods

« Parametric methods fit a finite set of parameters to the data.
* Unlike NP methods, this implies a maximum complexity to the algorithm.

» “Assumption heavy”: by choosing the parameterized model you impose
your pl’iOI’ assumptions (this can be an advantage when you have sound assumptions!)

« Classifier is build off-line. Classification is fast at query time.

« Easy on memory: samples are summarized through model parameters.



Hypothesis Space

* An hypothesis h: X-[0,1] for a binary classifier is a function that maps
all possible input values to either class 0 or class 1.

* E.g. for 1-NN the hypothesis h(X) is given by:— \ *

* The hypothesis space H, is the space of
all hypotheses that you are
willing to consider/search over.

* For instance, for logistic regression, H is given by
all classifiers of the form (parameterized by W,b):

1
1+exp[-W'™ X +b)]

h(X:W,b)=



Inductive Bias

» The assumption one makes to generalize beyond the training data.

« Examples:
* 1-NN: the label is the same as that of the closest training example.

* LL: the classification function is a smooth function of the form:

1

hXW.B) =17 exp[-(WT X +b)]

» Without inductive bias (i.e. without assumptions) there is no generalization
possible! (you have not expressed preference for unseen data in any way).

 Learning is hence converting your prior assumptions + the data into a
classifier for new data.



Generalization

 Consider the following regression problem:

* Predict the real value on the y-axis from the real value on the x-axis.
* You are given 6 examples: {Xi,Yi}.

* What is the y-value for a new query point X* ?

fix)
A

¥ Lol



Generalization

fix)
A




flx)
A

Generalization

=X



Generalization

i which curve is best?



Generalization
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* Ockham’s razor: prefer the simplest hypothesis consistent
with data.



Generalization

Learning is concerned with accurate prediction
of future data, not accurate prediction of training data.

(The single most important sentence you will see in the course)




Cross-validation L&

How do we ensure good generalization,
l.e. avoid “over-fitting” on our particular
data sample.

> cross-validated error

—___training

Predictive error

regression
* You are ultimately interested in good performance on new (unseen) test
data.

* To estimate that, split off a (smallish) subset of the training data (called
validation set).

 Train without validation data and “test” on validation data.

* Repeat this over multiple splits of the data and average results.

Reasonable split: 90% train, 10% test, average over the 10 splits.



UNIT-II
An Overview of RS Image
Clustering and Classification



What is Remote Sensing and
Image Classification?

Remote Sensing is a technology for sampling radiation and force fields to
acquire and interpret geospatial data to develop information about
features, objects, and classes on Earth's land surface, oceans, and
atmosphere (and, where applicable, on the exterior's of other bodies in the
solar system).

Remote Sensing is detecting and measuring of energy
(usually photons) emanating from distant objects made of
, So that we can identify and these object by class or

type, substance, and

Image Classification has the overall objective to all
pixels in an image into classes or themes. The
of surface materials belonging to a class or theme determines an
to a class.
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The “PIXEL”

Dry vegetation

Green vegetaton

Concrete

asphalt
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Image Classification

Land Classification
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Spectral Dimensions

T1-D Histogra m
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Dimensionality

N = the number of bands = dimensions
.... an (n) dimensional data (feature) space

Meil/seucfteof:‘e”t \'\;'eiigr Feature Space - 2dimensions
A H,
V, U, i [190 }
v u 85
_\)n_ ll;n Band A




Spectral Distance

* a number that allows two measurement vectors to be
compared

D:\/i(di—(ﬁ)2

| = a band (dimension )
d. = value of pixel din band i

e = value of pixel ein band |



Classification Approaches

Unsupervised: self organizing
Supervised: training
Hybrid: self organization by categories

Spectral Mixture Analysis: sub-pixel variations.



Clustering / Classification

Clustering or Training Stage:

Through actions of either the analyst’s supervision or an
unsupervised algorithm, a numeric description of the spectral
attribute of each “class” is determined (a multi-spectral cluster
mean signature).

Classification Stage:

By comparing the spectral signature to of a pixel (the measure
signature) to the each cluster signature a pixel is assigned to a
category or class.



terms

Parametric = based upon statistical
parameters (mean & standard deviation)

Non-Parametric = based upon objects
(polygons) in feature space

Decision Rules = rules for sorting pixels
into classes
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Clustering

Minimum Spectral Distance - unsupervised

ISODATA

| - iterative

S - self

O - organizing

D - data

A - analysis

T - technique

A - (application)?

