

# OBJECTIVES: • knowledge on the applications of Fluid Power in Power transmission system... • To study the fundamental principles, design and operation of hydraulic and pneumatic machines, components and systems and their application in recent automation revolution. • Understanding of the fluids and components utilized in modern industrial fluid power system. • To design, construction and operation of fluid power circuits.





### **ADVANTAGES OF FLUID POWER**

- Easy and Accuracy to Control With the use of simple levels
- Multiplication of small forces to achieve greater forces for performing work
- It easily provides infinite and step less variable speed control which is difficult to obtain from other drives
- Accuracy in controlling small or large forces with instant reversal is possible with hydraulic systems
- As the medium of power transmission is fluid, it is not subjected to any breakage of parts as in mechanical transmission

### Сомт...

- The parts of hydraulic system are lubricated with the hydraulic liquid itself.
- Overloads can easily controlled by using relief valves
- Because of the simplicity and compactness the cost is relatively low for the power transmitted.
- No need of lubrication.

# DISADVANTAGES:1. Leakage of oil or compressed air2. Busting of oil lines, air tanks3. More noise in operation

















# HYDRAULICS VS PNEUMATICS VS ELECRO-MECHANICAL POWER SYSTEM SYSTEM

| Hydraulic System                                          | Pneumatic System                                          | Electro-Mechanical                                                |
|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| Pressurized Liquid is<br>used                             | Compressed Air is used                                    | Energy is transmitted<br>through mechanical<br>components         |
| Energy stored in<br>Accumulator                           | Energy stored in Tank                                     | Energy stored in<br>Batteries                                     |
| Hydraulic Valves are<br>used                              | Pneumatic Valves are<br>used                              | Variable Frequency<br>drives                                      |
| Transmission through<br>Hydraulic cylinders,<br>Actuators | Transmission through<br>Pneumatic cylinders,<br>Actuators | Transmission through<br>Mechanical components<br>like Gears, Cams |

| Hydraulic System                                      | Pneumatic System              | Electro-Mechanical                                       |
|-------------------------------------------------------|-------------------------------|----------------------------------------------------------|
| More Precision                                        | Less Precision                | More Precision                                           |
| Large force can be<br>generated                       | Limited force can be achieved | Large force can be<br>realized but<br>poor in efficiency |
| Medium Cost                                           | High cost                     | Low Cost                                                 |
| Dangerous and fire<br>hazardous because of<br>leakage | Noisy                         | Easy to work                                             |
| leakage                                               |                               |                                                          |



# **PROPERTIES OF HYDRAULIC FLUIDS o** Density • The density of a fluid is its mass per unit volume. • Liquids are essentially incompressible Density $\mathbf{is}$ highly variable in gases nearly proportional to the pressure. • Viscosity Viscosity is a measure of a fluid's resistance to flow. It determines the fluid strain rate that is generated by a given applied shear stress. 10 ILS

# CONT...

### • Viscosity Index:

This value shows **how temperature affects the viscosity** of oil.

The viscosity of the oil decreases with increase in temperature and vice versa.

The rate of change of viscosity with temperature is indicated on an arbitrary scale called viscosity

• Cohesion

• Intermolecular attraction between molecules of same liquid

### o Adhesion

• Attraction between molecules of liquid and molecules of solid boundary in contact with liquid.

### • Cavitation

Cloud of vapour bubble will form when liquid pressur drops

below vapour pressure due to flow phenomenon.

o <u>Pour Point:</u>

The lowest temperature at which the oil is able to flow easily.

### • Flash Point and Fire Point:

The minimum temperature at which the hydraulic fluid will catch fire and continue burning is called fire point.

### o Lubricity:

Wear results in increase clearance which leads to all sorts of operational difficulties including fall of efficiency.



### **Types of Hydraulic Fluids**

### 1. Water:

The least expensive hydraulic fluid is water.

Water is treated with chemicals before being used in a fluid power system.

Advantages: Inexpensive, Readily available, Fire resistance

**Disadvantage:** No lubricity, Corrosive, Temperature limitations

### 2. Petroleum Oils:

These are the most common among the hydraulic fluids

The characteristic are controlled by the type of crude oil used.

Naphthenic oils have low viscosity index so it is unsuitable where the oil temperatures vary too widely.

