# MUTHAYAMMAL ENGINEERING COLLEGE



(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

# Department of Civil Engineering Question Bank - Academic Year (2020-21)

| Course Code & Course Name | : | 19CEC08 & Geotechnical Engineering |
|---------------------------|---|------------------------------------|
| Year/Sem/Sec              | : | II/IV/-                            |

## Unit-I : Soil Classification and Compaction Part-A (2 Marks)

- 1. What are the different equipments available for compacting soil in the field?
- 2. List out the factors affecting compaction?
- 3. In a saturated soil mass, if water content is 24% and specific gravity of soil is 2.64, Estimate porosity.
- 4. Define porosity and voids ratio.
- 5. What are the effects of compaction on various properties of soil?
- 6. What is compaction curve?
- 7. Mention the classification systems of soil.
- 8. List various field compaction method along with their suitability.
- 9. Differentiate between void ratio and porosity.
- 10. The most accurate method for the determination of water content in the laboratory?
- 11. Define soil shrinkage ratio.
- 12. Define the terms plasticity Index and saturated mass density.
- 13. Define liquid limit
- 14. List out any four equipment/methods for field compaction of soil.
- 15. Draw the phase diagram for dry soil as saturated soil.
- 16. Define air contents and percentage air content in soil.
- 17. Derive the relationship between void ratio and porosity.
- 18. State whether the following statement is true or false and justify your answer. The efficiency of compaction improves with increase in compactive effort.
- 19. Define degree of saturation and shrinkage ratio.
- 20. What are the atterberg's limits? List it's types and it's importance.

- 21. Define compaction.
- 22. Define plasticity index and flow index.
- 23. Define plasticity
- 24. What is a zero air voids line? Draw a compaction curve and show the zero voids line.
- 25. Explain the term optimum moisture content of soil.
- 26. Define sensitivity and Thixotropy for a soil.
- 27. Define quick clay.
- 28. Define activity of clays and specific surface.
- 29. Define collapsible soils.
- 30. Define water content.
- 31. Distinguish between residual soil and transported soil.
- 32. Define effective size of a particle in sieve analysis

| 1.  | Explain IS soil classification system for classifying coarse-grained soil.                                                                     | (16) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.  | Discuss various factors influencing compaction behavior of soils.                                                                              | (16) |
| 3.  | Explain the IS the soil classification system for classifying fine-grained soil.                                                               | (16) |
| 4.  | Discuss the engineering behavior of compacted cohesive soils.                                                                                  | (16) |
| 5.  | Discuss in detail the engineering significance of the consistency limits of soil.                                                              | (16) |
| 6.  | Discuss the effect of compaction on various engineering properties of soils.                                                                   | (16) |
| 7.  | Derive the relationship between porosity $(n)$ and void ratio $(e)$ .                                                                          | (16) |
| 8.  | Describe the proctor compaction test in detail.                                                                                                | (16) |
| 9.  | Draw the diagram for the three Waterberg limits of a soil and mark the various soil phases.                                                    | (16) |
| 10. | Discuss various methods available for field compaction.                                                                                        | (16) |
| 11. | Explain the textural classification system with a neat sketch.                                                                                 | (16) |
| 12. | Draw neatly the IS plasticity chart and label the symbol of various soils.                                                                     | (16) |
| 13. | Draw typical moisture content-dry density relationship for a soil obtained from standard proctor compaction test and label the salient points. | (16) |
| 14. | Describe the procedure for determining water content and specific gravity of a given soil in the laboratory by using a pycnometer.             | (16) |
| 15. | Discuss about the grain size distribution of soil by                                                                                           | (16) |

- (i) Sieve analysis (ii)Sedimentation analysis
- 16. Explain in detail about formation and types of soil.(16)
- 17. Discuss about the various composition of soil. (16)
- 18. Discuss about US soil classification system.(16)
- 19. Explain about clay mineralogy and list out various mineral. (16)
- 20. Discuss about various structural arrangement of soil grains. (16)