Band B

Band B

Band A

¢ st iteration cluster mean

A 2nd iteration cluster mean
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Unsupervised
Classification
ISODATA -

Iterative Self-
Organizing Data
Analysis
Technique
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Classification Decision
Rules

Non-Parametric
eparallelepiped
-feature space

If the non-parametric test results in
one unique class, the pixel will be
assigned to that class.

if the non-parametric test results in eparametric rule

zero classes (outside the decision «unclassified
boundaries) the the “unclassified rule

applies ... either left unclassified or eparametric rule
classified by the parametric rule -by order

if the pixel falls into more than one eunclassified

class the overlap rule applies ... left Parametric
unclassified, use the parametric rule, eminimum distance
or processing order -Mahalanobis distance

emaximum likelihood



Parallelepiped
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Classification Systems

USGS - U.S. Geological Survey Land Cover Classification Scheme for Remote Sensor Data
USFW - U.S. Fish & Wildlife Wetland Classification System

NOAA CCAP - C-CAP Landcover Classification System, and Definitions

NOAA CCAP - C-CAP Wetland Classification Scheme Definitions

PRISM - PRISM General Landcover

King Co. - King County General Landcover (specific use, by Chris Pyle)

Level
*1 Urban or Built-Up Land

+11 Residential
12 Commercial and Services
+13 Industrial
+14 Transportation, Communications and Utilities
+15 Industrial and Commercial Complexes
16 Mixed Urban or Built-Up
+17 Other Urban or Built-up Land

+2 Agricultural Land
+21 Cropland and Pasture
22 Orchards, Groves, Vineyards, Nurseries and
Ornamental Horticultural Areas
+23 Confined Feeding Operations

24 Other Agricultural Land

http://boto.ocean.washington.edu/oc qis rs/lawrs/classify.html



http://boto.ocean.washington.edu/oc_gis_rs/lawrs/classify.html
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Hybrid - “superblocks”
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Ground Truth
Ditél Ortho" -aa ’

Unclassified | | shrub/forest | | crops2 (trained) bare/road

water | | 2nd grow th/med height trees | crops young crops

waterfsp (featurespace) | | dense forest bare/drygrass seedlings/young crops/bare
forestfsp (featurespace) | | vigorous veg/crops/forest dry/bare field (frained) B pasture/grass

forest (tfrained) | | vigorous veg/crops/foresti urban fringe/dry veg B shoreline =
Decid. forest/crops vigorous veg/crops/forest2 bare/suburban/readside’edge [l urbanfringe shoreline
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Nonparametric Methods
1 Sign Test

~ 2 Wilcoxon Signed-Rank Test
~ 2 Mann-Whitney-Wilcoxon Test

~ o Kruskal-Wallis Test
_~ o Rank Correlation

7 4
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Nonparametric Methods

Most of the statistical methods referred to as parametric
require the use of interval- or ratio-scaled data.

Nonparametric methods are often the only way to
analyze nominal or ordinal data and draw statistical
conclusions.

Nonparametric methods require no assumptions about
the population probability distributions.

Nonparametric methods are often called distribution-
free methods.




Nonparametric Methods

~ 1 In general, for a statistical method to be classified as
nonparametric, it must satisfy at least one of the
following conditions.

~ 2 The method can be used with nominal data.
~ - The method can be used with ordinal data.

~ © The method can be used with interval or ratio data
when no assumption can be made about the
population probability distribution.



Sign Test

A common application of the sign test involves using
a sample of n potential customers to identify a
preference for one of two brands of a product.

The objective is to determine whether there is a
difference in preference between the two items being
compared.

To record the preference data, we use a plus sign if
the individual prefers one brand and a minus sign if
the individual prefers the other brand.

Because the data are recorded as plus and minus
signs, this test is called the sign test.



The small-sample case for the sign test should be
used whenever n < 20.

The hypotheses are

No preference for one brand
over the other exists.

A preference for one brand
over the other exists.

The number of plus signs is our test statistic.

Assuming H, is true, the sampling distribution for
the test statistic is a binomial distribution with p = .5.

H, is rejected if the p-value < level of significance, a.
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Using Hy: p = .5 and n > 20, the sampling distribution
for the number of plus signs can be approximated by
a normal distribution.

When no preference is stated (Hj: p = .5), the sampling
distribution will have:

The test statistic is: :
(x is the number

of plus signs)

H, is rejected if the p-value < level of significance, a.



Sign Test: Large-Sample Case

~  As part of a market research study, a
sample of 36 consumers were asked to taste
two brands of ketchup and indicate a
preference. Do the data shown on the next
slide indicate a significant difference in the
consumer preferences for the two brands?




xample: Ketchup Taste

— ot e

The analysis will be based on
a sample size of 18 + 12 = 30.




>, H,:p=.50
No preference for one brand over the other exists
>, H_:p#.50

A preference for one brand over the other exists






Using .05 level of significance:
Reject H, if p-value < .05

e L B L
o 1 Test Statistic

z =(x-u)/o=(18-15)/2.74=3/2.74 = 1.10

o 4 p-Yalue

p-Value = 2(.5000 - .3643) = .2714



v Because the p-value > o, we cannot reject H,,.
There is insufficient evidence in the sample to conclude
that a difference in preference exists for the two brands
of ketchup.



Hypothesis Test About a Median
2 We can apply the sign test by:

7

» Using a plus sign whenever the data in the sample
are above the hypothesized value of the median

» Using a minus sign whenever the data in the
sample are below the hypothesized value of the
median

° Discarding any data exactly equal to the
hypothesized median



Hypothe5|s Test About a I\/Iedlan

0 e lmr)| Trimn Fitness Center

et

v A hypothesis test is being conducted
about the median age of female members
of the Trim Fitness Center.