Advantages: Excellent lubricity, Reasonable cost, Non-corrosive

### 3. Water Glycols:

These are solutions contains 35 to 55% water, glycol and water soluble thickener to improve viscosity. Additives added to improve anticorrosion, anti wear and lubricity properties.

Advantages: Better fire resistance, Less expensive, Compatible with most pipe compounds and seals

**Disadvantage:** Low viscosity, Poor corrosion resistance, not suitable for high loads.

### 4. Water Oil Emulsions:

Water-oil mixtures.

Types: oil- in-water emulsions or water-in-oil emulsions.

The oil-in-water emulsion has water as the continuous base and the oil is present in lesser amounts as the dispersed media.

In the water-in-oil emulsion, the oil is in continuous phase and water is the dispersed media.

Advantages: High viscosity index, Oxidation stability, Film strength

**Disadvantage:** Depletion of water due to evaporation decreases fire resistance, Demulsification may be problem with water-in-oil emulsions.

### 5. Phosphate Ester:

It results from the incorporation of phosphorus into organic molecules. They have high thermal stability. They serve as an excellent detergent and prevent building up of sludge.

Advantages: Excellent fire resistance, Good lubricity, Non corrosive

**Disadvantage:** Not compatible with many plastics and elastomers, Expensive

# **FLUID POWER SYMBOLS**

- Due to the rapid development of fluid-power applications, standard fluid power symbols and specifications are developed to facilitate communication and to provide a universal means of representing fluid-power symbols.
- Illustrate flow paths, connections and component functions.
- Basic Symbol Classifications
  - 1. Pumps and motors;
  - 3. Directional control valves;
  - 5. Flow control valves;
  - 7. Operation/actuation methods;
  - 9. Measuring devices;
  - 11. Combination of devices.
- 2. Cylinders;
- 4. Pressure valves;
- 6. Non-return valves;
- 8. Energy transmission;
- 10. Couplings, and

13

| Circle                                                                                        | le Rep                                    |   | Represents a pump, motor, or any rotary devices. |                                                             |                  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|---|--------------------------------------------------|-------------------------------------------------------------|------------------|--|--|--|
| Filled triangle                                                                               | illed triangle Indicates (system).        |   |                                                  | ndicates the direction of flow for hydraulic fluid system). |                  |  |  |  |
| Unfilled triangle $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                           |   |                                                  |                                                             |                  |  |  |  |
| Line with an arrow / Indicates the variable displacement.                                     |                                           |   |                                                  |                                                             |                  |  |  |  |
|                                                                                               | Description                               | 1 | Symbol                                           | Diag<br>Hydraulic                                           | ram<br>Pneumatic |  |  |  |
| Fixed displacement, unidirectional pump                                                       |                                           |   | S1                                               |                                                             | =Ô               |  |  |  |
| Fixed displacement, bidirectional pump                                                        |                                           |   | 52                                               | =                                                           | =                |  |  |  |
| Variable displacement, unidirectional pump                                                    |                                           |   | 53                                               | Ð                                                           | - <b>D</b> *     |  |  |  |
| Variable displa                                                                               | Variable displacement, bidirectional pump |   |                                                  | ÷,                                                          | -Or              |  |  |  |
| Fixed displacement, unidirectional motor                                                      |                                           |   | S5                                               | (h=                                                         | Ć-               |  |  |  |

| • Cylinders                                        |        |                                        |
|----------------------------------------------------|--------|----------------------------------------|
| Description                                        | Symbol | Diagram                                |
| Single acting cylinder, returned by external force | S10    |                                        |
| Single acting cylinder, with spring return         | S11    |                                        |
| Double acting cylinder with single piston rod      | S13    | ·                                      |
| Pistor rod                                         | Barrel | Piston<br>Rod-end port<br>Cap-end port |

| To determine    | • Directional control valve<br>To determine the path of the fluid through which it should travel within a<br>given circuit.                                                                                                                           |                             |      |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|--|--|--|--|
|                 | Number of squares       – Indicates the number of switching positions possible.         Arrow within square       – Indicate the flow direction.         Lines       – Indicate how the ports are inter-connected in the various switching positions. |                             |      |  |  |  |  |
| 8               | · · · · · ·                                                                                                                                                                                                                                           | rts and 3 switching positio | ons. |  |  |  |  |
| Description     | Symbol<br>S20                                                                                                                                                                                                                                         |                             |      |  |  |  |  |
| 3/2 – way valve | S21                                                                                                                                                                                                                                                   |                             |      |  |  |  |  |
| 4/2 – way valve | 522                                                                                                                                                                                                                                                   |                             |      |  |  |  |  |
| 4/3 - way valve | S23                                                                                                                                                                                                                                                   |                             |      |  |  |  |  |



