# MUTHAYAMMAL ENGINEERING COLLEGE



(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

# Department of Electronics and Communication Engineering Question Bank - Academic Year (2020-21)

| Course Code & Course Name | : | 19ECC11 / Microwave Engineering |
|---------------------------|---|---------------------------------|
| Name of the Faculty       | : | Ms.S.Priya,AP/ECE               |
| Year/Sem/Sec              | : | III/V/C                         |

#### Unit-I: GUIDED WAVES Part-A (2 Marks)

- 1. What are guided waves?
- 2. Define TEM wave.
- 3. Define cutoff frequency.
- 4. Distinguish group velocity and phase velocity.
- 5. List the different characteristics of TE wave
- 6. Differentiate TE wave and TM wave.
- 7. Define cutoff wavelength.
- 8. List the characteristics of TEM waves.
- 9. Write the relation between guide wavelength and cut-off wavelength
- 10. Define wave impedance.

### Part-B (16 Marks)

| 1. | Derive the characteristic equations of Transverse Electric wave. A parallel plane wave | (16) |
|----|----------------------------------------------------------------------------------------|------|
|    | guide with plate separation of 0.03 m with TE10 mode is excited at 6 GHz. Find the     |      |
|    | cutoff frequency, cutoff wavelength, guide wavelength and group velocity.              |      |
| 2. | Derive the equation for the field components of a Guided wave.                         | (16) |
| 3. | Derive the equation for the field components of a Transverse Electric wave.            | (16) |
| 4. | Discuss the nature of field components of a Transverse Magnetic wave.                  | (16) |
| 5  | Derive the characteristic equations of Transverse Magnetic more A gamellal gland       | (1c) |

5. Derive the characteristic equations of Transverse Magnetic wave. A parallel plane (16) wave guide with plate separation of 20 cm is excited at 1 GHz. Find the propagation constant, cutoff frequency, and guide wavelength in the dominant mode if the medium of propagation is having a dielectric constant of 4.

### Unit-II : RECTANGULAR WAVEGUIDES Part-A (2 Marks)

- 1. Define degenerate modes.
- 2. Distinguish TE and TM waves.

- 3. Mention the dominant modes of a rectangular and circular waveguide.
- 4. Rectangular waveguides are preferred over circular waveguide. Justify
- 5. List the characteristics of a TEM wave.
- 6. Write the applications of circular waveguide?
- 7. What is a Waveguide?
- 8. List the possible modes for TM waves in a circular waveguide?
- 9. Compute the cutoff wavelength and cutoff frequency of the TE 10 mode in a rectangular waveguide?
- 10. Write the relation between guide wavelength and cut-off wavelength.

#### Part-B (16 Marks)

| 1. | Derive the expression for field components in a rectangular waveguide.                                                                                                                                                | (16) |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2. | Derive the expression for field components of TE & TM wave in a rectangular waveguide                                                                                                                                 | (16) |
| 3. | A rectangular waveguide measures 3 X 5 cm internally and has a 10 GHz signal propagated in it. Calculate the cut-off wave length the guide wavelength and the characteristic impedance for the TE <sub>10</sub> mode. | (16) |
| 4. | Derive the expression for Transverse Electric waves in Cylindrical Waveguides                                                                                                                                         | (16) |
| 5. | Derive the expression for field components in a Cylindrical Waveguides                                                                                                                                                | (16) |

#### Unit-III: Two Port Network Theory Part-A (2 Marks)

- 1. Why low frequency parameters are not used in microwaves?
- 2. Draw the equivalent circuit of a resistor and inductor at RF.
- 3. Mention the low frequency parameters used in low frequencies.
- 4. Discuss the principle advantage of microwave frequency over lower frequency.
- 5. Write the unitary properties of S matrix.
- 6. Mention the problems caused by resistor at high frequencies.
- 7. Examine the characteristics of reciprocal and symmetrical networks.
- 8. Define Reflection Co-efficient at the input side and output side of a two-port network in terms of S-parameters.
- 9. Represent the zero proper of S-matrix.
- 10. What is Insertion Loss and Return loss?

#### Part-B (16 Marks)

- 1. Formulate scattering matrix for a 2-port microwave network and generalize the (16) concept of n-port S-matrix representation.
- 2. Discuss the properties of S-matrix with proof.
- 3. (i) What are transmission matrices? Explain them and obtain the relationship with S- (8) Matrix.
  - (ii) Prove that the S-matrix for a lossless network is unitary.

(16)

- 4. (i) Explain in detail about low frequency parameters. (8)
- (ii) Categorize various losses in microwave devices and explain? (8)
- 5. Derive the S –matrix for n-port network. Prove that the S-Matrix for a reciprocal (16) network is symmetric.

#### Unit-IV : Microwave Generation Part-A (2 Marks)

- 1 List the high frequency effects in vacuum tubes.
- 2 Write the classification of microwave tubes and explain the difference between them.
- 3 What do you mean by guide wavelength?
- 4 Define reentrant cavity.
- 5 What is the need for slow wave structures?
- 6 List the drawbacks available in klystron?
- 7 State the two parameters that describe a directional coupler? Define them.
- 8 Outline the need for attenuator.
- 9 Compare TWT and Klystron.
- 10 Demonstrate the Negative resistance in Gunn diode?

#### Part-B (16 Marks)

1. Analyze the theory of oscillations in a magnetron. Examine the expressions for Hull (16) Cut off magnetic and voltage equations.

2.(i) A travelling wave tube operates under the following parameters: Beam voltage Vo= (4+4) 3kV; Bean current Io = 30mA; Characteristics impedance of helix Zo = 10 ohm; Circuit length = N=50 m; Frequency f = 10 GHz. Determine (i) Gain parameters, (ii) Output power Ap in dB.

- (ii) Identify the important points about Backward wave Crossed field amplifier. (8)
- 3. What is the bunching process of a two-cavity klystron? Define optimum bunching (16) distance  $L_{opt.}$  and derive the expression for it.
- 4. Explain the operation of reflex klystron with neat diagram. (16)
- 5. Describe the operation of cylindrical Magnetron and crossed field amplifier. (16)

#### Unit-V : Microwave Measurements Part-A (2 Marks)

- 1. What are the uses of network analyzer? What are the types of network analyzers?
- 2. What is the significance of VSWR measurements?
- 3. Name the methods used in the measurement of cavity Q.
- 4. What are the errors occur in attenuation measurement?
- 5. Mention the sensors used in the power measurement.
- 6. Distinguish between low frequency measurement and microwave measurements.
- 7. List the methods used to measure impedance.
- 8. What do you mean by slotted line?
- 9. Compare thermistor and barretter.

# Part-B (16 Marks)

| 1.(i) | Explain the any one impedance measurement with neat diagram.                                 |      |
|-------|----------------------------------------------------------------------------------------------|------|
| (ii)  | Explain the principle of operation of VSWR meter.                                            | (8)  |
| 2.(i) | Explain a method for high power measurement.                                                 | (8)  |
| (ii)  | Draw the block diagram for the slotted line method of VSWR measurement and explain.          | (8)  |
| 3.    | Discuss the VSWR, impedance, wavelength and frequency measurement using slotted line method. | (16) |
| 4.(i) | Write short notes on power sensors used for microwave power measurement.                     | (8)  |
| (ii)  | Explain the experimental set-up for S-parameter measurement of magic Tee and explain.        | (8)  |
| 5.    | Explain the operation of network analyzerr with neat sketches.                               | (16) |

## **Course Faculty**

HoD