% In a sample of 40 female members, 25 are older
than 34, 14 are younger than 34, and 1 is 34. Is there
sufficient evidence to reject H,? Assume a = .05.



Hypothesis Test About a Meclian

— ___.

> 4 Mean and Stancdlard Deviation

u=.5(39) =195
o =+/.25n =/.25(39) =3.12
o 4 Test Statistic

z =(x-)/o=(25-195)/3.12= 176

o 4 p-Yalue
p-Value = 2(.5000 - .4608) = .0784



Hypothesis Test About a Mediar

4

o~ 0 Rejection Rule

Using .05 level of significance:
Reject H,, if p-value < .05

2 Conclusion

Do not reject Hy. The p-value for this two-tail
test is .0784. There is insufficient evidence in the
sample to conclude that the median age is not 34 for
female members of Trim Fitness Center.



Wilcoxon Signed-Rank Test

~ o This test is the nonparametric alternative to the

parametric matched-sample test presented in
Chapter 10.

~ 1 The methodology of the parametric matched-sample
analysis requires:
* interval data, and
° the assumption that the population of differences

between the pairs of observations is normally
distributed.

~ 1 If the assumption of normally distributed differences
is not appropriate, the Wilcoxon signed-rank test can
be used.



_

/

Wilcoxon Signed-Rank Test

BExarmple: Express Deliveries

A firm has decided to select one
of two express delivery services to
provide next-day deliveries to its
district offices.

To test the delivery times of the two services, the
firm sends two reports to a sample of 10 district

offices, with one report carried by one service and the
other report carried by the second service. Do the data
on the next slide indicate a difference in the two
services?



Wilcoxon Signed-Rank Test




\

\ .

Compute the differences between the paired
observations.

- Discard any differences of zero.
» Rank the absolute value of the differences from

lowest to highest. Tied differences are assigned
the average ranking of their positions.

. Give the ranks the sign of the original difference

in the data.

> Sum the signed ranks.
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Wilcoxon Signed-Rank Test

4 Hypotheses

~ Hy: The delivery times of the two services are the
same; neither offers faster service than the other.

H_: Delivery times differ between the two services;
recommend the one with the smaller times.



Wilcoxon Sig:



Wilcoxon Signed-Rank Test

4

o 4 Rejection Rule
Using .05 level of significance,
Reject H, if p-value < .05
o 2 Test Statistic
z =(T-pup)/or=(44-0)/19.62= 224
o a p-Yalue

p-Value = 2(.5000 - .4875) = .025




Wilcoxon Signed-Rank Test

o 1 Conclusion

Reject Hy. The p-value for this two-tail test is
.025. There is sufficient evidence in the sample to
conclude that a difference exists in the delivery times
provided by the two services.



Mann-Whitney-Wilcoxon Test

This test is another nonparametric method for
determining whether there is a difference between
two populations.

This test, unlike the Wilcoxon signed-rank test, is not
based on a matched sample.

This test does not require interval data or the
assumption that both populations are normally
distributed.

The only requirement is that the measurement scale
for the data is at least ordinal.



Mann-Whitney-Wilcoxon Test

~ o Instead of testing for the difference between the
means of two populations, this method tests to
determine whether the two populations are identical.

~ 1 The hypotheses are:




_

7

Mann-Whitney- Wllcoxon Test

Example: Westin Freezers

Manufacturer labels indicate the

annual energy cost associated with

operating home appliances such as

freezers.
The energy costs for a sample of

10 Westin freezers and a sample of 10
Easton Freezers are shown on the next slide. Do the
data indicate, using a = .05, that a difference exists in
the annual energy costs for the two brands of freezers?



Mapn-Whitney-Wilcoxon Test £




Mann-Whitney-Wilcoxon Test

~  Hy Annual energy costs for Westin freezers
and Easton freezers are the same.

H_: Annual energy costs differ for the two
brands of freezers.



_ o First, rank the combined data from the lowest to

the highest values, with tied values being assigned
the average of the tied rankings.

~ 4 Then, compute T, the sum of the ranks for the first
sample.

~ 4 Then, compare the observed value of T to the
sampling distribution of T for identical populations.
The value of the standardized test statistic z will
provide the basis for deciding whether to reject H,,



Mann-Whitney-Wilcoxon lest:
Large-Sample Case

» 2 Distripution Forrn
Approximately normal, provided
n, >10 and n, > 10









Vlamnt /\/FHH‘IH/ Wilcoxon Test

o 4 Rejection Rule
Using .05 level of significance,
Reject H, if p-value < .05
1 Test Statistic
z =(T-ur)/ or=(86.5-105)/13.23 = -1.40
> 4 p-Yalue

p-Value = 2(.5000 - .4192) = .1616




Mann-Whitney-Wilcoxon Test

~ 2 Conclusion

Do not reject Hy. The p-value > a. There is
insufficient evidence in the sample data to conclude
that there is a difference in the annual energy cost
associated with the two brands of freezers.