#### Unit-II : Soil Water and Permeability Part-A (2 Marks)

- 1. What is meant by total stress, neutral stress and effective stress?
- 2. What is meant by capillary rise in soil and how it affects the stress level in soils?
- 3. What are the different types of soil water?
- 4. List out the methods of drawing flow net.
- 5. What is quicksand condition? Under what circumstances can it occur?
- 6. Write typical range of co-efficient of permeability for gravel, sand, silt and clay.
- 7. What is the importance of effective stress?
- 8. State the assumptions in construction of flow net.
- 9. State Darcy's law.
- 10. What is capillary stress?
- 11. Write the various types of field permeability tests.
- 12. Define flow net. Draw a neat sketch.
- 13. How do you known that the flow through a soil obeys Darcy's law?
- 14. Derive the expression for capillary rise in a tube inserted in water.
- 15. List the various uses of flow net in engineering practice.
- 16. What is the difference between discharge velocity and seepage velocity?
- 17. Compare seepage velocity with superficial velocity.
- 18. Define capillary water.
- 19. Define critical hydraulic gradient.
- 20. What are the factors that affect hydraulic conductivity?

| 1.  | Write down the procedure for determination of permeability by constant head test in the                                                                                                                                                                                                                                                                                                                                                                                                                                   | (16) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 2.  | What is flownet? List the properties of flownet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (16) |
| 3.  | Define flownet. Discuss about it's uses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (16) |
| 4.  | Explain about various factors affecting co-efficient of permeability of soil.                                                                                                                                                                                                                                                                                                                                                                                                                                             | (16) |
| 5.  | Briefly explain about the laboratory methods of permeability test with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                       | (16) |
| 6.  | What is a flownet? Describe the method used to construct the flownet.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (16) |
| 7.  | What is soil suction? How is it measured? What are the factors that affect soil suction?                                                                                                                                                                                                                                                                                                                                                                                                                                  | (16) |
| 8.  | Critically discuss different methods of determining flownets.                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (16) |
| 9.  | <ul> <li>With the help of neat sketches and usual notations, derive expressions for the following;</li> <li>(i) Co-efficient of permeability by constant head method</li> <li>(ii) Co-efficient of permeability by variable head method</li> <li>(iii) Average co-efficient of permeability of layered soil system, when flow takes place perpendicular to the bedding plane.</li> <li>State the assumptions made in each of them.</li> <li>Define;</li> <li>(i) Total stress</li> <li>(ii) Newtral stress and</li> </ul> | (16) |
|     | <ul><li>(ii) Neutral stress and</li><li>(iii)Effective stress.</li><li>Write also about their significance.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 11. | List the various types of soil water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (16) |
| 12. | Describe the unconfined pumping out flow and determine the co-efficient of permeability of soil. Also explain draw curve.                                                                                                                                                                                                                                                                                                                                                                                                 | (16) |
| 13. | Define;<br>(i) Quick sand condition<br>(ii) Critical hydraulic gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (16) |
| 14. | Name the various methods of laboratory determination of permeability with the soil type in which they are best suited and explain anyone method in detail.                                                                                                                                                                                                                                                                                                                                                                | (16) |

## Unit-III : Effective Stress Distribution due to Applied Loads and Settlement Part-A (2 Marks)

- 1. What is the basis of the construction of Newmarks influence chart? or What is the principle behind Newmark's influence chart?
- 2. What are the factors that influence the compression behaviour of soils?
- 3. Define co-efficient of compressibility.
- 4. What is an influence diagram? What is it's use in practice