| o Flow Control                                                               | Valve                              |                                                                                       |  |  |  |
|------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| ✓ The purpose of a flow control valve is <b>to regulate the flow rate in</b> |                                    |                                                                                       |  |  |  |
| a specific portion of a hydraulic circuit.                                   |                                    |                                                                                       |  |  |  |
| -                                                                            | -                                  | hey're used to control the flow rate to motors<br>ting the speed of those components. |  |  |  |
| Throttle – Constitute                                                        | resistance in a<br>low control val |                                                                                       |  |  |  |
| Description                                                                  | Symbol                             | Diagram                                                                               |  |  |  |
| Adjustable flow control valve with throttle                                  | S27                                | A B                                                                                   |  |  |  |
| Adjustable flow control valve with orifice                                   | S28                                |                                                                                       |  |  |  |
| Adjustable with bypass                                                       | S29                                |                                                                                       |  |  |  |
| Adjustable and pressure<br>compensated with bypass                           | S30                                |                                                                                       |  |  |  |
| Adjustable temperature and pressure compensated                              | S31                                |                                                                                       |  |  |  |





| Description                                                                    | Diagram    |                           |          |
|--------------------------------------------------------------------------------|------------|---------------------------|----------|
| Hydraulic pressure source                                                      | ▶          |                           |          |
| Electric motor                                                                 | (M)=       | -                         |          |
| Non-electric drive unit                                                        | ME         | Description               | Diagram  |
| Pressure, power, return line                                                   |            | Accumulator               | Ų        |
| Control (pilot) line                                                           |            | Spring loaded accumulator | - E      |
| Drain line                                                                     |            |                           | ্ষ       |
| Plugged port                                                                   | ×          | Gas charged accumulator   | G        |
| Flexibtle line                                                                 | $\sim$     |                           | ₩        |
| Line connection                                                                | -++-       | Weighted accumulator      | 6        |
| Line crossing                                                                  | + +        |                           | <u> </u> |
| Exhaust, continuous                                                            | A<br>¥     | 12                        |          |
| Quick-acting coupling connected with<br>mechanically opening non-return valves | -\$+\$-    |                           |          |
| Vented reservoir                                                               |            |                           |          |
| Pressurized reservoir                                                          |            | -                         |          |
| Filter                                                                         |            |                           |          |
| Cooler                                                                         | $\bigcirc$ |                           |          |
| Heater -                                                                       | Å          |                           |          |

| Description             | Symbol | Diagram                      |
|-------------------------|--------|------------------------------|
| Pressure gauge          | S66    | $\langle \mathbf{v} \rangle$ |
| Thermometer             | S67    | $\bigcirc$                   |
| Flowmeter               | S68    | -\$-                         |
| Filling level indicator | S69    | <b>P</b>                     |
|                         |        |                              |















| LOSSES IN VALVES AND FITTINGS:                                                                          |            |          |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------|----------|--|--|--|
| The loss of head in the various valves and fittings is                                                  |            |          |  |  |  |
| $H_{L} = K\left(\frac{V^{2}}{2g}\right)$ where $K = Constant of proportionality called 'the K-factor'.$ |            |          |  |  |  |
| Valve                                                                                                   | or Fitting | K-Factor |  |  |  |
| Globe valve :                                                                                           | Wide open  | 10.0     |  |  |  |
|                                                                                                         | 1⁄2 open   | 12.5     |  |  |  |
| Gate valve :                                                                                            | Wide open  | 0.19     |  |  |  |
|                                                                                                         | ³∕₄ open   | 0.90     |  |  |  |
|                                                                                                         | ¹∕2 open   | 4.5      |  |  |  |
|                                                                                                         | 1/4 open   | 24.0     |  |  |  |
| Return bend                                                                                             |            | 2.2      |  |  |  |
| Standard tee                                                                                            |            | 1.8      |  |  |  |
| Standard elbo                                                                                           | ow         | 0.9      |  |  |  |
| 45° Elbow                                                                                               |            | 0.42     |  |  |  |
| 90° Elbow                                                                                               |            | 0.75     |  |  |  |
| Ball check va                                                                                           | lve        | 4.0      |  |  |  |