Kruskal-Wallis Test

~ 1 The Mann-Whitney-Wilcoxon test has been extended
by Kruskal and Wallis for cases of three or more
populations.

_~ 1 The Kruskal-Wallis test can be used with ordinal data
as well as with interval or ratio data.

~ 1 Also, the Kruskal-Wallis test does not require the
assumption of normally distributed populations.



Kruskal-Wallis Test

where: k = number of populations
n; = number of items in sample i
ny = Zn; = total number of items in all samples
R; = sum of the ranks for sample i



Kruskal-Wallis Test

~ 2 When the populations are identical, the sampling
distribution of the test statistic W can be approximated
by a chi-square distribution with k - 1 degrees of
freedom.

1 This approximation is acceptable if each of the sample
sizes n; is > d.

~ 1 Therejectionruleis:  Reject Hyif p-value < a



Rank Correlation

_ o The Pearson correlation coefficient, r, is a measure of
the linear association between two variables for
which interval or ratio data are available.

_ 1 The Spearman rank-correlation coefficient, r,, is a
measure of association between two variables when
only ordinal data are available.

1 Values of r, can range from -1.0 to +1.0, where

» values near 1.0 indicate a strong positive
association between the rankings, and

> values near -1.0 indicate a strong negative
association between the rankings.



Rank Correlation

where: n = number of items being ranked
x; = rank of item i with respect to one variable
y; = rank of item i with respect to a second variable
d; = x;- Y,



Test for Significant Rank Correlation

~ 1 We may want to use sample results to make an
inference about the population rank correlation p,.

~ 1 To do so, we must test the hypotheses:




Rank Correlation

= R%esa L

o Sarmpling Distribution of r, when p, =0

o 9 Distribution Form

Approximately normal, provided n > 10



Rank Correlation

4 Example: Crennor Investors

~  Crennor Investors provides
a portfolio management service
for its clients. Two of Crennor’s
analysts ranked ten investments
as shown on the next slide. Use
rank correlation, with a = .10, to
comment on the agreement of the two analysts’
rankings.

¢






Rank Correlation
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Rank Correlation

o 4 Rejection Rule

With .10 level of significance:
Reject H, if p-value < .10

n(n*-1)  10(100-1)
z =(r,-u)/ o= (4424 - 0)/ 3333 = 1.33

6y d’
1- Z — =1 6(92) 0.4424

o 0 p-Yalue

p-Value = 2(.5000 - .4082) = .1836



_

7

Rank Correlation s
Conclusion f
Do no reject H,. The p-value > a. Thereis not a
significant rank correlation. The two analysts are
not showing agreement in their ranking of the risk
associated with the different investments.



End of Chapter




UNIT- IV

Multilayer Percetrons



Multilayer Perceptrons
Architecture

Input
layer

Output
layer

Hidden Layers



A solution for the XOR problem

7’

X1 e

O ¥ O
-1 I//// ]T///
O .+ O
1 ifv>0
P(v) =7
-1 fv<O

¢ Is the sign function.




NEURON MODEL

« Sigmoidal Function
(D(Vj)“
1

Increasing a

V.

Ly
-~ v 7>

-:10 -8 6 4 2|2 4 6 8 10

ij

« Most common form of activation function
* a—ow = ¢ — threshold function
* Differentiable



LEARNING ALGORITHM

» Back-propagation algorithm

——Function signals
Forward Step

SR— Error signals
Backward Step

* |t adjusts the weights of the NN In order to
minimize the average squared error.



Average Squared Error

Error signal of output neuron j at presentation of n-th
training example:

ej(n)=d;(n)-y;(n)| C:Setof

Total energy at time n:

neurons
1 2 In output

Average squared error: E(n) = P Z € (n) layer

| JeC N: size of
Measure of learning N training set
performance: 1

EAV N Z E (n)
n=1

Goal: Adjust weights of NN to minimize E,,



Notation

e, Error at output of neuron |

Y; Output of neuron |

V. = W.. V. Induced local
izgm "1 field of neuron



Welight Update Rule

Update rule is based on the gradient descent method
take a step in the direction yielding the maximum
decrease of E

AWji = =1I) — | Step in direction opposite to the gradient

With W ;; weight associated to the link from neuron |
to neuron |



Neuron j 1
AL

y0=+1

d{n)

C
(o]
‘ N
——
=

FIGURE 4.3 Signal-flow graph highlighting the details of output neuron j. "%



Definition of the Local
Gradient of neuron |

Local Gradient

We obtain _ ’

O, =¢€e;» (V;)
because
OE OE oe; oy;

o — de, Oy, OV, = —e; (D' (V;)

J

10



Update Rule

" We obtain AWJI — 775] yi

because
o OE OV ;
8Wji @vj 8Wji
ok _ 5 8vj _y

OV . b aw.