- 5. List the assumptions made in Boussinesq's analysis of stress distribution.
- 6. Define over consolidation, normally consolidated and under consolidated soil.
- 7. What is consolidation?
- 8. Define process of consolidation.
- 9. Give the applications of pressure pulb.
- 10. Define secondary consolidation.
- 11. State the Boussinesq formula for vertical stress distribution in soil under a point load.
- 12. What are the components of settlement?
- 13. State the assumptions made in Terzaghi's one dimensional consolidation theory.
- 14. What is the use of consolidation test data
- 15. Define coefficient of consolidation and compression index.
- 16. Compare Boussinesq's and westergaard's analysis of stress distribution.
- 17. Define stress Isobar or pressure bulb.
- 18. What are the stages of consolidation?
- 19. Define Isobars.

| 1.  | Explain in details of the determination of co-efficient of consolidation using log it method.                                                | (16) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.  | Discuss Terzaghi's theory of consolidation, starting the various assumptions and their validity.                                             | (16) |
| 3.  | Explain with neat sketch Taylor's method for determination of co-efficient of consolidation.                                                 | (16) |
| 4.  | Discuss the factors influencing settlement characteristics of soils.                                                                         | (16) |
| 5.  | Describe the detail procedure of determination of vertical effective stress by using Newmarks chart method with neat sketches and equations. | (16) |
| 6.  | Describe the Newmark's chart and its applications.                                                                                           | (16) |
| 7.  | Describe Terzaghi's theory of one-Dimensional consolidation along with the spring analogy.                                                   | (16) |
| 8.  | Explain the procedure to use Newmark's influence chart.                                                                                      | (16) |
| 9.  | Derive the equation for Terzaghis theory of one-dimensional consolidation with a neat sketch.                                                | (16) |
| 10. | Discuss in detail about the Boussineq's analysis to find vertical stress and horizontal shear stress for point load.                         | (16) |
| 11. | List the Boussinesq's theory, Assumptions and limitations.                                                                                   | (16) |
| 12. | List the different components of settlement? Explain their occurance with respect to the                                                     | (16) |

change in soil systems.

13. Write a brief critical note on "the concept of pressure bulb and its use in (16) soil engineering practice".

## Unit-IV : Shear Strength Part-A (2 Marks)

- 1. Write down the mohr's coulomb failure envelop equation.
- 2. Why triaxial shear test is considered better than direct shear test?
- 3. State the principle of direct shear test.
- 4. What is the effect of pore pressure on shear strength of soil?
- 5. What is meant by deviator stress?
- 6. What are shear strength parameters?
- 7. Define stress path.
- 8. Enumerate the limitations of box shear test.
- 9. Give the coulumb's shear strength equation and list the shear strength parameters.
- 10. Define liquefaction and the effects on structural stability due to liquefaction.
- 11. Draw the mohr's circle diagram for UCC test and mention the salient features.
- 12. Give one example each of the use of CU strength and CD strength results in engineering practice.
- 13. Draw the strength envelops for fully saturated clay subjected to CD test and fully saturated sand subjected to UU test.
- 14. Draw typical stress-strain curve for specimens failed by brittle failure and plastic failure.
- 15. What do you meant by Thixotropy?
- 16. Write the advantages of direct shear test.
- 17. List different types of shear tests based on drainage.
- 18. List out the demerits of triaxial test.
- 19. Write whether the following statement is true or false. On the failure plane, the shear stress is maximum.
- 20. List the merits and demerits of triaxial test.
- 21. What is meant by sensitivity?
- 22. What is meant by degree of sensitivity?

