# MUTHAYAMMAL ENGINEERING COLLEGE



(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

# Department of Artificial Intelligence and Data Science Question Bank - Academic Year (2021-22)

| Course Code & Course Name | : | 19ADC01 & Data Structures and Files |
|---------------------------|---|-------------------------------------|
| Name of the Faculty       | : | M.S.Soundarya                       |
| Year/Sem/Sec              | : | II/III                              |

Unit-I: Introduction Part-A (2 Marks)

- 1. Define data structures
- 2. Define static data structures.
- 3. What are the different types of data structure?
- 4. Define linear data structures
- 5. What is variable and entity?
- 6. Give the Basic Operations on Data Structures
- 7. Define list and its types
- 8. List the advantages in using a linked list
- 9. Distinguish between linear and non linear data structures
- 10. Compare singly linked list with circular linked list.

#### Part-B (16 Marks)

| 1. | With suitable examples explain the operations performed on singly linked list. | (16) |
|----|--------------------------------------------------------------------------------|------|
| 2. | Discuss about_ the operations performed on doubly linked list with example     | (16) |
| 3. | Explain the operations performed on Circular Doubly linked list with example   | (16) |
| 4. | Write short notes i. array and structure                                       | (16) |
|    | ii.pointer and recursion function                                              |      |
| 5. | Enumerate the operations of queue ADT using linked list                        | (16) |

### Unit-II : Linear Data Structure Part-A (2 Marks)

- 1. Mention the advantages of representing stacks using linked lists than arrays.
- 2. Define a stack.
- 3. State the different ways of representing expressions.

- 4. State the rules to be followed during infix to postfix conversions.
- 5. Define a priority queue.
- 6. What are the applications of priority queue?
- 7. Mention the advantages of representing stacks using linked lists than arrays.
- 8. Mention the overflow condition in array implementation of Queue?
- 9. Differentiate LIFO and FIFO?
- 10. Write the Algorithm for DEQUEUE operation.

#### Part-B (16 Marks)

| 1. | Write down and explain the operations performed in Stack ADT using array with its Algorithms and their complexity analysis   | (16) |
|----|------------------------------------------------------------------------------------------------------------------------------|------|
| 2. | Enumerate the Applications of Stacks with example                                                                            | (16) |
| 3. | Explain briefly about the operations for enqueue and dequeue on queue ADT using array with its Algorithms and their analysis | (16) |
| 4. | Explain the basic concept of Circular Queue Operations with example                                                          | (16) |
| 5. | List and Explain various operation of Circular Queue with example                                                            | (16) |

### Unit-III : Non Linear Data Structure Part-A (2 Marks)

- 1. Define a tree
- 2. Define terminal nodes in a tree
- 3. Define a binary tree
- 4. Define a right-skewed binary tree
- 5. What is meant by binary tree traversal and list out the different binary tree traversal techniques
- 6. What are the basic operations performed in a binary search tree
- 7. List out the heap property
- 8. What are the tasks performed while traversing a binary tree?
- 9. Define a path in a tree.
- 10. What are the different ways of representing a binary tree?

## Part-B (16 Marks)

- 1. Explain three standard ways of traversing a binary tree T with a recursive algorithm. (16)
- 2. Illusrate B Tree operations with their algorithms with Complexity analysis. (16)
- 3.Enumerate the algorithm for AVL. Show the result of inserting<br/>15,17,6,19,11,10,13,20,8,14,12 one at time into an initially empty tree(16)

- Write an algorithm for inserting and deleting a node in a binary search tree (BST) with (8) example (8)
- 5. With example explain the B+ Tree operation write the algorithms and its analysis (16)

# Unit-IV : Graphs Part-A (2 Marks)

- 1. **What** is a graph and its types?
- 2. When do you say a graph is bi-connected?
- 3. **Give** the purpose of Dijikstra's algorithm.
- 4. **Differentiate** cyclic and acyclic graph.
- 5. **Give** two applications of graphs.
- 6. **Prove** that the number of edges in a complete graph of n vertices in n(n-1)/2
- 7. **Explain** procedure for Depth first search algorithm.
- 8. **Define** minimum spanning tree. **Give** an example
- 9. **Create** a complete undirected graph having five nodes.
- 10. **Define** the length of the graph.

#### Part-B (16 Marks)

| 1. | Describe in detail about the following representations of a graph.                                            | (16) |
|----|---------------------------------------------------------------------------------------------------------------|------|
|    | i. Adjacency Matrix                                                                                           |      |
|    | ii. Adjacency List                                                                                            |      |
| 2. | i. Explain the topological sorting of a graph Gwith example.                                                  | (16) |
|    | ii. Quote the step wise procedure fortopologicalsort                                                          |      |
| 3. | <b>Differentiate</b> depth-first search and breadth-first search traversal of a graph with suitable examples. | (16) |
| 4. | Describe any one of the shortest path algorithms with suitable example                                        | (16) |
| 5. | Discuss the prims algorithm for minmum spanning tree. Give an example                                         | (16) |

#### Unit-V : Searching,Sorting,Hashing Techniques and Files Part-A (2 Marks)

- 1. Define Hashing
- 2. What do you mean by collision in hashing?
- 3. What do you mean by separate chaining?
- 4. What do you mean by open addressing?
- 5. List out various collision resolution techniques.
- 6. Define sorting and its type
- 7. What is Insertion Sort?
- 8. How Selection Sort operate?
- 9. Write the steps involved in Quick Sort

# Part-B (16 Marks)

| 1. | Briefly describe hashing techniques with its collision resolution strategies | (16) |
|----|------------------------------------------------------------------------------|------|
| 2. | Describe in detail about insertion sort                                      | (16) |
| 3. | With example enumerate the operation of selection sort                       | (16) |
| 4. | Discuss in detail about bubble sort                                          | (16) |
| 5. | Illustrate the operation of Merge sort with explanation                      | (16) |

**Course Faculty** 

HoD