J ji

11



Compute local gradient of
neuron |

» The key factor Is the calculation of €;

* There are two cases:
— Case 1): ] Is a output neuron
— Case 2): ] Is a hidden neuron

12



Error e; of output neuron

e Case 1:

Then

] output neuron

e; =d;-Y,;

5] — (dj 'yj)¢l(vj)

13



Local gradient of hidden
neuron

« Case 2:] hidden neuron

* the local gradient for neuron | is recursively
determined in terms of the local gradients of
all neurons to which neuron | is directly
connected

14



Neuron j Neuron k
AL A

+1

d(n)

¢’g) yin) Ay v(n) ¢’£') ykgn) -1

O - ex(n)

FIGURE 4.4 Signal-flow graph highlighting the details of output neuron k connected to hidden
neuron j.
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Use the Chain Rule
OE 9y, o
| ayj an v . = @ (V;

EM) = >_ei(n)

keC

e
ayj keC ayj keC @yj
oe oV
from < ="' (V) < =W,
oV, < oy . <

16



Local Gradient of hidden

neuron |
Hence — '
O, =¢ (Vj)E :5kaj
keC
W ‘ : Oe Signal-flow
- ,  9vy) * graph of
5 9'(v) W, back-

(J): O © (V) O ey propagation
- Ok error signals

to neuron |

Oen on)

3 '

17



Delta Rule

* Deltarule Aw;= ndy;

( J -, ) IF j output node

J
J 25 ij IF | hidden node
keC

C: Set of neurons In the layer following the one
containing |

18



| ocal Gradient of nheurons

@'(v;)=ayl-y;]

a>0

O: —= a'yj [1 — yj] Zé‘kwkj if j hidden node
\ayj[l_ yJ][le( — yj] If j output node

19




Backpropagation algorithm

 Two phases of computation:

— Forward pass: run the NN and compute the error for
each neuron of the output layer.

— Backward pass: start at the output layer, and pass
the errors backwards through the network, layer by
layer, by recursively computing the local gradient of
each neuron.

20



Summary

Chapter 4 Multilayer Perceptrons

+1 Q. wid=p® w= @

2
@ () o -1 d,
Xy — —O—> ?——1——0
2
% () op-1 1 d
xz \'F —_)
WWe() o3-1 & ds
X3 > O —O— ?—4—0
€3
ng) vgz)
0
- O el
#'()
e 062
¢'()

agl) 5;1) 8:(;1) 552) 5%2) 6;2)

FIGURE 4.7 Signal-flow graphical sumrhary of back-propagation learning.
Top part of the graph: forward pass. Bottom part of the graph:
backward pass. '
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Training

« Sequential mode (on-line, pattern or
stochastic mode):
—(x(1), d(1)) Is presented, a sequence of
forward and backward computations Is

performed, and the weights are updated
using the delta rule.

_ Same for (x(2), d(2)), ... , (x(N), d(N)).

22



Training

« The learning process continues on an epoch-

by-epoch basis until the stopping condition Is
satisfied.

 From one epoch to the next choose a

randomized ordering for selecting examples In
the training set.

23



Stopping criterions

» Sensible stopping criterions:

— Average squared error change:
Back-prop is considered to have
converged when the absolute rate of
change In the average squared error per
epoch is sufficiently small (in the range
[0.1, 0.01]).

— Generalization based criterion:
After each epoch the NN Is tested for
generalization. If the generalization
performance is adequate then stop.

24



Early stopping

Mean- Validation
squared sample
error
Early Training
stopplng sample
point

Number of epochs

25



Generalization

« Generalization: NN generalizes well if the 1/O
mapping computed by the network is nearly
correct for new data (test set).

» Factors that influence generalization:
— the size of the training set.
— the architecture of the NN.
— the complexity of the problem at hand.

« Overfitting (overtraining): when the NN
learns too many 1/O examples it may end up
memorizing the training data.

26



Output

Generalization

Nonlinear
mapping
Generalization

Training ——————
data e S

Input

Output ‘,"
<y )
x
/ \/X
—O

(a)

Training data

e A } \
Nonlinear

" f
>l ““'/, | \
| \ \
VN
) mapping

Generalization
Input

(b)
(a) Properly fitted data (good generalization)

FIGURE 4.19
(b) Overfitted data (poor generalization).
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Expressive capabilities of NN

Boolean functions:

* Every boolean function can be represented by
network with single hidden layer

* but might require exponential hidden units

Continuous functions:

* Every bounded continuous function can be
approximated with arbitrarily small error, by network
with one hidden layer

* Any function can be approximated with arbitrary
accuracy by a network with two hidden layers

28



Generalized Delta Rule

 If n small = Slow rate of learning
If n large = Large changes of weights

— NN can become unstable
(oscillatory)

« Method to overcome above drawback:
Include a momentum term in the delta

AW--(n) — OlAWji(n _]_) + ngj(n)yi (n)Gendeéﬁgzed

| :
J function

momentum constant

29




Generalized delta rule

ne momentum accelerates the descent in steady
ownhill directions.

ne momentum has a stablilizing effect in

Irections that oscillate in time.

30



17 adaptation

Heuristics for accelerating the convergence of
the back-prop algorithm through n adaptation:

* Heuristic 1: Every weight should have its own n.