| 1.  | Write down a step by step procedure for determining of cohesion of a given clayey soil by conducting unconfined compression test.                           | (16) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.  | What are the advantages and disadvantages of triaxial compression test.                                                                                     | (16) |
| 3.  | Explain with neat sketches the procedure of conducting direct shear test. Give it's advantages over other method of finding shear strength of soil.         | (16) |
| 4.  | What is the Mohr's strength theory of soil? Derive the expression relating major and minor principal stresses and shear strength parameters of soil.        | (16) |
| 5.  | Explain in detail with neat sketches about triaxial shear test conducted in laboratory along with it's merits and demerits.                                 | (16) |
| 6.  | Sketch the stress-strain and volume change relationships for dense and loose sand.                                                                          | (16) |
| 7.  | Explain discuss about the various types of triaxial shear test based in drainage condition.                                                                 | (16) |
| 8.  | Explain vane shear test.                                                                                                                                    | (16) |
| 9.  | Explain direct shear test stating clearly it's advantages and disadvantages.                                                                                | (16) |
| 10. | Draw the Mohr-Collomb failure envelopes of CU, CD and UU tests sandy soil and comment on the shear strength parameter.                                      | (16) |
| 11. | How do you find the shear strength of soil using vane shear test? And derive the formula used to calculated shear strength. Where this test is mostly used. | (16) |
| 12. | Describe the vane shear test in detail and explain the two methods adopted in this test-<br>fully submerged vane and partially submerged vane.              | (16) |
| 13. | Define deviator stress and its significance in Triaxial shear strength test.                                                                                | (16) |
| 14. | Explain the triaxial shear tests based on drainage and their applicability.                                                                                 | (16) |
| 15. | Write the advantages, disadvantages and limitations of direct shear test.                                                                                   | (16) |

## Unit-V : Slope Stability Part-A (2 Marks)

- 1. What are the different types of slopes?
- 2. Define stability number.
- 3. Define stability factor
- 4. Define finite slope
- 5. Write the formula for finding factor of safety with respect to cohesion and friction.
- 6. Differentiate the modes of failure of finite and infinite slopes.
- 7. What is the effect of depth of failure surface on the stability of infinite slope in cohesion less

soil?

- 8. What is tension crack?
- 9. Differentiate finite and infinite slope.
- 10. Mention the methods of protecting slopes of soils.
- 11. State the influence of tension crack in factor of safety in the cracks are filled with water and without water.
- 12. How Taylor's stability number is utilized for slope stability analysis?
- 13. Mention different modes of slope failure with figure.
- 14. What are the factors leading to the failure of slopes? (May/June 2016)
- 15. What are the three forces acting in circular failure while analyses through friction circle method?
- 16. Draw a slip circle for a failure plane in a slope and show the forces involved.
- 17. List out the different factors controlling selection of appropriate method of slope protection measures.
- 18. What are different factor of safety used in the stability of slop.
- 19. What is a land slide
- 20. What do you know about infinite slopes?
- 21. What do you mean by slide?
- 22. Why does a slope be analyzed?
- 23. Write down the assumptions made in the analysis of slope?
- 24. What are the causes of slope failure?

#### Part-B (16 Marks)

| 1. | Describe modified Bishop's method for the stability analysis of slope. What are it limitations? | (16) |
|----|-------------------------------------------------------------------------------------------------|------|
| 2. | Discuss various methods to protect the slopes with neat sketches.                               | (16) |
| 3. | Discuss friction circle method for stability analysis of slope.                                 | (16) |
| 4. | Describe the Fellinius circle method of analyzing the stability of slopes.                      | (16) |
| 5. | Brief total stress method of analysis of stability of slopes.                                   | (16) |
| 6. | Differentiate between finite and infinite slopes.                                               | (16) |
| 7. | Write explanatory note on:                                                                      | (16) |
|    | (i) Taylor's stability number, (ii) Stability of infinite slope,                                |      |
|    | (iii) Stability of slopes of an earthen dam.                                                    |      |

| 8.  | Discuss in detail about different modes of finite slope failure and different methods of analyzing factor of safety of finite slopes. | (16) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------|
| 9.  | Discuss the stability analysis of slopes by method of slices for Cohesionless soil.                                                   | (16) |
| 10. | Explain the method of slices for stability analysis of slopes.                                                                        | (16) |
| 11. | Explain the following with sketch:<br>(i) Total stress analysis.<br>(ii)Effective stress analysis.                                    | (16) |
| 12. | Describe in detail the Swedish Slip Circle method.                                                                                    | (16) |
| 13. | State the use of Taylor's chart and its applicability.                                                                                | (16) |

## **Course Faculty**

HoD