* Heuristic 2: Every n should be allowed to vary from
one iteration to the next.

31



NN DESIGN

Data representation
Network Topology
Network Parameters
Training

Validation

32



Setting the parameters

How are the weights initialised?

How Is the learning rate chosen?

How many hidden layers and how many neurons?
Which activation function ?

How to preprocess the data ?

How many examples in the training data set?

33



Some heuristics (1)

« Sequential x Batch algorithms: the
sequential mode (pattern by pattern) is
computationally faster than the batch
mode (epoch by epoch)

34



Some heuristics (2)

« Maximization of information content:
every training example presented to the
backpropagation algorithm must
maximize the information content.

— The use of an example that results in the
largest training error.

— The use of an example that is radically
different from all those previously used.

35



Some heuristics (3)

Activation function: network learns
faster with antisymmetric functions
when compared to nonsymmetric
functions.

_ 1 Sigmoidal function is
gD(V) Le-av nonsymmetric

»(V) = atanh(bv)  Hyperbolic tangent
function is

nonsymmetric

36



Some heuristics (3)

wlno)
a= 17159 bt
_/_'_'_’—’—‘
1.0
~1.0 O H
O — o o
1.0
-1.0
—— e T T STITE —a= —1.7159
(1)
wlv)
a i bk
al2
— — L&)
0
()

FIGURE 4.10 Antisymmetric activation function. (b) Nonsymmetric
activation function.
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Some heuristics (4)

« Target values: target values must be
chosen within the range of the sigmoidal
activation function.

 Otherwise, hidden neurons can be
driven into saturation which slows down
learning

38



Some heuristics (4)

For the antisymmetric activation
function it is necessary to design €
For a+: dj —a—¢&

For —a:

If a=1.7159 we can set €=0.7159 then
d=t1

39



Some heuristics (5)

* Inputs normalisation:

— Each input variable should be processed
so that the mean value Is small or close to

zero or at least very small when compared
to the standard deviation.

— Input variables should be uncorrelated.

— Decorrelated input variables should be
scaled so their covariances are
approximately equal.

40



Some heuristics (5)

X2 X
*®
°
® ®
®
™ ® Mean
L] L ] removal ®
® ® 4 ® o
. . e o o
e © .
L ] ®
» —e—eo
®
Xy ® e ® X
e ©
Original set of
data points ..
| Decorrelation
x5 X2
Covariance
equalization
= Gz 3
s "o e o (o °* ot
eo e L
® @ i e o L o
OO ® !
® o o X
N 1 e © e o 4 °
®

FIGURE 4.11 Illustrating the operation of mean removal, decorrelation,
and covariance equalization for a two-dimensional input space.
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Some heuristics (6)

* Initialisation of weights:

— If synaptic weights are assigned large
Initial values neurons are driven into
saturation. Local gradients become small
so learning rate becomes small.

— If synaptic weights are assigned small
Initial values algorithms operate around the
origin. For the hyperbolic activation
function the origin is a saddle point.

42



Some heuristics (6)

Weights must be initialised for the
standard deviation of the local induced

field v lies in the transition between the
linear and saturated parts.

o, =1

-1/2 = '
o =m m=number of weights

43



Some heuristics (7)

* Learning rate:

— The right value of n depends on the application.
Values between 0.1 and 0.9 have been used In
many applications.

— Other heuristics adapt n during the training as
described in previous slides.

44



Some heuristics (8)

 How many layers and neurons

— The number of layers and of neurons depend
on the specific task. In practice this issue Is
solved by trial and error.

— Two types of adaptive algorithms can be used:

» start from a large network and successively
remove some neurons and links until network
performance degrades.

* begin with a small network and introduce new
neurons until performance is satisfactory.

45



Some heuristics (9)

 How many training data ?

— Rule of thumb: the number of training examples
should be at least five to ten times the number
of weights of the network.

46



Output representation and
decision rule

* M-class classification problem

Yy i(X)=F(x), k=1,....M

>

MLP

a7



Data representation

1, eC,

0,x ¢C,

< Kth element

48



MLP and the a posteriori class
probability

A multilayer perceptron classifier
(using the logistic function)
aproximate the a posteriori class
probabilities, provided that the size
of the training set is large enough.

49



The Bayes rule
An appropriate output decision rule Is
the (approximate) Bayes rule generated
by the a posteriori probability

estimates: |
XEC, if F(x)>F(x) forall | *¥
F(x)
F(x)= "0

FaAX)

50



UNIT-V

An Introduction to Ensemble Methods
Bagging, Boosting, Random Forests, and More



Supervised Learning

e Goal: learn predictor h(x)
— High accuracy (low error)
— Using training data {(x;,Y4),---,(X,,,¥,,)}



Yes

Yes

No

No

Yes

No

D> D> (D~

1

Person | Age

Male?

Height > 55”

Alice 14 0 v
Bob 10 1 v
Carol 13 0 v
Dave 8 1 \/
Erin 11 0 ) ¢
Frank 9 1 %
Gena 8 0 v
age :1| 1 height > 55"
(gender=male] i O height £55"



Different Classifiers

* Performance
— None of the classifiers is perfect

— Complementary

» Examples which are not correctly classified
by one classifier may be correctly classified
by the other classifiers

* Potential Improvements?
— Utilize the complementary property

CS 4700, Foundations of Artificial Intelligence, Carla P. Gomes



Ensembles of Classifiers

e Tdea

— Combine the classifiers to improve the
performance

* Ensembles of Classifiers

— Combine the classification results from
different classifiers to produce the final
output

* Unweighted voting
« Weighted voting

CS 4700, Foundations of Artificial Intelligence, Carla P. Gomes



Example: Weather Forecast
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CS 4700, Foundations of Artificial Intelligence, Carla P. Gomes




Outline

* Bias/Variance Tradeoff

e Ensemble methods that minimize variance

— Bagging
— Random Forests

* Ensemble methods that minimize bias
— Functional Gradient Descent
— Boosting
— Ensemble Selection



Generalization Error

* “True” distribution: P(x,y)

— Unknown to us

 Train: h(x) =y
— Using training data S = {(x4,Y¥),--,(X,,¥.)}
— Sampled from P(x,y)

e Generalization Error:

— L(h) = E o vipioyl f(h(x),y) ]
— E.g., f(a,b) = (a-b)?



Person
James
Jessica
Alice
Amy
Bob
Xavier
Cathy
Carol
Eugene
Rafael
Dave
Peter
Henry
Erin
Rose
lain
Paulo

Margare
t

Frank
Jill
Leon
Sarah
Gena

Patrick

Age Male?
11
14
14
12
10
9
9
13
13
12
8
9
13
11
7
8
12
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10

9

13
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12

8

5
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Height > 55”
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Person | Age

Alice 14
Bob 10
Carol 13
Dave 8
Erin 11
Frank 9
Gena 8

Male?

Height > 55”

Generalization Error:
L(h) = E(x,y)NP(x’y)[ f(h(X),y) ]
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Bias/Variance Tradeoff

* Treat h(x|S) has a random function
— Depends on training data S

° L = ES[ E(x,y)"’P(x,y)[ f(h(xls)ly) ] ]
— Expected generalization error
— Over the randomness of S



Bias/Variance Tradeoff

e Squared loss: f(a,b) = (a-b)?
* Consider one data point (x,y)

* Notation:
— Z=h(x[S)-y
— 2 =E[Z] Expected Error
— Z-2=h(x|S) - Eg[h(x|9)] /
E.[(Z-2)%] = Eg[2%2 — 227 + 7?] E.[f(h(x]S),y)] = Ec[Z?]
= E([Z2] - 2E([Z]} + 72 = E([(Z-2)2] + 22
= E[22] - 22
Bias/Variance for all (x,y) is expectation over P(x,y). / I
Can also incorporate measurement noise. Variance Bias

(Similar flavor of analysis for other loss functions.)
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Outline

e Bias/Variance Tradeoff

e Ensemble methods that minimize variance

— Bagging
— Random Forests

* Ensemble methods that minimize bias
— Functional Gradient Descent
— Boosting
— Ensemble Selection



Bagging P<v>

Goal: reduce variance sampled independently

/

* |ldeal setting: many training sets S’

. . V4
— Train model using each S Variance reduces linearly

— Average predictions Bias unchanged
Es[(h(x|S) - y)?] = E5[(Z-2)7] + 22 Z=h(x|S)-y
\ 1 0 4 z = Eg[Z]

Expected Error Variance Bias

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf



http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

Bagging : .

e Goal: reduce variance

from S

/

* In practice: resample S” with replacement

. . V4
— Train model using each S Variance reduces sub-linearly

— Average predictions (Because S’ are correlated)
Bias often increases slightly

Es[(h(x]S) - y)°] = E[(Z-2)°] + 22 Z=h(x|S)-y
\ 1 0 4 z = Eg[Z]
Expected Error Variance Bias

Bagging = Bootstrap Aggregation

“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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DT Bagged DT
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Variance
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“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105-139 (1999)



Random Forests

* Goal: reduce variance
— Bagging can only do so much
— Resampling training data asymptotes

* Random Forests: sample data & features!

)
— Sample S Further de-correlates trees

— Train DT /

* At each node, sample features (sqrt)

— Average predictions

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf
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Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008



Structured Random Forests

* DTs normally train on unary labels y=0/1

 What about structured labels?
— Must define information gain of structured labels

* Edge detection:
— E.g., structured label is a 16x16 image patch

— Map structured labels to another space
* where entropy is well defined

“Structured Random Forests for Fast Edge Detection”
Dollar & Zitnick, ICCV 2013



Outline

e Bias/Variance Tradeoff

e Ensemble methods that minimize variance

— Bagging
— Random Forests

 Ensemble methods that minimize bias
— Functional Gradient Descent
— Boosting
— Ensemble Selection



h(x) = hy(x) + hy(x) + ... + h_(x)

Functional Gradient Descent

S ={(xy)}

¥

-

\

S’ ={(x,y-h4(x))}

- _/

h;(x)

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf

S" = {(x,y-hy(x) - ... - h, 4 (x))}



http://statweb.stanford.edu/~jhf/ftp/trebst.pdf

Coordinate Gradient Descent

e Learn w so that h(x) = w'x

* Coordinate descent
—Ilnitw=0
— Choose dimension with highest gain
* Set component of w

— Repeat



Coordinate Gradient Descent

e Learn w so that h(x) = w'x

* Coordinate descent
—Ilnitw=0
— Choose dimension with highest gain
* Set component of w

— Repeat

ces-es.oen.ocn.on.ononocononocnono\ ¢/



Coordinate Gradient Descent

e Learn w so that h(x) = w'x

* Coordinate descent
—Ilnitw=0
— Choose dimension with highest gain
* Set component of w

— Repeat
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Coordinate Gradient Descent

e Learn w so that h(x) = w'x

* Coordinate descent
—Ilnitw=0
— Choose dimension with highest gain
* Set component of w

— Repeat
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Coordinate Gradient Descent

e Learn w so that h(x) = w'x

€ 421
e
@ 0
 Coordinate descent e 23
—_— I o é
Initw=0 o 0
— Choose dimension with highest gain ¢ 0
€ 0
* Set component of w é
g-15
— Repeat & 0
€ 0
e

(o Y oY e Y e Y e Y ax Y ax Y an Y an Y o Y oY el Y eV’



Coordinate Gradient Descent

e Learn w so that h(x) = w'x

€ 21
e
@ 0
 Coordinate descent e ;3
—_— I o é
Initw=0 o 0
— Choose dimension with highest gain €-0.9
o0
* Set component of w é
g6-15
— Repeat & 0
€ 0
e

ces.cen.e.e.e.een.en.en.cncnc



Functional Gradient Descent

(h(x) = hy(x) + hy(x) + . + b (x)

|\ BE

'T‘ 'T‘ 'r Coordinate descent in function space
Restrict weights to be 0,1,2,...
\ V.
4 )
@1 a ﬁ
Ul £ “Function Space”
(All possible DTs)

£k
48




Boosting (AdaBoost)

h(x) = a;h,(x) + a,h,(x) + ... + agh_(x)

S ={xy,u)} S ={xy,u,)} 5" =1(xy,u3))}
¥ ¥ ¥

(" N (" N (" )

g J g J g )
h,(x) h,(x) hn(x)

u — weighting on data points

. . . Stop when validation
a — weight of linear combination

performance plateaus
https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf (W|” discuss Iater)
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Given: (x1,V1),---, (X, V) Where x; € 27, y; € {—1,+1}.

Initialize| Dy (i) = 1/mfori=1,...,m. | €= Initial Distribution of Data
Fort=1,...,T:

e (Train weak learner using distribution D;.

° [Get weak hypothesis 4, : 2~ — {—1, —i—l}J
e Aim: select 1, with low weighted error:

Train model

& = Prip, [l (x;) # yi].| €= Error of model

l1—¢
o ChooseExt = %ln( - ’ )J < Coefficient of model
1

e Update,fori=1,...,m:

Z
where Z; is a normalization factor (chosen so that D, ; will be a distribution).

D, (1 —0, ,']/l i
[DH—l(i): 1) exp(— oy t(x))]< Update Distribution

Output the final hypothesis:

T
H(x) = sign (Z Olrhr(x>> .| €= Final average
1

=

Theorem: training error drops exponentially fast

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf
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DT

25.00
. Bagging
20.00
| AdaBoost
15 00 Variance
% ]
"1 10.00
5.00 gt Boosting often uses weak models
| E.g, “shallow” decision trees
000 L Weak models have lower variance
< L 0. / '\'\
N
Bias Bias

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105-139 (1999)



Ensemble Selection

" Training
-t & mmmm) | H = {2000 models trained using S’}

Validation V’ /

Maintain ensemble model as combination of H:
h(x) = hy(x) + hy(x) + ... + h(x) + h,4(x)

1 TDenote ash,,;

Add model from H that maximizes performance on V’ ’

Repeat

Models are trained on S’
Ensemble built to optimize V’

“Ensemble Selection from Libraries of Models”

Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004



Method Minimize Bias?

Minimize Variance?

Other Comments

Bagging Complex model class.
(Deep DTs)

Random Complex model class.

Forests (Deep DTs)

Gradient Optimize training
Boosting performance.
(AdaBoost)

Ensemble  Optimize validation
Selection performance

Bootstrap aggregation
(resampling training data)

Bootstrap aggregation
+ bootstrapping features

Simple model class.
(Shallow DTs)

Optimize validation
performance

Does not work for
simple models.

Only for decision trees.

Determines which
model to add at run-
time.

Pre-specified dictionary
of models learned on
training set.

...and many other ensemble methods as well.

e State-of-the-art prediction performance

— Won Netflix Challenge

— Won numerous KDD Cups

— Industry standard
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